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We give a multivariate generalization of Borell’s noise stability theorem for Gaussian
vectors. As a consequence we recover two inequalities, also due to Borell, for exit
times of the Ornstein-Uhlenbeck process.
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1 Introduction

There has been a recent flurry of activity in probability [14, 12] and computer sci-
ence [9, 10, 15] around a certain paper of Borell [3] on inequalities satisfied by the
Ornstein-Uhlenbeck process. In his paper, Borell proved a theorem, which is somewhat
complicated to state, showing that certain quantities only decrease under Ehrhard sym-
metrization [7]. He then derived two simpler corollaries, about hitting times for the
Ornstein-Uhlenbeck process, from this general result.

We recall that the Ornstein-Uhlenbeck process on Rn is the Gaussian process {Xt :

t ∈ R} with mean zero and covariance EXsX
T
t = e|t−s|In. This is a Markov process,

as may be seen by the construction Xt = e−tBe2t for a Brownian motion Bt, and the
stationary measure of Xt is the standard Gaussian measure, γn. For a measurable set
A ⊂ Rn, we denote its exit time under Xt by eA = inf{t ≥ 0 : Xt 6∈ A}. We will assume
throughout that all sets denoted by A or Ai are measurable, and we will also assume
that the probability space underlying Xt is complete, i.e. that its σ-algebra includes all
subsets of zero-measure sets. These hypotheses ensure that eA is also measurable.

Although they were originally written in terms of hitting times instead of exit times,
Borell’s two corollaries of his general inequality may be written as follows, in which
half-space means a set of the form {x ∈ Rn : x · a ≤ b}, and half-spaces are parallel if
they have the same normal vector a.

Theorem 1.1 (Borell). If B ⊂ Rn is a half-space with γn(B) = γn(A) then eB stochasti-
cally dominates eA; i.e., for every t ≥ 0,

Pr(eA ≥ t) ≤ Pr(eB ≥ t).

Theorem 1.2 (Borell). If B1 and B2 are parallel half-spaces with γn(Bi) = γn(Ai) then

E

∫ t∧eA1

0

1A2
(Xs) ds ≤ E

∫ t∧eB1

0

1B2
(Xs) ds.
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A multidimensional version of noise stability

There is a third corollary of Borell’s general inequality that did not appear in his
original paper [3], but has nevertheless become widely applied in theoretical computer
science, particularly in the study of hardness of approximation.

Theorem 1.3 (Borell). If B1 and B2 are parallel half-spaces with γn(Bi) = γn(Ai) then
for any t > 0,

Pr(X0 ∈ A1, Xt ∈ A2) ≤ Pr(X0 ∈ B1, Xt ∈ B2).

In the special case A1 = A2, this inequality is sometimes interpreted as showing
that half-spaces are the most “noise stable” sets. Here, we think of Xt as being a noisy
version of X0, and so a set A is noise stable if the event {X0 ∈ A} tends to agree with
the event {Xt ∈ A}. Theorem 1.3 implies that this overlap is maximized, over all sets
with a fixed Gaussian measure, by half-spaces. Using an invariance principle, Mossel et
al. [14] deduced from Theorem 1.3 a similar inequality on the discrete cube (although
the statement on the cube is necessarily more complicated, because the direction of a
half-space’s normal vector becomes important); that work then laid the foundation for
many applications in theoretical computer science (for a few examples, see [9, 10, 15]).

Note that in Theorem 1.3, the joint distribution of (X0, Xt) has mean zero and co-
variance

( 1 ρ
ρ 1

)
⊗ In, where ρ = e−t. Our main result is a multivariate generalization

of Theorem 1.3, which allows for more than two Gaussian vectors and a more general
covariance structure than that endowed by the Ornstein-Uhlenbeck process. Specifi-
cally, we consider a collection (X1, . . . , Xk) of n-dimensional Gaussian vectors, where
each Xi has covariance In and the pair Xi, Xj has covariance mijIn for some mij ≥ 0.
Our generalization is also strong enough to recover Theorems 1.1 and 1.2; we thank M.
Ledoux for pointing this out.

Theorem 1.4. For some k ≥ 2 and n ≥ 1, let M = (mij) be a k× k positive semidefinite
matrix with mij ≥ 0, and let X = (X1, . . . , Xk) be a kn-dimensional Gaussian vector with
covariance M ⊗ In. For any measurable A1, . . . , Ak ⊂ Rn,

Pr(Xi ∈ Ai for all i) ≤ Pr(Xi ∈ Bi for all i) (1.1)

whenever Bi is a collection of parallel half-spaces with γn(Bi) = γn(Ai).

Note that Theorem 1.4 characterizes the matrices M for which (1.1) holds, in the
sense that if some mij < 0 then there exist sets A1, . . . Ak for which (1.1) fails. In
particular, one can take Ai and Aj to be anti-parallel half-spaces (meaning that their
normals are negative scalar multiples of one another) and take A` = Rn for ` 6∈ {i, j}.

By setting k = 2, Theorem 1.4 recovers Theorem 1.3. We should remark that a
weaker version of Theorem 1.4 was obtained by Isaksson and Mossel [8], who showed
that the inequality (1.1) also holds under the hypothesis that the off-diagonal elements
of M−1 are non-positive. We acknowledge A. Sen for pointing out that their condition
on M implies the one in Theorem 1.4. In any case, the condition of Isaksson and Mossel
would still suffice for recovering Theorems 1.1 and 1.2.

1.1 The equality cases of Theorem 1.4

Next, we consider the configurations A1, . . . , Ak that achieve equality in (1.1). If
A1, . . . , Ak are parallel half-spaces then equality is clearly attained. However, there are
other configurations that also attain equality. For example, suppose that X0, . . . , Xi are
independent of Xi+1, . . . Xk. Then any configuration where A1, . . . Ai are parallel half-
spaces and Ai+1, . . . , Ak are parallel half-spaces achieves equality in (1.1) (but A1 and
Ai+1 need not be parallel).

It turns out that if M is strictly positive definite then the preceding example is es-
sentially the only one. We say that the matrix M is reducible if there are disjoint sets
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I, J ⊂ {1, . . . , k} such thatmij = 0 for all i ∈ I, j ∈ J . Of course, this implies that {Xi}i∈I
and {Xj}j∈J are independent. We say that M is irreducible if it is not reducible. In this
case, a decomposition into independent collections of variables is not possible and we
show that the only equality cases of (1.1) are families of parallel half-spaces:

Theorem 1.5. Suppose that M is strictly positive definite and irreducible. Then the
configuration A1, . . . , Ak attains equality in (1.1) if and only if there exists a collection
(B1, . . . , Bk) of parallel half-spaces such that Ai = Bi up to sets of Lebesgue measure
zero.

By applying Theorem 1.5 to each irreducible component of M , one can also charac-
terize the equality cases of (1.1) when M is strictly positive definite and reducible.

To see why we require the non-degeneracy of M in Theorem 1.5, take n = 1 and
suppose that the Xi almost surely satisfy X1 =

∑
i≥2 aiXi for some non-negative coeffi-

cients ai. Then {Xi ≤ bi for all i ≥ 2} implies X1 ≤
∑
aibi. Therefore, the quantity

Pr(X1 ∈ A1, Xi ≤ bi for all i ≥ 2)

does not depend on A1 as long asA1 contains {x ∈ R : x ≤
∑
aibi}; in particular, one can

maximize the above quantity without requiring A1 to be a half-space. Now, the columns
of M are positively independent (in the sense that no column can be written as a non-
negative linear combination of the others) then an example like this does not exist. We
ask, therefore, whether the Theorem 1.5’s assumption that M be positive definite could
be replaced by the assumption that M has positively independent columns.

1.2 From noise stability to exit times

Next, we will show how Theorem 1.4 may be used to recover Theorem 1.1. This
reduction is quite similar to one by Burchard and Schmuckenschläger [4], who were
studying exit times of Brownian motion on manifolds. (In that case, the study of exit
times has a fairly long history; see [4] for references.) As we will see, though, our
approach to Theorem 1.4 is quite different to that of Burchard and Schmuckenschläger,
who studied two-point symmetrizations.

Let Xt be the Ornstein-Uhlenbeck process, and consider the finite dimensional mar-
ginal (Xt1 , . . . , Xtk) for a sequence of times t1 < · · · < tk. This is a mean-zero Gaussian
vector with covariance M ⊗ In, where mij = e−|ti−tj |. Clearly, then, M satisfies the
hypothesis of Theorem 1.4 and in particular, we have

Pr(Xti ∈ A for all i) ≤ Pr(Xti ∈ B for all i) (1.2)

when B is a half-space with γn(A) = γn(B). This is essentially a discrete version of
Theorem 1.1, since the event {Xti ∈ A for all i} is a discretization of {eA ≥ tk}.

To complete the proof, we need to show that one can take limits. Setting ti = it/k

in (1.2), we have

Pr(eA ≥ τ) = Pr(Xt ∈ A for all 0 ≤ t < τ)

≤ Pr(Xiτ/k ∈ A for all i = 1, . . . , k)

≤ Pr(Xiτ/k ∈ B for all i = 1, . . . , k),

where the last inequality follows from (1.2). Next, we send k → ∞. Recall that Xt is
uniformly continuous on [0, τ ] with probability 1. In particular, for any ε, δ > 0, we may
take k = k(ε, δ) large enough so that with probability 1− δ, 0 ≤ s, t ≤ τ and |s− t| ≤ 1/k

imply that |Xs −Xt| ≤ ε; for this k,

Pr(Xiτ/k ∈ B for all i = 1, . . . , k) ≤ Pr(Xt ∈ Bε for all 0 ≤ t < τ) + δ

= Pr(eBε ≥ τ) + δ,
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where Bε is the ε-enlargement of B: Bε = {x ∈ Rn : d(x,B) ≤ ε}. Since δ > 0 is
arbitrary, we have shown that for any ε > 0, Pr(eA ≥ τ) ≤ Pr(eBε ≥ τ). It only remains
to show, then, that Pr(eBε ≥ τ) converges to Pr(eB ≥ τ) as ε→ 0.

Consider instead the equivalent statement that Pr(eBε < τ) converges to Pr(eB < τ).
Since B is closed and Xt has continuous paths, eB < τ implies that there is some ε > 0

with eBε < τ . That is, the function 1{eBε<τ} converges pointwise (and upwards) to
1{eB<τ} as ε → 0. By the monotone convergence theorem, it follows that Pr(eBε < τ)

converges to Pr(eB < τ) as ε→ 0. Hence

Pr(eA ≥ τ) ≤ lim
ε→0

Pr(eBε ≥ τ) = Pr(eB ≥ τ)

and so we have recovered Theorem 1.1.
We have mentioned already that it is also possible to recover Theorem 1.1 from

the result in [8]. Indeed, the matrix M with entries mij = e−|ti−tj | does satisfy the
hypothesis in [8] (namely that the off-diagonal entries of its inverse are non-positive),
although this is certainly less obvious then the fact that M satisfies the conditions of
Theorem 1.4.

Let us also indicate how Theorem 1.2 is recovered. We want to show that

E

∫ t∧eA1

0

1A2
(Xs) ds (1.3)

is only increased when A is replaced by B (recall that B1 and B2 are parallel half-spaces
satisfying γn(Bi) = γn(Ai). We may suppose that A2 ⊂ A1, since if not then (1.3) may
be trivially made larger by moving some of A2’s mass inside A1; if this is impossible be-
cause γn(A2) > γn(A1) then (1.3) is trivially bounded by t∧ eA1 , which, by Theorem 1.1,
is stochastically dominated by t ∧ eB1 , and this in turn is equal to the right hand side
of (1.3) with B replacing A.

Now that we have reduced to the case A2 ⊂ A1, we may discretize (1.3) as

1

k

k∑
i=1

Pr(Xtj ∈ A1 for all j < i and Xti ∈ A2).

By (1.2), this is only increased when A is replaced by B. To recover Theorem 1.2 from
here, it suffices to take a limit in much the same manner as before; we omit the details.

2 The Ornstein-Uhlenbeck semigroup

We will prove Theorem 1.4 by differentiating a particular functional under the Orn-
stein-Uhlenbeck semigroup. This proof method has a long history, beginning with
Varopoulos’ work [16] connecting the heat semigroup with Sobolev inequalties. More
recently, and more apropos of this work, Bakry and Ledoux [1] proved the Gaussian
isoperimetric inequality by differentiating Bobkov’s functional [2] under the Ornstein-
Uhlenbeck semigroup. We will follow quite a similar approach here, using a gener-
alization of a functional that was introduced by Mossel and the author [13] to prove
Theorem 1.4 in the case k = 2.

We define the Ornstein-Uhlenbeck semigroup {Pt : t ≥ 0}, which acts on bounded,
measurable functions f : Rd → R by

(Ptf)(x) =

∫
Rd
f(e−tx+

√
1− e−2ty) dγd(y),

where γd is the standard Gaussian measure on Rd. Note that the dependence of this
definition on d is implicit; we will sometimes take d = n and sometimes take d = kn, but
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in either case the dimension should be clear from the context. Equivalently, (Ptf)(X0) =

E(f(Xt) | X0), where {Xt : t ≥ 0} is the Ornstein-Uhlenbeck process from the previous
section. From either definition, one can easily see that P0 is the identity operator, while
Ptf → Ef as t→∞.

One remarkable property of the Ornstein-Uhlenbeck semigroup is that it has very
nice formulas for its commutation with smooth functions. In particular, for any bounded,
measurable F = (f1, . . . , fk) : Rd → Rk, for any smooth Ψ : Rk → R, and for any
0 < s < t, there is the formula (see, eg., [11])

d

ds
PsΨ(Pt−sF ) = Ps

k∑
i,j=1

∂2
ijΨ(Pt−sF )〈∇Pt−sfi,∇Pt−sfj〉. (2.1)

We begin with an observation that comes, essentially, from applying (2.1) to the
function that is Ψ composed with a linear operator. In the following, � denotes the
Hadamard (elementwise) product between two matrices and HΨ denotes the Hessian
matrix of Ψ.

Proposition 2.1. Let M be a k × k positive semi-definite matrix with mii = 1 and let
X = (X1, . . . , Xk) be a kn-dimensional Gaussian vector with mean zero and covariance
M ⊗ In. If Ψ : [0, 1]k → R satisfies M � HΨ ≤ 0 then for all bounded, measurable
F (x1, . . . , xk) = (f1(x1), . . . , fk(xk)) : Rkn → [0, 1]k,

EΨ(F (X)) ≤ Ψ(EF ).

We remark that the assumption mii = 1 in Proposition 2.1 is not necessary, but it
makes our notation simpler. Anyway, reducing to the case mii = 1 is simply a matter of
rescaling Xi.

In a private communication, R. O’Donnell pointed out that the converse of Proposi-
tion 2.1 is also true: if EΨ(F (X)) ≤ Ψ(EF ) for every F then M � HΨ ≤ 0. This may
be seen by setting fi(x) = max{0,min{1, ai · x + εbi}}. By considering the second-order
Taylor expansion of Ψ and taking ε→ 0, one sees that bT (M �HΨ(a))b ≤ 0.

Before proving Proposition 2.1, we introduce some notation that will be useful in
what follows: for any f : Rn → R and any n×m matrix M , denote the function f ◦M :

Rm → R by fM .

Proof. Let Q be the positive semi-definite square root of M ⊗ In, and for i = 1, . . . , k,
let Qi be the n × kn matrix consisting of rows (i − 1)n + 1 through in of Q. Let Z
be a standard Gaussian vector in Rkn, and note that QZ = (Q1Z, . . . , QkZ) is a kn-
dimensional Gaussian vector with mean 0 and covariance M ⊗ In (i.e., QZ has the same
distribution as X). We consider the quantity

G(s, t, z) =
(
PsΨ(Pt−sf

Q1

1 , . . . , Pt−sf
Qk
k )

)
(z)

for s, t ∈ [0,∞) and z ∈ Rkn. First, let us check how Pt commutes with linear transfor-
mations. Since Q is the square root of M ⊗ In, we have QiQTi = In and so

(Ptf
Qi
i )(x) =

∫
Rkn

fi(e
−tQix+

√
1− e−2tQiy) dγkn(y)

=

∫
Rn
fi(e

−tQix+
√

(1− e−2t)y) dγn(y)

= (Ptfi)
Qi(x). (2.2)
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Now, the gradient commutes with linear transformations as ∇fA = AT (∇f)A. Combin-
ing this with (2.2),

∇Pt−sfQii = ∇(Pt−sfi)
Qi = QTi (∇Pt−sfi)Qi .

In particular,

〈∇Pt−sfQii ,∇Pt−sf
Qj
j 〉 = 〈QTi (∇Pt−sfi)Qi , QTj (∇Pt−sfj)Qj 〉

= mij〈(∇Pt−sfi)Qi , (∇Pt−sfj)Qj 〉. (2.3)

For brevity, let vi = (∇Pt−sfi)Qi . Then, by (2.1) and (2.3),

∂G(s, t, ·)
∂s

= Ps

k∑
i,j=1

〈∇Pt−sfQii ,∇Pt−sf
Qj
j 〉∂

2
ijΨ(Pt−sF

Q)

= Ps

k∑
i,j=1

mij〈vi, vj〉∂2
ijΨ(Pt−sF

Q). (2.4)

Note that if vT = (vT1 . . . v
T
k ) then the last line may be rewritten as

Ps
(
vT ((M �HΨ)⊗ In)v

)
. (2.5)

In particular, if M �HΨ ≤ 0 then ∂G(s,t,z)
∂s ≤ 0 for every s, t and z. Hence,

lim
t→∞

G(t, t, Z) ≤ lim
t→∞

G(0, t, Z).

But since (Q1Z, . . . , QkZ) has the same distribution as (X1, . . . , Xk), EG(t, t, Z) con-
verges to EΨ(F (X)) as t→∞, while EG(0, t, Z) converges to Ψ(EF (X)).

With hardly any extra effort, the proof of Proposition 2.1 also allows us to charac-
terize its equality cases. Indeed, if EΨ(F ) = Ψ(EF ) then we must have ∂F (s,t,z)

∂s = 0 for
every s, t, and z. Going back to (2.4) and (2.5), we see that Ps

(
vT ((M �HΨ)⊗ In)v

)
must be identically zero, and hence ((M �HΨ)⊗ In)v = 0. In other words, we have the
following corollary:

Corollary 2.2. Under the hypothesis of Proposition 2.1, if EΨ(F ) = Ψ(EF ) then for
every t > 0,

(
(M �HΨ(PtF

Q))⊗ In
)(∇Ptf1)Q1

...
(∇Ptfk)Qk

 = 0 a.s.

3 Proof of Theorem 1.4

Before proving Theorem 1.4, note that by translating X, Ai, and Bi, it suffices to
consider the case in which X has mean zero. Moreover, by scaling each Xi, Ai, and
Bi, we may assume that mii = 1 for each i (here and in the previous sentence we are
using the fact that a collection of parallel half-spaces remains one under translation and
scaling).

Let Φ(y) = (2π)−1/2
∫ y
−∞ e−z

2/2 dz denote the Gaussian cumulative distribution func-
tion, and let Φ−1 : (0, 1) → R be its inverse, which we will extend to [0, 1] by setting
Φ−1(0) = −∞ and Φ−1(1) =∞. Consider the function

J(x1, . . . , xk;M) = Pr
(
Xi,1 ≤ Φ−1(xi) for all i

)
, (3.1)
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where Xi,1 denotes the first coordinate of Xi ∈ Rn. Observe that Pr(Xi,1 ≤ Φ−1(xi)) =

xi; in particular, the collection (B1, . . . , Bk) with Bi = {y ∈ Rn : y1 ≤ Φ−1(xi)} is a set of
parallel half-spaces with Pr(Xi ∈ Bi) = xi. Since every such set of parallel half-spaces
may be obtained by applying a fixed rotation to each Bi, Theorem 1.4 is equivalent to
the statement

Pr(Xi ∈ Ai for all i) ≤ J(γn(A1), . . . , γn(Ak);M).

Next, note that if x1, . . . , xk ∈ {0, 1} then J(x1, . . . , xk) is 1 if all the xi are 1, and 0
otherwise. In particular,

Pr(Xi ∈ Ai for all i) = EJ(1A1(X1), . . . , 1Ak(Xk);M)

and hence (1.1) is equivalent to the statement

EJ(f1(X1), . . . , fk(Xk);M) ≤ J(Ef1, . . . ,Efk;M) (3.2)

in the special case fi = 1Ai . In fact, we will prove (3.2) for general measurable functions
fi : Rn → [0, 1]. We remark, however, that (3.2) is no stronger than (1.1), since it may
be deduced from the (n+ 1)-dimensional case of (1.1) (see [13]).

Unsurprisingly, the proof of (3.2) goes through Proposition 2.1. The main task left,
therefore, is to compute the Hessian of J and check that it satisfies the hypothesis of
Proposition 2.1.

Proposition 3.1. If mii = 1 and mij ≥ 0 then J satisfies M �HJ ≤ 0.

Next, we will compute HJ and show that mij ≥ 0 implies that M � HJ ≤ 0. For a
vector v, let vî denote v without the ith entry, and for a square matrix M , let Mî denote
M without the ith row and column. For a square matrix M , let Mi denote the Schur
complement of the element (i, i) in M . In other words, Mi is defined by

Mi = Mî −M
T
îi
Mîi/mii = Mî −M

T
îi
Mîi,

where Mi denotes the ith row of M , so Mîi is the ith row of M with its ith element
removed. A well-known formula for conditional distributions of Gaussian vectors (see,
e.g., [6]) states if X has mean zero and covariance M satisfying mii = 1, then condi-
tioned on Xi = xi, Xî has mean xiMîi and covariance Mi.

To compute the first derivatives of J , let

K(y1, . . . , yk;M) = Pr (Xi ≤ yi for all i) ,

and note that J(x1, . . . , xk) = K(Φ−1(x1), . . . ,Φ−1(xk)). Now, for any i we may write K
as

K(y;M) =

∫ yi

−∞
φ(z) Pr(Xj ≤ yj for all j 6= i | Xi = z) dz,

where φ(z) = (2π)−1/2e−z
2/2 is the standard Gaussian density on R. Hence,

∂iK(y;M) = φ(yi) Pr(Xj ≤ yj for all j 6= i | Xi = yi).

Now, given that Xi = yi, Xî has mean Mîiyi and covariance Mi; hence,

Pr(Xj ≤ yj for all j 6= i | Xi = yi) = K(yî −Mîiyi;Mi),

and so we have the formula

∂iK(y;M) = φ(yi)K(yî −Mîiyi;Mi)
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(bear in mind that this formula is only valid under the assumption mii = 1; if not then
mii makes an appearance in the formula also). Applying the chain rule and the identity
d
dxΦ−1(x) = 1/φ(Φ−1(x)), we have

∂iJ(x;M) = K(Φ−1(xî)−MîiΦ
−1(xi);Mi) (3.3)

(where by Φ−1(xî), we mean the vector obtained by applying Φ−1 to xî element-wise).
Now let I(x) = φ(Φ−1(x)) and define, for j 6= i,

Jij(x;M) = I(xi)∂jK(Φ−1(xî)−MîiΦ
−1(xi);Mi);

by the chain rule applied to (3.3), we have

∂i∂jJ(x;M) =
1

I(xj)
∂jK(Φ−1(xî)−MîiΦ

−1(xi);Mi)

=
1

I(xi)I(xj)
Jij(x;M). (3.4)

It is worth mentioning that this last equation shows that in fact Jij = Jji. This is
not obvious from the definition of Jij , although it may also be checked by the tedious
process of calculating the derivative in that definition.

To compute the repeated second derivatives of J , we use (3.3) and the chain rule to
write

∂2
i J(x;M) = −

∑
j 6=i

mij

I(xi)
∂jK(Φ−1(xî)−MîiΦ

−1(xi);Mi)

= − 1

I2(xi)

∑
j 6=i

mijJij(x;M). (3.5)

Now let I(x) be the k × k diagonal matrix with 1/I(xi) as the ith diagonal entry. Note
that by (3.4), the ij entry of M�HJ is given by mij

I(xi)I(xj)
Jij , while the ii entry of M�HJ

is just given by (3.5) (since mii = 1). Hence we may write

M �HJ(x;M) = I(x)A(x)I(x), (3.6)

where aij = mijJij and aii = −
∑
j 6=i aij .

Lemma 3.2. If A is a symmetric matrix such that aij ≥ 0 for i 6= j and aii = −
∑
j 6=i aij

then A ≤ 0.

Proof. In fact, the proof follows immediately from some well-known facts in linear al-
gebra, such as the fact that −A is diagonally dominant. However, we may also give a
simple proof by noting that the quadratic form of A is nothing but

vTAv = −
∑
i<j

aij(vi − vj)2 ≤ 0.

To apply Lemma 3.2 with the matrix A given in (3.6), note that Jij is non-negative
because by definition it is a positive number times a derivative of K(·,Mi), which is
non-decreasing in each coordinate. Then Lemma 3.2 implies Proposition 3.1, which
completes the proof of (1.1).

3.1 The equality cases

In order to prove Theorem 1.5, we first remark on some points in the previous proof.
First of all, if M is strictly positive definite then Jij(x;M) is strictly positive everywhere.
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Indeed, ifM is positive definite thenMi is also, and the definition ofK then ensures that
K(y;Mi) is strictly increasing in each coordinate of y; hence Jij > 0. In particular, if M
is positive definite and irreducible then the matrix A(x) defined in (3.6) is irreducible
for all x.

Next, if A is irreducible in Lemma 3.2 then the kernel of A is the span of the all-ones
vector. This follows from the formula vTAv = −

∑
i<j aij(vi−vj)2 and the fact that if A is

irreducible and i 6= j then there is some sequence i = i0, . . . , i` = j such that aik−1,ik > 0

for all 1 ≤ k ≤ `. Combining this with the previous paragraph, we see that the kernel of
A(x) in (3.6) is the span of the all-ones vector.

Now we may prove Theorem 1.5 using Corollary 2.2: if EJ(F ) = J(EF ) then for
every t > 0,

0 =
(
(M �HΨ(PtF

Q))⊗ In
)(∇Ptf1)Q1

...
(∇Ptfk)Qk



=
(
(I(PtF

Q)A(PtF
Q)I(PtF

Q))⊗ In
)(∇Ptf1)Q1

...
(∇Ptfk)Qk



= (I(PtF
Q)⊗ In)(A(PtF

Q)⊗ In)(I(PtF
Q))⊗ In)

(∇Ptf1)Q1

...
(∇Ptfk)Qk

 , (3.7)

where the second equality follows from (3.6). Since I is always non-singular, we may
drop the first instance of it from (3.7). Defining wi = Φ−1 ◦ Ptfi, we have ∇wi =

∇Ptfi/I(Ptfi). By multiplying out the last two terms of (3.7), we have

0 = (A(PtF
Q)⊗ In)


(∇Ptf1)Q1

I(Ptf1)Q1

...
(∇Ptfk)Qk

I(Ptfk)Qk

 = (A(PtF
Q)⊗ In)

(∇w1)Q1

...
(∇wk)Qk

 .

Now, recall that under the assumptions of Theorem 1.5, the kernel of A is the all-ones
vector. It follows then that if

(A⊗ In)

(∇w1)Q1

...
(∇wk)Qk

 = 0

then the (∇wi)Qi are all equal. Since this holds pointwise, and since Q (recall that
QT = (QT1 , . . . , Q

T
k )) has a trivial kernel, we see that∇wi must all be almost surely equal

to the same constant, a say. Since each wi is a smooth function, we have wi(x) = a ·x+bi
for some bi. Recalling the definition of wi, we have (Ptfi)(x) = Φ(a · x+ bi). Carlen and
Kerce [5] observed (and this observation was subsequently used in [13] and [13]) that
under this condition, and if fi = 1Ai , then Ai is a half-space (up to a set of measure zero)
and a is normal to it. Since we have the same a for every Ai, it follows that A1, . . . , Ak
is a family of parallel half-spaces, which completes the proof of Theorem 1.4.

In order to be more self-contained, we sketch a proof (from [13]) of why (Pt1A)(x) =

Φ(a · x+ bi) implies that A is a half-space. First, one checks that if A is a half-space and
ν its outward unit normal, then

(Pt1A)(x) = Φ(ktν · x+ b)
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for some b ∈ R, where kt = (e2t − 1)−1/2. Moreover, as A ranges over all half-spaces
with normal ν then b ranges over R. After checking that Pt : L2(γn)→ L2(γn) is one-to-
one (for example, because it acts diagonally on the Hermite basis), this implies that if
(Pt1A)(x) = Φ(a ·x+ b) with |a| = kt, then A is (up to a null set) a half-space with normal
a. It remains to see what happens when |a| 6= kt. First of all, Bakry and Ledoux showed
that |∇(Φ−1 ◦ Ptf)| ≤ kt for any f : Rn → [0, 1]; hence |a| ≤ kt. But if |a| < kt then there
is some s > 0 with |a| = kt+s. It follows from the previous argument, then, that there is
a half-space B with Pt+s1B = Φ(a · x + b) = Pt1A. We then have Ps1B = 1A, which is a
contradiction since Ps1B is always a smooth function.
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