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Abstract

Let
(
Mk, Qk

)
k∈N be independent copies of an R2-valued random vector. It is known

that if Yn := Q1+M1Q2+ . . .+M1 · . . . ·Mn−1Qn converges a.s. to a random variable Y ,

then the law of Y satisfies the stochastic fixed-point equation Y
d
= Q1 +M1Y , where

(Q1,M1) is independent of Y . In the present paper we consider the situation when |Yn|
diverges to∞ in probability because |Q1| takes large values with a high probability,
whereas the multiplicative random walk with steps Mk’s tends to zero a.s. Under a
regular variation assumption we show that log |Yn|, properly scaled and normalized,
converge weakly in the Skorokhod space equipped with the J1-topology to an extremal
process. A similar result also holds for the corresponding Markov chains. Proofs rely
upon a deterministic result which establishes the J1-convergence of certain sums to a
maximal function and subsequent use of the Skorokhod representation theorem.
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1 Introduction

Let
(
Mk, Qk

)
k∈N be independent copies of a random vector

(
M,Q

)
with arbitrary

dependence of the components, and let X0 be a random variable which is independent
of
(
Mk, Qk

)
k∈N. Then the sequence

(
Xn

)
n∈N0

defined by

Xn = MnXn−1 +Qn, n ∈ N, (1.1)

is a homogeneous Markov chain. In view of the representation

Xn = Ψn(Xn−1) = Ψn ◦ . . . ◦Ψ1(X0)

= Qn +MnQn−1 + . . .+MnMn−1 · . . . ·M2Q1 +MnMn−1 · . . . ·M1X0

for n ∈ N, where Ψn(t) := Qn +Mnt for n ∈ N, (Xn)n∈N is nothing else but the forward
iterated function system. Closely related is the backward iterated function system

Yn := Ψ1 ◦ . . . ◦Ψn(0) = Q1 +M1Q2 + . . .+M1M2 · . . .Mn−1Qn, n ∈ N.

In the case that X0 = 0 a.s. it is easily seen that Xn has the same law as Yn for each
fixed n.
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Functional limit theorems for divergent perpetuities

Put
Π0 := 1, Πn := M1M2 · . . . ·Mn, n ∈ N

and assume that
P{M = 0} = 0 and P{Q = 0} < 1 (1.2)

and
P{Q+Mr = r} < 1 for all r ∈ R. (1.3)

Then according to Theorem 2.1 in [8] the series
∑
k≥1 Πk−1Qk is absolutely a.s. conver-

gent provided that

lim
n→∞

Πn = 0 a.s. and I :=

∫
(1,∞)

log x

A(log x)
P{|Q| ∈ dx} <∞, (1.4)

where A(x) := E(log− |M | ∧ x), x > 0. The sum Y , say, of the series is then called
perpetuity.

It is also well-known what happens in the ’trivial cases’ when at least one of conditions
(1.2) and (1.3) does not hold.
(a) If P{M = 0} > 0, then τ := inf{k ∈ N : Mk = 0} <∞ a.s., and the perpetuity trivially
converges, the limit being an a.s. finite random variable

∑τ
k=1 Πk−1Qk. Plainly, its law is

a unique invariant measure for (Xn).
(b) If P{Q = 0} = 1, then

∑
k≥1 Πk−1Qk = 0 a.s.

(c) If P{Q+Mr = r} = 1 for some r ∈ R, then either δr is a unique invariant probability
measure for (Xn) or every probability law is an invariant measure, or every symmetric
around r probability law is an invariant measure (see Theorem 3.1 in [8] for the details).

Under assumptions (1.2), (1.3) and (1.4) the Markov chain
(
Xn

)
has a unique invari-

ant probability measure which is the law of the perpetuity. Equivalently, the law of Y is
a unique solution to the stochastic fixed-point equation

Y
d
= Q+MY, (1.5)

where the vector (M,Q) is assumed independent of Y , sometimes called the random
difference equation. Equation (1.5) appears in diverse areas of both applied and pure
mathematics and various properties of Y have attracted considerable attention. Papers
[1, 8, 18] give pointers to relevant literature.

For (Xn) defined by (1.1) we write Xv
n to indicate that X0 = v for v ∈ R. If the first

part of (1.4) is in force we infer |Xv
n − Xw

n | = |Πn||v − w| → 0 a.s. as n → ∞, for any
v, w ∈ R. Therefore, the case when lim

n→∞
Πn = 0 a.s. will be called contractive.

In the present paper we are interested in the case when conditions (1.2), (1.3) and

lim
n→∞

Πn = 0 a.s. and I =∞ (1.6)

hold, i.e., the model is still contractive, yet the second condition in (1.4) is violated.
By Theorem 2.1 in [8] (Yn) is then a divergent perpetuity in the sense that |Yn| =

|
∑n
k=1 Πk−1Qk|

P→∞ as n→∞. The purpose of the present paper is to prove functional
limit theorems for the Markov chains (Xn) and for the divergent perpetuities (Yn) under
the aforementioned assumptions. It is noteworthy that unlike some previous papers on
limit theorems for perpetuities we allow M and Q to take values of both signs.

As far as we know Grincevičius [9] was the first to prove a limit theorem for Yn in
the case E log |M | = 0 under the assumption that M > 0 a.s. Also, weak convergence
of one-dimensional distributions of divergent perpetuities has been investigated in
[3, 10, 13, 15] under various assumptions on M and Q. To the best of our knowledge, (a)
functional limit theorems for divergent perpetuities have not been obtained so far; (b)
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Functional limit theorems for divergent perpetuities

[13] is the only contribution to case (1.6) which deals with one-dimensional convergence.
We would like to stress that outside the area of limit theorems we are only aware of two
papers [12] and [19] which investigate case (1.6). Unlike (1.6) the critical non-contractive
case E log |M | = 0 has received more attention in the literature, see [2, 4, 5, 6, 9, 10, 15].

Assuming that the tail of log− |M | is lighter than that of log+ |Q| we state two func-
tional limit theorems thereby covering a variety of situations. In particular, we do not
require finiteness of E log |M |. Under (1.6) the complementary case is also possible
where the tail of log− |M | is not lighter than that of log+ |Q|. Assuming that |M | ≤ 1

a.s. take, for instance, P{− log |M | > x} ∼ x−α logδ x, x → ∞ for any δ ≥ 0 and some
α ∈ (0, 1), and P{log |Q| ∈ dx} = αx−α−1

1(1,∞) dx. However this situation is beyond the
scope of the present work.

For c > 0 and α > 0, let N (c,α) :=
∑
k ε(t

(c,α)
k , j

(c,α)
k )

be a Poisson random measure on

[0,∞)× (0,∞] with mean measure LEB× µc,α, where ε(t, x) is the probability measure
concentrated at (t, x) ∈ [0,∞)× (0,∞], LEB is the Lebesgue measure on [0,∞), and µc,α
is a measure on (0,∞] defined by

µc,α
(
(x,∞]

)
= cx−α, x > 0.

Let D := D[0,∞) denote the Skorokhod space of right-continuous functions defined on
[0,∞) with finite limits from the left at positive points. Throughout the paper we use ’⇒’
to denote weak convergence in the Skorokhod space D equipped with the J1-topology.
We write ’⇒ in S’ to denote weak convergence in a space S other than D. Also, we
stipulate hereafter that the supremum over the empty set is equal to zero.

Theorem 1.1 treats the situation in which both Mk’s and Qk’s affect the limit behavior
of the processes in question, whereas in the situation of Theorem 1.5 only the contribution
of Qk’s persists in the limit.

Theorem 1.1. Assume that

E log |M | = −a ∈ (−∞, 0), (1.7)

that
lim
x→∞

xP{log |Q| > x} = c (1.8)

for some c > 0. If
P{Yk = 0} = 0 (1.9)

for each k ∈ N, then

log
∣∣Y[n·]+1

∣∣
an

⇒ sup
t
(c/a,1)
k ≤·

(
− t(c/a,1)

k + j
(c/a,1)
k

)
, n→∞, (1.10)

and if
P{Xk = 0} = 0 (1.11)

for each k ∈ N, then

log
∣∣X[n·]+1

∣∣
an

⇒ g(·) + sup
t
(c/a,1)
k ≤·

(
t
(c/a,1)
k + j

(c/a,1)
k

)
, n→∞, (1.12)

where g(t) := −t, t ≥ 0.

Remark 1.2. Conditions (1.9) and (1.11) ensure that the paths of log
∣∣Y[n·]+1| and

log
∣∣X[n·]+1| belong to D. While a simple sufficient condition for (1.9) to hold is con-

tinuity of the law of Q, (1.11) holds if either X0 = 0 a.s. and the law of Q is continuous
or the law of X0 is continuous. Condition (1.9) ((1.11)) is not needed if we (a) replace
log with log+ in (1.10) ((1.12)); (b) consider weak convergence in D(0,∞) rather than D.
The same remark also concerns Theorem 1.5 given below.
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Functional limit theorems for divergent perpetuities

Remark 1.3. Since Xn
d
= Yn for each n ∈ N provided that X0 = 0 a.s., the one-

dimensional distributions of the limit processes in (1.10) and (1.12) must coincide.
Moreover, they can be explicitly computed and are given by

P
{

sup
t
(c/a,1)
k ≤u

(
− t(c/a,1)

k + j
(c/a,1)
k

)
≤ x

}

= P
{
− u+ sup

t
(c/a,1)
k ≤u

(t
(c/a,1)
k + j

(c/a,1)
k ) ≤ x

}
=

(
x

x+ u

)c/a
(1.13)

for x ≥ 0 and u > 0.
Indeed, for x ≥ 0, the probability on the left-hand side equals

P
{
N (c/a,1)

(
(t, y) : t ≤ u,−t+ y > x

)
= 0
}

= exp
(
− EN (c/a,1)

(
(t, y) : t ≤ u,−t+ y > x

))
because N (c/a,1)

(
(t, y) : t ≤ u,−t + y > x

)
is a Poisson random variable. It remains to

note that

EN (c/a,1)
(
(t, y) : t ≤ u,−t+ y > x

)
=

∫ u

0

∫
[0,∞)

1{−t+y>x} µc/a, 1(dy)dt

= (c/a)

∫ u

0

(x+ t)−1dt

= (c/a)(log(x+ u)− log x).

Remark 1.4. Theorem 5(ii) in [13] states that, for fixed a > 0,

lim
n→∞

P

{
log

( n∑
k=0

e−ak|Qk+1|
)
≤ anx

}
=

(
x

x+ 1

)c/a
, x ≥ 0 (1.14)

provided that
lim
x→∞

x
(
1− E exp(−e−x|Q|)

)
= c ∈ (0,∞).

By an Abelian-Tauberian argument the last relation is equivalent to (1.8). This implies
that convergence (1.14) follows from (1.10) and (1.13).

Theorem 1.5. Suppose that P{M = 0} = 0, lim
n→∞

Πn = 0 a.s., and that

P{log |Q| > x} ∼ x−α`(x), x→∞ (1.15)

for some α ∈ (0, 1] and some ` slowly varying at ∞. Let (bn) be a sequence of positive
numbers which satisfy lim

n→∞
nP{log |Q| > bn} = 1. In the case α = 1 assume additionally1

that lim
x→∞

`(x) = +∞. In the case E log− |M | =∞ assume that

lim
x→∞

E
(

log− |M | ∧ x
)

xP{log |Q| > x}
= 0. (1.16)

If condition (1.9) holds, then

log
∣∣Y[n·]+1

∣∣
bn

⇒ sup
t
(1, α)
k ≤·

j
(1, α)
k , n→∞, (1.17)

and if condition (1.11) holds, then

log
∣∣X[n·]+1

∣∣
bn

⇒ sup
t
(1, α)
k ≤·

j
(1, α)
k , n→∞. (1.18)

1Among other things this implies E log+ |Q| = ∞.
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Functional limit theorems for divergent perpetuities

Remark 1.6. Theorem 5(iii) in [13] states that, for fixed a > 0,

lim
n→∞

P

{
log

( n∑
k=0

e−ak|Qk+1|
)
≤ bnx

}
= exp(−x−α), x ≥ 0 (1.19)

provided that the function x 7→ 1− E exp(−e−x|Q|) is regularly varying at∞ with index
−α, α ∈ (0, 1), and (bn) satisfies n

(
1− E exp(−e−bn |Q|)

)
= 1. By an Abelian theorem,

1− E exp(−e−x|Q|) ∼ P{log |Q| > x}, x→∞.

Therefore, (1.19) follows from (1.17) after noting that

P
{

sup
t
(1, α)
k ≤u

j
(1, α)
k ≤ x

}
= P

{
N (1,α)

(
(t, y) : t ≤ u, y > x

)
= 0
}

= exp(−ux−α), x ≥ 0

(1.20)
for each u > 0.

The rest of the paper is structured as follows. In Section 2 we state and prove
Theorem 2.1, a deterministic result which is our key tool for dealing with the functional
limit theorems. With this at hand, Theorem 1.1 and Theorem 1.5 are then proved in
Section 3 and Section 4, respectively.

2 Main technical tool

Denote by Mp the set of Radon point measures ν on [0,∞)× (0,∞] which satisfy

ν([0, T ]× [δ,∞]) <∞ (2.1)

for all δ > 0 and all T > 0. The Mp is endowed with the vague topology. Denote by M∗p
the set of ν ∈Mp which satisfy

ν([0, T ]× (0,∞]) <∞

for all T > 0. Define the mapping G from D ×Mp to D by2

G (f, ν) (t) :=

 sup
k: τk≤t

(f(τk) + yk), if τk ≤ t for some k,

f(0), otherwise,

where ν =
∑
k ε(τk, yk). Also, for each n ∈ N, we define the mapping Fn from D ×M∗p to

D by

Fn (f, ν) (t) :=

{
c−1
n log+

∣∣∑
k: τk≤t± exp(cn(f(τk) + yk))

∣∣, if τk ≤ t for some k,

f+(0), otherwise,

where the signs + and − are arbitrarily arranged, and (cn) is some sequence of positive
numbers.

Theorem 2.1. For n ∈ N, let fn ∈ D and νn ∈ Mp. Let
(
τ

(n)
k , y

(n)
k

)
be the points of νn,

i.e., νn =
∑
k ε(τ

(n)
k , y

(n)
k )

. Assume that f0 is continuous with f0(0) = 0 and

(A1) ν0({0} × (0,∞]) = 0 and ν0((r1, r2)× (0,∞]) ≥ 1 for all positive r1 and r2 such that
r1 < r2;

2Assumption (2.1) ensures that G(f, ν) ∈ D. If (2.1) does not hold, G(f, ν) may lose right-continuity.
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Functional limit theorems for divergent perpetuities

(A2) ν0 =
∑
k ε
(
τ
(0)
k , y

(0)
k

) does not have clustered jumps, i.e., τ (0)
k 6= τ

(0)
j for k 6= j;

(A3) if not all the signs under the sum defining Fn are the same, then

f0(τ
(0)
i ) + y

(0)
i 6= f0(τ

(0)
j ) + y

(0)
j for i 6= j (2.2)

and
sup

τ
(0)
k ≤T, y

(0)
k ≤γ

(
f0(τ

(0)
k ) + y

(0)
k

)
> 0 (2.3)

for each T > 0 such that ν0({T}, (0,∞]) = 0 and small enough γ > 0;

(A4) lim
n→∞

cn =∞ and

lim
n→∞

c−1
n log #{k : τ

(n)
k ≤ T} = 0 (2.4)

for each T > 0 such that ν0({T}, (0,∞]) = 0;

(A5) lim
n→∞

fn = f0 in D in the J1-topology.

(A6) lim
n→∞

νn = ν0 in Mp.

Then
lim
n→∞

Fn(fn, νn) = G(f0, ν0) (2.5)

in D in the J1-topology.

Proof. It suffices to prove convergence (2.5) in D[0, T ] for any T > 0 such that ν0({T} ×
(0,∞]) = 0 because the last condition ensures that G(f0, ν0) is continuous at T .

If all the signs under the sum defining Fn are the same, then

G(fn, νn)(t) ≤ Fn(fn, νn)(t) ≤ c−1
n log+ #{k : τ

(n)
k ≤ t}+G(fn, νn)(t)

for all t ∈ [0, T ]. In this case, (2.5) is a trivial consequence of Theorem 1.3 in [11] which
treats the convergence lim

n→∞
G(fn, νn) = G(f0, ν0) in D.

In what follows we thus assume that not all the signs are the same. Let ρ = {0 = s0 <

s1 < · · · < sm = T} be a partition of [0, T ] such that

ν0({sk} × (0,∞]) = 0, k = 1, ...,m.

Pick now γ > 0 so small that

ν0((sk, sk+1)× (γ,∞]) ≥ 1, k = 0, ...,m− 1 (2.6)

and that sup
τ
(0)
k ≤T, y

(0)
k >γ

(f0(τ
(0)
k ) + y

(0)
k ) > 0. The latter is possible because

sup
τ
(0)
k ≤T

(f0(τ
(0)
k ) + y

(0)
k ) > 0 as a consequence of (2.3).

Condition (A6) implies that ν0([0, T ] × (γ,∞]) = νn([0, T ] × (γ,∞]) = p for large
enough n and some p ≥ 1. Denote by (τ̄i, ȳi)1≤i≤p an enumeration of the points of ν0 in

[0, T ]× (γ,∞] with τ̄1 < τ̄2 < . . . < τ̄p and by (τ̄
(n)
i , ȳ

(n)
i )1≤i≤p the analogous enumeration

of the points of νn in [0, T ]× (γ,∞]. Then

lim
n→∞

p∑
i=1

(|τ̄ (n)
i − τ̄i|+ |ȳ(n)

i − ȳi|) = 0

and more importantly

lim
n→∞

p∑
i=1

(|fn(τ̄
(n)
i )− f0(τ̄i)|+ |ȳ(n)

i − ȳi|) = 0 (2.7)
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Functional limit theorems for divergent perpetuities

because (A5) and the continuity of f0 imply that lim
n→∞

fn = f0 uniformly on [0, T ].

Define λn to be continuous and strictly increasing functions on [0, T ] with λn(0) = 0,

λn(T ) = T , λn(τ̄
(n)
i ) = τ̄i for i = 1, . . . , p, and let λn be linearly interpolated elsewhere on

[0, T ]. For n ∈ N and t ∈ [0, T ], set

Vn(t) :=
∑

τ̄i=λn(τ̄
(n)
i )≤t

± exp
(
cn(fn(τ̄

(n)
i ) + ȳ

(n)
i )

)
and

Wn(t) :=
∑

λn(τ
(n)
k )≤t

± exp
(
cn(fn(τ

(n)
k ) + y

(n)
k )

)
− Vn(t).

With this at hand we have

dT (Fn(fn, νn), G(f0, ν0)) ≤ sup
t∈[0, T ]

|λn(t)− t| (2.8)

+ c−1
n sup

t∈[0, T ]

∣∣∣ log+
∣∣Wn(t) + Vn(t)

∣∣− log+
∣∣Vn(t)

∣∣∣∣∣
+ sup

t∈[0, T ]

∣∣∣c−1
n log+

∣∣Vn(t)
∣∣− sup

τ̄i≤t
(f0(τ̄i) + ȳi)

∣∣∣
+ sup

t∈[0,T ]

∣∣∣ sup
τ̄i≤t

(
f0(τ̄i) + ȳi

)
− sup
τ
(0)
k ≤t

(
f0(τ

(0)
k ) + y

(0)
k

)∣∣∣,
where dT is the standard Skorokhod metric on D[0, T ].

We treat the terms on the right-hand side of (2.8) separately.
1st term. The relation lim

n→∞
supt∈[0, T ] |λn(t)− t| = 0 is easily checked.

2nd term. We denote the second term by In(γ) and use inequality

| log+ |x| − log+ |y|| ≤ log(1 + |x− y|), x, y ∈ R

which yields

In(γ) ≤ c−1
n sup

t∈[0,T ]

log
(
1 +

∣∣Wn(t)
∣∣)

≤ c−1
n log

(
1 +

∑
λn(τ

(n)
k )≤T, τ(n)

k 6=τ̄(n)
i

exp
(
cn(fn(τ

(n)
k ) + y

(n)
k )

))

≤ c−1
n log

(
1 + #

{
k : τ

(n)
k ≤ T, τ (n)

k 6= τ̄
(n)
i

}
× sup

τ
(n)
k ≤T, τ(n)

k 6=τ̄(n)
i

exp
(
cn(fn(τ

(n)
k ) + y

(n)
k )

))
≤ c−1

n log #
{
k : τ

(n)
k ≤ T

}
+ sup
τ
(n)
k ≤T, τ(n)

k 6=τ̄(n)
i

(
fn(τ

(n)
k ) + y

(n)
k

)
+

(
cn#

{
k : τ

(n)
k ≤ T, τ (n)

k 6= τ̄
(n)
i

})−1

× exp

(
− cn sup

τ
(n)
k ≤T, τ(n)

k 6=τ̄(n)
i

(
fn(τ

(n)
k ) + y

(n)
k

))
(2.9)

having utilized log(1 + x) ≤ log x+ 1/x, x > 0 and that λn(τ
(n)
k ) ≤ T iff τ (n)

k ≤ T . The first
term on the right-hand side of (2.9) converges to zero in view of (2.4). As for the second,

ECP 20 (2015), paper 10.
Page 7/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3915
http://ecp.ejpecp.org/
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we apply Theorem 1.3 in [11] to infer

sup
τ
(n)
k ≤T, τ(n)

k 6=τ̄(n)
i

(
fn(τ

(n)
k ) + y

(n)
k

)
= sup

τ
(n)
k ≤T, y(n)

k ≤γ
(fn(τ

(n)
k ) + y

(n)
k )

→ sup
τ
(0)
k ≤T, y

(0)
k ≤γ

(
f0(τ

(0)
k ) + y

(0)
k

)
, (2.10)

as n→∞. The latter goes to zero as γ → 0 because f0(0) = 0 by assumption. Finally, the
last term on the right-hand side of (2.9) tends to zero as n→∞ for the exponential factor
tends to zero as a consequence of (2.10) and the assumption sup

τ
(0)
k ≤T, y

(0)
k ≤γ

(f0(τ
(0)
k ) +

y
(0)
k ) > 0. Summarizing we have proved that lim

γ→0
lim sup
n→∞

In(γ) = 0.

3rd term. Denote the third term of (2.8) by Jn. We shall use the inequality

Jn ≤ sup
t∈[0, T ]

An(t) + c−1
n sup

t∈[0, T ]

log− |Vn(t)|,

where An(t) :=
∣∣∣c−1
n log |Vn(t)| − supτ̄i≤t(f0(τ̄i) + ȳi)

∣∣∣, t ∈ [0, T ].

If t ∈ [0, τ̄1), then An(t) = |fn(0) − f0(0)| → 0 as n → ∞ by the definition of the
functionals. Let now t ∈ [τ̄k, τ̄k+1), k = 1, . . . , p − 1 or t ∈ [τ̄p, T ]. Since all exp(f0(τ̄1) +

ȳ1), . . . , exp(f0(τ̄k) + ȳk) are distinct by (2.2) and

lim
n→∞

exp(fn(τ̄
(n)
j ) + ȳ

(n)
j ) = exp(f0(τ̄j) + ȳj), j = 1, . . . , k

by (2.7), we conclude that exp(fn(τ̄
(n)
1 ) + ȳ

(n)
1 ), . . . , exp(fn(τ̄

(n)
k ) + ȳ

(n)
k ) are all distinct,

for large enough n. Denote by ak,n < . . . < a1,n their increasing rearrangement3 and put

Bn(t) := c−1
n log

∣∣∣∣1± (a2,n

a1,n

)cn
± . . .±

(
ak,n
a1,n

)cn ∣∣∣∣.
Since lim

n→∞

(
±
(a2,n
a1,n

)cn ± . . .± (ak,na1,n

)cn)
= 0, there is an Nk such that

|Bn(t)| ≤ c−1
n for n ≥ Nk.

Summarizing we have

sup
t∈[0, T ]

|Bn(t)| ≤ c−1
n for all n ≥ max(N1, . . . , Np). (2.11)

With these at hand we can proceed as follows

An(t) =
∣∣∣ sup
τ̄i≤t

(
fn(τ̄

(n)
i ) + ȳ

(n)
i

)
+Bn(t)− sup

τ̄i≤t

(
f0(τ̄i) + ȳi

)∣∣∣
≤

∣∣∣ sup
τ̄i≤t

(
fn(τ̄

(n)
i ) + ȳ

(n)
i

)
− sup
τ̄i≤t

(
f0(τ̄i) + ȳi

)
|+ |Bn(t)

∣∣∣
≤

p∑
i=1

(∣∣fn(τ̄
(n)
i )− f0(τ̄i)

∣∣+
∣∣ȳ(n)
i − ȳi

∣∣)+ |Bn(t)|.

In view of (2.7) and (2.11) the right-hand side tends to zero uniformly in t ∈ [0, T ] as
n→∞.

We already know that

lim
n→∞

sup
t∈[0, T ]

c−1
n log

∣∣Vn(t)
∣∣ = sup

τ̄i≤T
(f0(τ̄i) + ȳi).

3Although aj,n’s depend on t we suppress this dependence for the sake of clarity.

ECP 20 (2015), paper 10.
Page 8/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3915
http://ecp.ejpecp.org/


Functional limit theorems for divergent perpetuities

Recalling that
sup
τ̄i≤T

(
f0(τ̄i) + ȳi

)
= sup
τ
(0)
k ≤T, y

(0)
k >γ

(
f0(τ

(0)
k ) + y

(0)
k

)
> 0

we infer lim
n→∞

supt∈[0, T ]

∣∣Vn(t)
∣∣ = +∞ and thereupon supt∈[0, T ] log−

∣∣Vn(t)
∣∣ = 0 for large

enough n. Hence lim
n→∞

Jn = 0.

4th term. In the proof of Theorem 1.3 in [11] it is shown that4

sup
t∈[0,T ]

| sup
τ̄i≤t

(f0(τ̄i) + ȳi)− sup
τ
(0)
k ≤t

(f0(τ
(0)
k ) + y

(0)
k )| ≤ ωf0(2|ρ|) + γ,

where |ρ| := maxi(si+1 − si) and ωf0(ε) := sup
|u−v|<ε, u,v≥0

|f0(u) − f0(v)| is the modulus of

continuity of f0. Of course, the right-hand side of the last inequality tends to zero on
sending |ρ| and γ to zero.

Collecting pieces together and letting in (2.8) n→∞ and then |ρ| and γ tend to zero
we arrive at the desired conclusion

lim
n→∞

dT (Fn(fn, νn), G(f0, ν0)) = 0.

3 Proof of Theorem 1.1

Proof of (1.10). We first show that

log− |Y[n·]+1|
an

⇒ h(·), (3.1)

where h(t) = 0, t ≥ 0. To this end, we intend to check that conditions (1.2), (1.3)

and (1.6) hold. If they do, then, as n → ∞, |Yn|
P→ ∞ by Theorem 2.1 in [8] and

thereupon supt∈[0, T ] |Y[nt]+1| = sup1≤k≤[nT ]+1 |Yk|
P→ ∞ for each T > 0. This entails

supt∈[0, T ] log− |Y[nt]+1| = 0 for each T > 0 and large enough n which proves (3.1).
Assumption (1.7) entails lim

n→∞
Πn = 0 a.s. and P{M = 0} = 0. Condition P{Q = 0} = 0 is

a part of (1.9). Suppose Q + Mr = r a.s. for some r ∈ R. In view of P{Q = 0} = 0 we
have r 6= 0 and then |Q|/|r| = |1 −M | ≤ 1 + |M | a.s. Since E log(1 + |M |) < ∞ by (1.7)
we must have E log+ |Q| <∞. This contradiction completes the proof of (3.1).

For k ∈ N0, set Sk := log |Πk| and ηk+1 := log |Qk+1|. As a consequence of the strong
law of large numbers,

S[n·]

an
⇒ g(·), n→∞, (3.2)

where g(t) := −t, t ≥ 0 (actually, in (3.2) the a.s. convergence holds, see Theorem 4 in
[7]). According to Corollary 4.19 (ii) in [16] condition (1.8) entails∑

k≥0

1{ηk+1>0} ε(n−1k, (an)−1ηk+1) ⇒ N (c/a,1), n→∞ (3.3)

in Mp, see Section 2 for the definition of Mp. Now relations (3.2) and (3.3) can be
combined into the joint convergence(

(an)−1S[n·],
∑
k≥0

1{ηk+1>0} ε(n−1k, (an)−1ηk+1)

)
⇒
(
g(·), N (c/a,1)

)
as n→∞

4Condition (2.6) is only used in this part of the proof.
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in D×Mp. By the Skorokhod representation theorem there are versions which converge
a.s. Retaining the original notation for these versions we want to apply Theorem 2.1 with
fn(·) = (an)−1S[n·], f0 = g, νn =

∑
k≥0 1{ηk+1>0} ε{n−1k, (an)−1ηk+1}, ν0 = N (c/a,1), cn = an

and the signs ± defined by sgn(ΠkQk+1) to conclude

log+ |Y[n·]+1|
an

⇒ sup
t
(c/a,1)
k ≤·

(
− t(c/a,1)

k + j
(c/a,1)
k

)
.

Of course, this together with (3.1) proves (1.10).
Thus it remains to check that all the assumptions of Theorem 2.1 hold. We already

know that conditions (A5) and (A6) are fulfilled. Condition (2.4) holds trivially. Further
N (c/a,1)([0, T ] × [δ,∞]) < ∞ a.s. for all δ > 0 and all T > 0 because µc/a,1([δ,∞]) < ∞.
Plainly, N (c/a,1)({0} × (0,+∞]) = 0 a.s., and N (c/a,1)((r1, r2)× (0,∞]) ≥ 1 a.s. whenever
0 < r1 < r2 because µc/a,1((0,∞]) =∞. This gives (A1).

Next we check (2.2). Our argument is similar to that given on p. 223 in [17]. We fix
any T > 0, δ > 0 and use the representation

N (c/a,1)([0, T ]× (δ,∞] ∩ ·) =

N∑
k=1

ε(Uk,Vk)(·),

where (Ui) are i.i.d. with the uniform distribution on [0, T ], (Vj) are i.i.d. with P{V1 ≤
x} = (1− δ/x)1(δ,∞)(x), and N has the Poisson distribution with parameter Tc/(aδ), all
the random variables being independent. Since −U1 + V1 has a continuous distribution
we have

P{N ≥ 2,−Uk + Vk = −Ui + Vi for some 1 ≤ k < j ≤ N} = 0

which entails (2.2). An analogous argument leads to the conclusion that N (c/a,1) does
not have clustered jumps a.s., i.e., (A2) holds. The last thing that needs to be checked is
condition (2.3). Arguing as in Remark 1.3 we infer

P

{
sup

t
(c/a,1)
k ≤T, j(c/a, 1)k ≤γ

(−t(c/a,1)
k + j

(c/a,1)
k ) ≤ 0

}

= exp

(
− EN (c/a,1)

(
(t, y) : t ≤ T, y ≤ γ, y > t

))
= exp

(
− (c/a)

∫ γ

0

(t−1 − γ−1)dt

)
= 0

for any T > 0 and any γ ∈ (0, T ).
Proof of (1.12). Without loss of generality we assume that X0 = 0 a.s. and use the
representation

X[n·]+1 = Π[n·]+1

[n·]∑
k=0

Π∗kQ
∗
k+1, (3.4)

where Π∗k := Π−1
k , k ∈ N0 and Q∗k := Qk/Mk (with generic copy Q∗), k ∈ N.

Observe that

sup
0≤t≤T

|S[nt]+1 − S[nt]|

n
=

max
1≤k≤[nT ]+1

∣∣ log |Mk|
∣∣

n

P→ 0, n→∞

for every T > 0, because lim
x→∞

xP
{∣∣ log |M |

∣∣ > x
}

= 0 as a consequence of E| log |M || <∞.

This together with (3.2) proves

log |Π[n·]+1|
an

⇒ g(·), n→∞, (3.5)
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where g(t) = −t, t ≥ 0. Further, write, for ε ∈ (0, 1) and x > 0,

P{log |Q| > (1 + ε)x} − P{log |M | > εx} ≤ P{log |Q| − log |M | > x}
≤ P{log |Q| > (1− ε)x}
+ P{log− |M | > εx}. (3.6)

Multiplying the inequality by x, sending x→∞ and then ε→ 0 yields

P{log |Q∗| > x} = P{log |Q| − log |M | > x} ∼ P{log |Q| > x} ∼ cx−1, x→∞.

Set M∗ := 1/M . Conditions (1.2) and (1.3) with (M,Q) replaced by (M∗, Q∗) are

easily checked. Also, we have lim
n→∞

Π∗n =∞ a.s. Hence |
∑n
k=1 Π∗k−1Q

∗
k|

P→∞ as n→∞
by Theorem 2.1 in [8]. Arguing in the same way as in the proof of (1.10) we see that

log− |
∑[n·]
k=0 Π∗kQ

∗
k+1|

an
⇒ h(·), n→∞.

An application of Theorem 2.1 gives5

log+ |
∑[n·]
k=0 Π∗kQ

∗
k+1|

an
⇒ sup

t
(c/a, 1)
k ≤·

(
t
(c/a,1)
k + j

(c/a,1)
k

)
, n→∞.

Now (1.12) follows by a combination of the last two relations and (3.5).

4 Proof of Theorem 1.5

The proof proceeds along the lines of that of Theorem 1.1 but is simpler for the
contribution of Mk’s is negligible. Therefore we only provide details for fragments which
differ principally from the corresponding ones in the proof of Theorem 1.1.

Observe that

lim
n→∞

bn
n

= +∞ (4.1)

as follows from the definition of (bn) and (1.15).
Proof of (1.17). As far as

log− |Y[n·]+1|
bn

⇒ h(·), n→∞ (4.2)

is concerned which is the counterpart of (3.1) we have to check two things that are not
obvious in the case when E log− |M | =∞: condition (1.3) and I =

∫
(1,∞)

log x
A(log x)P{|Q| ∈

dx} =∞.
Assume first that P{Q+Mr = r} = 1 for some r 6= 0. In view of |Q− r| = |M ||r|, the

tails of log+ |Q| and log+ |M | must exhibit the same asymptotics. However, this is not a
case, for the tail of log+ |Q| is heavier than that of log+ |M |.

Next, according to (1.16), for any B > 0 there exists x0 > 0 such that

log x

A(log x)
≥ B

P{|Q| > x}

whenever x ≥ x0. Hence,

I ≥ B
∫

[x0,∞)

P{|Q| ∈ dx}
P{|Q| > x}

=∞.

5We omit details which are very similar to but simpler than those appearing in the proof of (1.10).
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Thus, (4.2) holds.
To proceed we recall the already used notation Sk := log |Πk| and ηk+1 := log |Qk+1|,

k ∈ N0. According to Corollary 4.19 (ii) in [16] condition (1.15) entails∑
k≥0

1{ηk+1>0} ε(n−1k, b−1
n ηk+1) ⇒ N (1,α), n→∞ (4.3)

in Mp. If we can prove that
S[n·]

bn
⇒ h(·), n→∞, (4.4)

where h(t) = 0, t ≥ 0, then relations (4.3) and (4.4) can be combined into the joint
convergence(

b−1
n S[n·],

∑
k≥0

1{ηk+1>0} ε(n−1k, b−1
n ηk+1)

)
⇒
(
h(·), N (1,α)

)
, n→∞

in D×Mp. By the Skorokhod representation theorem there are versions which converge
a.s. Retaining the original notation for these versions we apply Proposition 2.1 with
fn(·) = b−1

n S[n·], f0 = h, νn =
∑
k≥0 1{ηk+1>0} ε{n−1k, b−1

n ηk+1}, ν0 = N (1,α), cn = bn and

the signs ± defined by sgn(ΠkQk+1) which gives (1.17) with log replaced with log+. The
latter in combination with (4.2) proves (1.17).

It only remains to check (4.4). To this end, it suffices to prove that

sup
0≤t≤T

|S[nt]|

bn
=

max
0≤k≤[nT ]

|Sk|

bn

P→ 0, n→∞ (4.5)

for every T > 0. Set

S+
0 = S−0 := 0, S+

n := log+ |M1|+ . . .+ log+ |Mn|, S−n := log− |M1|+ . . .+ log− |Mn|

for n ∈ N. Since (bn) is a regularly varying sequence and

max
0≤k≤[nT ]

|Sk| ≤ max
0≤k≤[nT ]

S+
k + max

0≤k≤[nT ]
S−k = S+

[nT ] + S−[nT ],

(4.5) follows if we prove that lim
n→∞

(S±n /bn) = 0 in probability. While doing so, we treat

two cases separately.
Case when E log− |M | <∞. Then necessarily E log+ |M | <∞ for otherwise lim

n→∞
Πn =∞

a.s. Therefore we have lim
n→∞

n−1S±n = E log± |M | by the strong law of large numbers.

Invoking (4.1) proves (4.5).
Case when E log− |M | =∞. Condition (1.16) entails lim

n→∞
n
bn
E
(
(log− |M |)∧ bn

)
= 0. Since

n

bn
E
(
(log− |M |) ∧ bn

)
= nP{log− |M | > bn}+

n

bn
E log− |M |1{log− |M |≤bn},

we infer
lim
n→∞

nP{log− |M | > bn} = 0 (4.6)

and
lim
n→∞

n

bn
E
(

log− |M |1{log− |M |≤bn}
)

= 0. (4.7)

Using (4.7) together with Markov’s inequality proves

lim
n→∞

∑n
k=1 log− |Mk|1{log− |Mk|≤bn}

bn
= 0 in probability.
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Since

P

{
b−1
n

n∑
k=1

log− |Mk| 6= b−1
n

n∑
k=1

log− |Mk|1{log− |Mk|≤bn}

}
≤

n∑
k=1

P{log− |Mk| > bn}

= nP{log− |M | > bn},

(4.6) implies that the left-hand side tends to zero as n→∞. Therefore lim
n→∞

(S−n /bn) = 0

in probability.
Left with proving that lim

n→∞
(S+
n /bn) = 0 in probability we suppose immediately that

E log+ |M | = ∞ for the complementary case can be treated in exactly the same way
as above. Since lim

n→∞
Sn = −∞ a.s. by the assumption, Lemma 8.1 in [14] tells us

that lim
n→∞

S+
n /S

−
n = 0 a.s. which together with lim

n→∞
(S−n /bn) = 0 in probability implies

lim
n→∞

(S+
n /bn) = 0 in probability. The proof of (4.4) is complete. Hence so is that of (1.17).

Proof of (1.18) follows the pattern of that of (1.12) but is simpler. Referring to (1.12) the
only things that need to be checked are that

log |Π[n·]+1|
bn

⇒ h(·), n→∞,

where h(t) = 0, t ≥ 0, and that

P{log |Q| − log |M | > x} ∼ P{log |Q| > x} ∼ x−α`(x), x→∞.

To prove the first of these, write

sup
0≤t≤T

|S[nt]+1 − S[nt]|

bn
≤

sup
0≤t≤T

|S[nt]+1|

bn
+

sup
0≤t≤T

|S[nt]|

bn

and use (4.5) to infer
sup

0≤t≤T
|S[nt]+1 − S[nt]|

bn

P→ 0, n→∞

for every T > 0. To check the second we shall use (3.6).
Case E log− |M | < ∞. We have lim

x→∞
xP{log− |M | > εx} = 0 whereas lim

x→∞
xP{log |Q| >

x} =∞ (recall that in the case α = 1 we assume that lim
x→∞

`(x) =∞). Therefore,

lim
x→∞

P{log− |M | > εx}
P{log |Q| > x}

= 0. (4.8)

Since E log− |M | < ∞ entails E log+ |M | < ∞, the same argument proves (4.8) for the
tail of log+ |M |.
Case E log− |M | = ∞ and E log+ |M | < ∞. It suffices to check (4.8) which is a conse-
quence (1.16).
Case E log− |M | = E log+ |M | =∞. We only have to prove that

lim
x→∞

P{log+ |M | > εx}
P{log |Q| > x}

= 0.

Since lim
n→∞

Sn = −∞ a.s. by the assumption, we have

E
log+ |M |

A(log+ |M |)
<∞

(see Proposition 2.6 in [8]). Therefore

lim
x→∞

xP{log+ |M | > x}
E(log− |M | ∧ x)

= 0

and the desired relation follows by an application of (1.16).
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