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Abstract: This paper is concerned with Mandelbrot's stochastic cascade measures.
The problems of (i) scaling exponents of structure functions of the measure, τ(#),
and (ii) multifractal dimensions are considered for cascades with a generator vec-
tor (wι wc) of the general type. These problems were previously studied for
independent strongly bounded variables wl : 0 < a < w/ ^ c. Consequently, a broad
class of models used in applications, including Kolmogorov's log-normal model
in turbulence, log-stable "universal" cascades in atmospheric dynamics, has not been
covered. Roughly speaking, problems (i), (ii) are here solved under the condition
that the scaling exists; the τ-function is calculated for all arguments (previously this
was done for positive q) and a new effect emerges: the τ-function can generally
involve discontinuities in the first derivative as well as in the second.

1. Introduction and Results

Independent random cascades and cascade measures first arose as simple models
of fully developed turbulence [10]. They describe the space distribution of energy
dissipation rate in the transmission of energy from coarser to finer vortices. In
recent years random cascades are being intensively used for theoretical interpreta-
tions of empirical data in various natural sciences [14,15]. A gap has formed by now
between theoretical models that have been investigated [1,8] and what is of prac-
tical interest. We are going to study the multifractal characteristics of cascade
measures under natural conditions of existence for these measures. This is in the
first place Renyi's τ-function or scaling exponents of structure functions of dif-
ferent orders for a cascade measure. The function occupies a central place in
the statistical theory of turbulence. The solution presented here is not complete,
but the results enable one to determine τ(g), \q\ < oo, provided the scaling ex-
ists, and to detect a generally possible loss of continuity in the derivative τ(q)
(this has not been known before). We extend Kahane's result [9] about the exis-
tence of moments of the total mass of a cascade measure to the case of negative
exponents.

We begin with definitions.
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Let

W = (wι -wc)9 Wf ^ 0

be a random vector where c is a cascade branching number. Consider an infinite
sequence of independent copies of W on the probability space (Ω, j/, ̂ ) in order to
construct independent random functions Pn(t} on J = [0, 1]. Define Pw recursively:

Σ

where {Λ'l} is a partition of J into "c" equal intervals and χ^ is the indicator
function of A; then,

Pn+i((i + T)/c) = /*'>(T), 0 ^ τ < 1, / = 0, l,...,c - 1 , (1)

where P$ are independent copies of Pn. (In order to emphasize that Pn depends
on the distribution of W, we shall also use the slightly incorrect notation Pn(t W)
or Pn(t \ w), if components of W are i.i.d.) Consider

μn(dt}=f[Pi(t)dt
i=\

as a stochastic measure on J. The total mass of μn9Mn, is obviously equal to 1 on
the average, if

£-Σ"/ = l (2)c

If the sequence of μn weakly converges a.s. to a non-trivial measure μ, i.e.,
μ(dt)ή=dt and Eμ(J) = 1, then we will deal with an independent random cascade
with random cascade measure (μ W\ We distinguish three types of cascades: gen-
eraltypε (2), Mandelbrot's cascade (briefly ^-cascade) which has i.i.d. components
of W with mean 1, and conservative cascades having the property:

Σ w//c =1 a.s .
l^ί^c

As is well known [9], an ^-cascade has a non-trivial measure μ with
P(M > 0) = 1, M = μ(J\ iff

£ w l o g c w < l , P ( w > 0 ) = l , P(w = ! ) < ! , ^w = 1 . (3)

The support of the ^-cascade measure is a fractal set of Hausdorff dimension
d = 1 -£wlogcw, iff £w(logw)2 < oo [9,17].

A cascade measure is a multifractal. The study of its multifractal properties
reduces to:

(i) determination of the Renyi function

τ(q) = Limlog Σ^fcVlogΛ, Δn = \Δίn\ , (4)

where the limit needs to be specified and {Ain}, i = l,...,cΛ is partition of J into
cn equal intervals;

(ii) a substantiation of the multifractal formalism, namely, the Legendre trans-
form of the τ-function

= min(?α-τ(9)):=/(α)
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should have the meaning of the fractal dimension of the set

JΛ = \teJ: lim logμ(An(t))/logAn = α) , (5)
I n—>oo J

where Δn(t) is the sequence of intervals Ajn that contain t. We shall also use the
notation Jα(«ΛO if the limit in (5) is taken on some subsequence Jf of Z+ =
{1,2,...}.

1.1. Jί'-cascade'. Renyί function τ(q). The study of M-cascades is central to the
problem in hand. An approximation to the τ-function of an ^-cascade can be
obtained by substituting successively in (4):

μ(Δίn) -» μ n(Ain) -> Eμn(Δin) .

The first substitution is justified by appealing to the finite range of scales experimen-
tally observed, while the second is equivalent to the passage from spatial averaging
to that over all samples of μ.

Then (4) reduces to the function τ ( q ) = —Φ(q), where

Φ(q) = \ogcEwq -q+l. (6)

In the statistical theory of turbulence, the above approximation is usually employed
for theoretical scaling exponents (4), provided Φ(q) is defined for all q > 0 and
Φ(q) < 0 ("Novikov's inequalities" [12]).

The question of when and where τ(q) = τ(#), q > 0 and what is the correct
version of τ has been investigated in recent papers [1,8] for a very restricted class
of models:

0 < a < w < c a.s . (7)

The case (7) does not cover the classical example of turbulent cascades related to
the log-normal hypothesis of A. Kolmogorov. In this example logw is gaussian,
therefore w is not bounded either from 0 or from oo (to say nothing of the bound
c), even though it has "light tails," i.e., Ewq < oo for any \q\ < oo.

Recently the statistics of multifractal processes tends to make use of the so-
called "universal" class of cascades in which logw is an infinitely divisible (in
particular, Levy-stable) random variable [12,14,16]. In this case τ(q) can be finite
only on some part of R1

9 so that the question as to the relation between τ and τ
becomes especially urgent for interpretation of experimental data.

Before formulating the result for the τ-function, let us consider the graph of
the convex function Φ(q) (including infinite values). Under (3) it is the boundary
of the convex set G = {(q,y): y ^ Φ(q)}> the points (0,1) and (1,0) belong to G
but (0,0) ^ G. Consequently, the smallest closed cone containing G has the bound-
aries Γ+ = {(q,c+q\q > 0}, and Γ_ = {(q,C-q\q < 0}, where c± ̂  0. By (3),
Φ(#)(|Φ| < CXD) is analytic and different from a linear ήmction. Hence the inter-
section Γ± with Φ(q) either consists of a single point with the abscissa q± or is
empty (with the understanding that q± — ±00). Obviously, if q± < oo, then Γ±
is the support line for G and q+ ^ 1, q- ^ 0.

The points q± where the support lines and Φ(q) (Φ < oo) are transversal will
here be called points of the first kind, while all the other points will be ones of the
second kind.
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Define Φ+(q) by

Φ(q\ q_ < q < q+

c±q, q/q±>l, ?-ΦO. (8)

oo q- = 0

Theorem 1. Under the conditions (3) there exists a sequence of integer numbers
Jf = {m} such that

lim -log Σ μq(Δίn) = Φi,(q\ a.s. (9)
JV 3n— >oo n \<i<cn

for all q, i.e., the limit (9) holds for samples of the measure μ( | ω), ωGΏ',
gP(Q') = 1, where Ωf does not depend on q.

Remark. If the scaling (4) exists in probability then τ(q) = —Φ+(q). In addition, it
follows from the proof of Theorem 1 that if the scaling relation (4) exists a.s. for
all q G (<7_,#+) and #+(#_) is a point of the second kind, then τ(q) = —Φ+(q) for
all q > q- (q < q+).

In [1], the existence of the limit and the form of τ(q) for q > 0 were established
under the conditions (7). In that case Φ(q) is bounded for all q and Φ+(q) extends
Φ(#), q G (0,#+) beyond the critical point q+ < oo of the tangent line at q =
q+ — 0. In the general case (3) the support line y — c+q for the Φ(#)-graph ceases
to be tangent, if q+ is a boundary of the finite values of Φ. For this reason the
τ-function (if it exists) can have discontinuities in the first derivative.

1.2. Jί -cascades: multifractal dimensions. The critical points q± of two types gene-
rate two types of α-intervals:

with
(«£>, «?>)£(«<!>,«<!>) (10)

= ~Φ(q± T 0), α(^ = Φ(q± T 0)/(9± - 0) . (11)

If \q±\ = oo, then the right-hand sides of (11) are to be understood as the limits
with q — > q± = =boo.

In the intervals (10) the Legendre transform of the τ-function, /(α), is defined
and is strictly and non-strictly convex, respectively (/ is linear in the complement
of the first interval).

Theorem 2. (a) Lower bound. Under (3) for any fixed α G (α^α^), /(α)φl,
the following estimate holds:

^ /(α) (12)

if q- =1=0. Let q- — 0 and E\ log w\ε < oo for some ε > 0, then (12) is true for
Λ(ΛOί where JV* is any sequence of type {ni : W/+I/Λ/ > p > 1};

(b) Upper bound. Let J^ = {«/} be the same as in Theorem 1. Then under
the condition (3)

//-dimJα(ΛO ^ /(α), α G ( α α ) a.s. , (13)

i.e., (13) holds for μ( \ ω), ω G Ω1 ', P(Ωf) = 1 and Ωr does not depend on α.
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From Theorems 1,2 it follows that, if (4) exists a.s. for q £ (q- q+\ where q±
are critical points of the second kind and q- < 0, then

H-άimJΛ - /(α), α : /(α)φθ, 1, a.s . (14)

All the above conditions are met under (7), [1]. Consequently, (14) holds for
strongly bounded cascades (7). Certain particular results on these lines were
derived in [8, 13].

The second part of Theorem 2a permits one to analyze multifractal dimen-
sions of ^-cascades having a Levy-stable distribution for log w with the parameters
α/, E (0,2) and βι = 1. In that case E log w\ε < oo V ε E (0, α/, ) and

oo, q < 0

(l-D)(q"L-q)/(*L-l)-q+l9 q >0

where D £ (0, 1 ) is the dimension of the cascade measure carrier. Among the critical
points

<7_=0, q+ = (l-DΓl'"L

there is a point q+ of the first kind, iff α/, £ (1,2) and q+ = q~. If the scaling
(4) exists a.s. for all q £ (0,</+) then Theorems 1,2 lead to the relation (14) with
Λ(ΛO> where Jf — {nt : H/+I/W/ > p > I}. In fact, if OLL > 1, then /(α) = 1 for

all α > α^ = (α/, - D)/(ML — 1). Hence the requirement /φ 1 excludes the interval

(α^α^), while the interval (α^α^) is empty.

1.3. Cascades of the general type. Let W = (w\,...,wc) be a cascade vector with
the components wz ^ 0, E Σ w//c = 1 . Consider the random component of W,
namely

vt/r) = {w/ with probability 1/c, / = 1, . . . , c .

The function Φ(q) corresponding to w^r\ (Φ^r\q), say ) plays the same part for a
cascade of the general type as (6) does for an ^-cascade.

Theorem 3. Theorems 1,2 with w = w(r) and Φ = Φ(r) remain valid for the cascade
measure (μ\ W).

In other words, the multifractal characteristics (τ,/) do not distinguish between
cascades of Ji type and conservative type.

1.4. Auxiliary propositions. The proofs of Theorems 1 through 3 are based on
well-known results for the solution of the following stochastic equation which the
total mass M of measure μ obeys:

where the Mt are independent copies of M that are independent of W = {w/} as
well [3,6,7]. Also needed are results for the moments of M. The requirements
for existence of the positive moments of M were derived in [9,11], while some
information on the negative moments is furnished by the following.
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Theorem 4. Let w be the random component of a cascade vector W. Then under
(3), the following implications are true:

(a) Ew~h < oo => EM~ha < oo, A > 0 ,

(b) E logw| Λ <oo^E| logM| A / α <oo, VA' e(0,A),

where a = c for Λί -cascades and a = 1 /» the general case (2).

The constant "#" in Theorem 4(a) is exact. We give two examples. Let the
random component of W have the beta-distribution with parameters (A,A(c — 1)),
that is,

P(w(r} <x) = k • **(!+ o(l)), A - + 0 .

Then M for an ^-cascade has the gamma-distribution with the parameter c A, i.e.

P(M<x) = kλx
ch(\ + o(l)), x -> 0 ,

[6]. Consequently, £w^ < oo, # > —A, while £Άf^ < oo for q > —ch.
The value M for the cascade with W = (w, ...,w) will also have the gamma-

distribution, but the parameter is A [7]. Hence, EM~h < oo, VA' < A.
Theorems 1,2,3 are proved in Sects. 2,3,4, respectively. Theorem 4 is proved

in Sects. 2 and 4.
Below we use the following notation:

means convergence in probability;

means convergence i

//-dim is Hausdorff dimension.

J-lim, — » means convergence in distribution;

2. τ-Function for ^-Cascades: Proof of Theorems 1,4

The proof is given as a sequence of independent propositions. Of these, Proposi-
tion 4 contains proof of Theorem 4 for ^-cascades.

Proposition I. If M is the total mass of the cascade measure (μ\w,c), then

(15)

where (w/,M/) are independent copies of (w,M) and w,M are independent as
well Any nontrίvial nonnegative solution o/(15) has the property P(M > 0) = 1,
ifP(w>0)= 1.

Proof. Equation (15) is well known [10] and follows from the definition of M. By
(15),

P(M = 0) = [P(wM = 0)]c ,

whence P(M = 0) = 0, if P(w > 0) = 1.

Proposition 2 [7, 6]. Let Ewq < oo for some q>\ and ξ ^ 0 be a random variable
with Eξ = 1. Then under (3) one has

Mn(ξ):=Mn(W,ξ):=fPl(t\w) Pn(t\W)Pn(t\ξ)dt^M (16)
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as n — > oo. Here, Pn(t\ξ) is constructed in the same way as is Pn(t\w) and is
independent o f P j ( t \ w ) , i ^ n.

Proposition 3 [9]. Under (3) one has EMq < oo \/q e [0, 1]; for q > 1,

EMq < oo <^ Evfl < oc and Φ(q) < 0 .

Proposition 4. For q < 0 w^ίfer (3), the following implications are true:

(a) Ewq < oo =* £M*C < oo ,

(b) £| log w| | ί ? l < oo =» E\ \ogM\hc < oo, VA < |?| .

Proof of Proposition 4a. Let EM~ε < oo for some ε > 0. By (15) one has

Hence
^M-^ < (EM-q/cγ(Ew-q/cγ, q > o .

Putting #/c = ε, one gets EM~C£ < oo, if Ew~qQ < oo, <^o ^ ε. Repeating the above
argument with q < cnε, n = 2, 3, . . . , one obtains EM~q°c < oo.

Consequently, it suffices to show that EM~ε < oo, if Ew~q° < oo. Let

φ(s) = EQxp(-sM) .

φ(s)= \Jφ(SX)dF(cx)] , (17)
L o J

where F is the distribution of w. Divide the .x-axis into two parts by the point
jco = s~λ/2 and use the following estimates:

o; φ(sχ) ^ φ(sl/2\ x
Then by (17) we have

φ(s)<[F(cs~1/2) + φ(sl/2)]c .

Using Chebyshev's inequality,

Therefore
φ(s2)<[ms-q* + φ(s)]c . (18)

Since P(M > 0) = 1 (Proposition 1), φ(s) — 0(1), s — > oo. For this reason, for c> 2
and s that is large enough,

φ(s2) < p[s~h + φ(s)]2, s > SQ, h < qQ, p < 1 , (19)

where
p = max [ms~q° -h φ(5 )]c~2 = o(l ), SQ -+ oo .

S^SQ

Let us make (19) somewhat cruder:

φ(s2) < 2p(s~2q + φ2(s)) s
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Putting \l/(u) = φ(exp(w)), one has

ψ(2u) < 2p(e2(u) + ι/^2(w)), e(u) := exp(-qu) , (20)

where u = Ins. Iterating (20), we shall make use of the estimate

One then gets

ψ(2nu)<an[e(u)f+bn [ψ(u)f ,

where the coefficients satisfy the recurrence relations

bn+\ = 4pb2, b\ = 2p ,

z2, a\ = 2p .

Hence
4pbn+l = (4pbn)

2

and
bn = (2V2pf/4p = 2-1/2

i f p = 2-3/2.
If άn = V2an, then

άn+ι = l+άn, ά\ = I .

It is easy to see that

άn<Q2\ KQ<2.

Hence
ψ(xnu) < Qxp(-xn(u - w*)) 4- [ψ(u)¥n

9 xn := T

where u+ = InQ. Let u > max(w*,ln1s
<o) and

xnu <x <xn+\u .

Then
ψ(x) < ψ(xnu) ,

Qxp(-xn(u - u+)) < exp(-jc(l - u+/u)/2) ,

Consequently,

ψ(x) < exp(- cα) + ψ(u)x/(2u\ α = (1

or
φ(s)<s~*+s-β

9 S > S Q , (21)

where
β = \laψ(u)\/(2u) .

It remains to be observed that

h>0. (22)
o
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By virtue of (21) the left-hand side of (22) is finite for small h. Therefore, the
same is true for the right-hand side as well.

We have assumed that c> 2. This restriction can be removed by iterating (18).

Proof of Proposition 4b. Similarly to the above,

φ(s2) < [F(c/s) + φ(s)]c < 2c-l[Fc(cs~l) + φc(s)] .

If £|logw|α<oc, then F(x)<k\ log Jt|~α, x< 1.
Let 1 < cf < c. Choosing a suitable SQ, one gets

—αc
c'In- +φc(s) S > SQ

where
p = P(SQ, C ) = θ( 1), SQ —> OO .

Putting ψ(u) = φ(eu), one has

\l/(2u) < p(u-«c' + \l/(u))9 U>UQ. (23)

We will show by induction that

ιA(2M) ^ (2«-«o)-^? n ^ ΛQ> 2wo > Wo . (24)

When « = wo, the inequality is obvious. Pass from n to n H- 1 using (23):

where
jt = pp-to-υ^ + (2

Λ-Λ°)-α(c/2-c/)2αc/] < XI + 2αc/) .

If /> < (1 + 2αc )~!, (24) is proven. Similarly to the above, this yields the estimate

φ(s) < &(logsΓαc/, Vc; < c, ,s > so ,

where k depends on c' and SQ.
By the Tauber theorems [5],

pje-sxs-l\\nsp~lds=\]ax\p(l+o(l))9 x ̂  0, p>0.
i

Integrating both parts of this relation with respect to dF(x) (F is the distribution
of M), one gets

oo

/ φ(s)s~l lln-s^-^j < oc =Φ / \fax\pdF(x) < oo, p - αc/r ,
o

where 1 < c" < c1 < c. Therefore

E\ log w|α < oo => £| log M|αc// < oc, Vc/; G (l,c) .

Proposition 5. Under (3)
(a) the cascade variables
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generate cascade measures with total mass Mq : EMq = 1, P(Mq > 0) = 1, iff
q G (q-9q+) U Γ, where Γ consists of points q± of the first kind.

If q G (q-,q+), then EM* < oo with h = h(q) > 1.
(b) £M« < oo z/4 G (q-,q+) U {q± : \q±\ < oo}.

Proof By [9], £71̂  = 1, iff

But
f(q) = <7Φ(<7) - Φ(q) ,

whence /(#) = qΦ(q), where Φ(#) ^ 0 because the moment function is log-
convex. Therefore f(q) increase with increasing \q\9 /(O) = — 1. For this reason
(25) is valid in some interval A = (&_,£+) 3 0.

We now show that k± = q±. The function f(q) (Φ < oo) has a simple geomet-
rical interpretation:

—f(q) is the point of intersection of the line

y = Φ(q) + Φ(q)(x - q)

tangent to the convex curve Φ( ) at q G (β_,β+) with the x = 0 axis. Here
(Q-9Q+) is the domain of finite values for Φ(q). Let Q- < 0, otherwise β_ = 0
and q^ —k- — 0. Since —f(q) decreases with |#| — > oo, three cases can arise.

Case L As \q\ increases, —f(q) reaches 0. Then the tangent becomes identical with
the support line passing through the origin. Therefore kδ = qδ(δ = + or — ), qδ is
a point of the second kind and wq does not satisfy (25) at q — qδ.

Case 2. When q varies in the intervals (0,2+) or (g_,0), the function —f(q)
reaches the limiting level of /o > 0. Since f(q) is analytic in (g_,β+) and is
nonlinear because wφ const, we conclude that k& = Q&. But then, the line connecting
(0,0) with (Qδ,f(Qδ)) supports Φ(q\ i.e. kδ = Qδ = qδ and qδ is a point of the
first kind.

Since f(qδ) < 0, EMq = 1 (Proposition 3).

Case 3. —f(q) reaches 0 or /o > 0 asymptotically, so then kδ = Qδ. We show that
\Qδ =00. Suppose the opposite is true. Then 0 < \Qδ\ < oo and f(q) = qΦ(q) —
Φ(q) has a finite one-sided limit as q — > Qδ. Since Φ is analytic, this is possible, if
Φ(q) and Φ(q) simultaneously tend to finite or infinite limits. The first possibility is
not considered, because it is relevant to cases 1 and 2. It follows that |Φ(#)| — > oo,

Since Φ is convex, Φ(#) — > oo, δΦ(q) — >• oo with ^ — > ̂ . Let ^ = -hi. Then
there exists a point ^o > 1> where Φ(^r) reaches the minimum and therefore
Φ(q) > φ(qo) = -f(qo) > 0 = Φ(l), ^ > 0. This is a contradiction. Let 5 = -1.
Since q = Q is the vertical asymptote of Φ and Φ(#), # G (β-,0) is convex, we
can find the line y = βq tangent to Φ at a point qo G (<2_,0), i.e. /(#o) = 0. This
is a contradiction again.

So, \Qδ\ = oo and Φ(#), δq > 0 has the asymptote y = /o + β<5#, /o ^ 0.
Therefore ^ = j?^^, 5^ > 0 is a part of the boundary of the cone containing Φ.
Hence \qδ\ = oo, i.e. qδ = kδ.
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We now show that 3/z > 1 : EMq < oo, if q £ (#_,#+). The functions Φ for the
cascade variables w and wq, namely, Φ and Φ^, are connected by

φq(h) = Φ(hq) - hΦ(q) .

Hence
Φq(h) = -(h - l)(Φfo) - Φ(q)q) + o(h - 1)

Since /(#) < 0, q G (q~,q+ ), Φ^(^) < 0 for 1 < // < /zo(g) and Proposition 3 gives
oo.

Proposition 5b is a corollary of Propositions 3 and 4.

Proposition 6. (a) If q G (#_,#+), /few wmfer (3),

ίMim Σ μq(Δin)c~nΦ(q} = MqEMq , (26)
w^oo ^^^

where Mq is the total mass of the cascade measure for the variable Wq,

(b) There exists a sequence of integer numbers Jf — {#/} such that the point-
wise convergence

Sn(q) := - log, Σ^(^) ̂  Φ(^X V^ ^ (*->?+) (27)

c^ α^1 « ̂  oo, n G «yF /or samples of the measure μ(dt \ ω), ω e Ω' with
1.

Proof. By the definition of μ,

where zl«(0 = Δin 3 ί, Pn(/|M) is a function of type (1) that is independent of
Pi(t), i ^ n. Hence

Σ(<7) := Σ^(^) = /^ι(0 'Pq

n(t)Pq

n(t\M)ΔΓldt . (28)
« /

Using the normalization

= Pi(t \ wq\ M*IEM« = ξ ,

one gets

where

cn =

In the notation (16),

Let q E (q-,q+), then (see Proposition 5) EMq < oo, 1 < h = h(q)\ the cascade vari-
ables wq generate cascade measures with Mq : EMq — \, P(Mq > 0)=1; EMq < oo
and Mξ = 1. The use of Proposition 2 gives (26). By (26) and P(Mq > 0) = 1,

Ln(q) = ~ logc f Σ (q) ' c'1} ^ 0, n -> oo .
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Let ^ be a denumerable, everywhere dense subset of (#_,#+). Then one can
choose a subsequence {«/} — Jf and a set Q! of events {ω} such that P(Ω') = I
and

Sn(q) = Φ(q) + Ln(q) -* Φfo), q G Λ, ω € Ω' , (29)

where « £ .yΓ and w — > oo. We are going to show that (29) holds on the completion
of &.

The upper bound of Sn(q \ ω), n £ yF for fixed ω G Ω7 is a convex function that
is identical with Φ(q) on ̂ , hence the two functions are identical on the completion
of $. Take a subsequence {/«/} of yΓ such that

Sm;(#o I ω) — > liminf 5n(^o ω) := α, ω £ Ω7 .
J^Bn-^oo

as / W j — > ex). Let rα G ̂ , α = 1,2,3:

and

Since S^^) is convex, the point (#o>S«(#o)) ues above the straight line that con-
nects Pm2 and Pm3 and below the straight line that connects Pm\ and Pm2. However,
Smfra) -+ Φ(^α)5 ^ -^ oo For this reason the limiting point (</o,fl) will have the
same properties in relation to the lines that connect the corresponding pairs of
points among the (rα, Φ(rα)).

The function Φ is smooth in (<7_,#+), while {rα} can be chosen arbitrarily
within &. Since ^ is dense on (#_,#+), then a — Φ(#o) Π

Proposition 1. If q+ = q+(q~) is a point of the second kind and \q+\ < oo, then
under (3),

lim Sn(q) = q Φ(^*)/^*, V^ : q/q* > 1, ω G Ω' . (30)

If q = 0, then the limit equals oo for q < 0. Here Jf and Q! are the same as in
Proposition 6.

Proof. Let q+ = q+ for the sake of definiteness; q$ G (#_,#+) and q > q+. Simi-
larly to the above (see (28)),

Σ(9) = Σ \ $ P\(t\Wq*) Pn(t\Wqι)Pn(t\ς)dt\ Cn 9 (31)
n l^i^c" Δίn|_ HI J

where ξ = M^/EMqQ and

Applying the inequality

τ v < / V * Y ι>ι x >oV^ = lt"r A > 1 ' ^ = °
to (31) with λ = q/qv, one gets
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It follows from the proof of Proposition 7 that

- log A/Λw^, £)->(), jf 3 n _> oo

for all <?o G (?-,?+) and ω G Ω', P(ί2') = 1.
Hence, for ω £ Ώ',

limsup £„(#) ^ lim - log cn = Φ(qQ)q/qQ . (32)
Λ-BΠ-+OO "-*00 n

The set Ωf is independent of #o, so one can pass to the limit as go — > #+• Similarly
we get (32) with q^ — q- < 0 for # < #_.

The case #_ = 0 will be discussed a little later.
Let us evaluate Sn(q), n G Jf from below. Take a subsequence {/w/} C «Λ^ such

that
Smi(q) -> liminf Sn(q) = a, ω G Ω' ,

-

as mi — > ex).
Let gα G (q-,q+), α = 1,2. Then (q,Sm(q)) lies above the straight line that

connects the points (q^Sm(qa)) for q > q+ (q < #_). Repeating the argument used
to prove Proposition 6, one obtains that (q,a) will lie above the straight line that
connects the points (#α, Φ(#α))? α = 1,2 for μ( | ω), ω G Ώ'. Hence

liminf Sn(q) ^ Φ(?ι) + q _ ?l) (33)
yΓ3«-^cx) ^2 — #1

for V# G (— oo, g) U (^+,oo) and ω G Ω' '.
Passing to the limit as qi — > q\ and then as ^i — > ^+, one gets

liminf 5 Λ ( )

Since #+ is a point of the second kind, it follows that Φ(q+)q+ — Φ(^+). Conse-
quently, the upper (see (32)) and the lower bound of Sn(q), n — > oo, are identical
and equal to Φ(q+)q/q+ for all q > q+ and ω G Ω'.

For the case q < q- =0 one has an uncommon situation. In that case
<7o -+ #- + 0. Consequently, one obtains from (33) that

limsup Sn(q) ^ liminf Sn(q) = oo .

Proposition 8. t/wrfer (3), there exist sets Jf, Ω', 0>(Ω') = 1 such that (30) remains
valid for points q± of the first kind.

Proof. Let Jf, Ωf be the same as in Proposition 6. The derivation of the upper
bound (32) for Sn(q), Jf 3 n — » oo, ω G Ω' did not use the type of q±. It follows
that the bound still holds. We are going to evaluate Sn(q) from below.

Let q+ = q+(q_) be a point of the first kind, q/q+ > 1 and q+ φO. Put qo = q+
in (31). All normalizing constants for points of the first kind are finite: Ewq* < oo,
EMq* < oo (Proposition 5).

The functions P^t wqif ) in (31) are piecewise constant and Pt(t \ w^ ,̂ ) = wqif

for a fixed t. The random variables ζ = wq+/c have the following properties:

cEζ = 1; Eζ logc C < 0; Eζf = 00, Vy > 1; P(ζ > 0) = 1 . (34)
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The first of these is obvious, the second is another form of (25), and the third
means that q+ is a boundary of the domain of finite values of Φ(q). Points of the
first kind, i.e. #*, have these properties.

From Lemma 9 (see below) it follows that under (34) there exists a transfor-
mation η = f(ζ) which depends on the parameter γ G ( I 9 y \ ) such that

and

cEη = 1; Eηlogcη < 0; EηhQ < oo, A0 > 1; P(η > 0) = 1 . (35)

That means that ΣΛ(#) (see (28)) can be evaluated from below by making the
substitution,

c-vpl(t\wqif) -> c-lPm(t\cη), y = q/q+ G (l,n) ,

that is, Py

m(t) = ay is replaced with f(a/c) in each interval Δkm, k= l,...,cm,
m = !,...,«.

The sum ^n(q) is decreased, when a similar operation is applied to Py

n(t\ ξ):

where

U if ξ > 1 -

As a result, one gets for q/q+ e (l,7ι),

cήlΣ(4) > fP\(t\cη) Pn(t\cη)Pn(t\ξf)dt = Mn(cη,ξ")Eξ'
n

(see (31)) where ξ" = ξ'/Eξf, ξf > 0 a.s.,

while ?/ satisfies (35).
By Proposition 2

J-limMw(^,^)-Z,
W-^ CX)

where EZ - 1, P(Z > 0) = 1. Let Jf' C Jf and Ω" C Ωf be such that 0>(Ω") = 1
and Mn/n -* 0 as Jf' 3 n -^ oo and ω G ί2/7.

Similarly to the above (see the proof of Proposition 7), we conclude that

liminf - log £)(0) ^ lim - log cn = Φ(q+)q/q+jv'^n-^oo n n

Recalling the upper bound (32), one gets

lim Sn(q) =

We are now in a situation that arose when proving Proposition 7, the upper
bound of Sn(q) with q/q+ > y\ being determined by the curve f(q+)q/q+ and
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the lower by the tangent to the curve at q = q+(y\ — ε). Since these are identical,
Proposition 8 is proven for #*ΦO.

Case q^ — 0. q- is a point of the first kind. Below we are using only the fact that
= oo, Vq < 0. When q < 0,

wg > (w + ά)q, a > 0; Mq > Mrq, M' = max(M, δ), δ > 0 .

Similarly to the above, we obtain from (28) for q < 0,

Σ(?) > PnfP'>(t\w') PΪ(t\w/)PΪ(t\M")Ai-]dt, (36)
W

where

M" = Mf/EM' ,

*. (37)
The right-hand side of (36) is, apart from the factor pn, a sum of the type Σn

constructed for the variables wf and M" ', i.e.,

^") (38)
« «

Propositions 6 and 7 are applicable to the sums Σn(q\w',M"). In fact, since
Ewq < oo, \/q < 0, it is only points q~(ά) of the second kind which can occur on
the negative g-axis.

The condition Ewf logc w
x < 1 is satisfied for 0 < α < α0? because

Ew'log w' = (l +q)~lE(w + a)log(w + a) — log(l + a) -* Ewlogw < 1, a — » 0 .

Lastly, ^(M^)^ < oo, since M/x > δ/E max(M,<5).
Thus, applying Propositions 6 and 7 to the right-hand side of (36), we get

liminf Sn(q) ^ q logc(l + a) + Φa(q), ω G Ω7/, q < 0 ,
Λ^'Bfl— »oo

where

*.ω = {'°8'&"-9+1' ?>9-<0)

I Φa(q_(a))q, q < q-(ά) .

and 0>(Ω") = 1 and Jf" C ^Γ.
We now show that Φa(q) -^ oo as a — > 0. The straight line j = Φa(q-(a))q

supports Φa(q), and so

Φα(^) > Φa(q-(a})q> q < 0 .

Hence Φα(#) -> oo, if |Φfl(0_(α))| -> oo, α -» oo.
Suppose q~(a) — > oo, a — >• 0, then also Φa(q) = log ^w^ — q + I -^ oo (recall

that ^vî  = oo). Suppose |Φα(g_(α))| and |^-(fl)| are bounded as a — > 0, while
®a(q) ~f~^ oo. Choose a sequence α« j 0 such that
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Obviously q°_ — 0. Otherwise Φan(q) — > co, an — > 0 for small |<?| and is bounded
for large q (see (39)). This contradicts the convexity of Φa(q)> Hence

Φa(q_(an)) = Φa(q-(an))q-(an) -̂  0, n -> oo .

However, Φa(q-(a)) > Φα(0) = 1. This is a contradiction.
Consequently, if £w^ = oo, Vq < 0, then

liminf Sn(q) — oo ,
Jf"3n-*oo

since α G (0,0o) is arbitrary.

Lemma 9. Let the random variable ζ satisfy

(i)cEζ=l;

(in) Eζh = oc, VA > 1;
( i v ) P ( C > 0 ) = l .

Then there exists a transformation η = /(£) which depends on the parameter 7,
such that η has the properties (i, ii, iv), and also Eηl+δ < oo, δ > 0 and

η < Cy, 1 < 7 < 71 .

Proof. We shall seek η in the form

f C1-'5, c > co > i
η = d <

( Cy(*o), C < *o

where

We choose JCQ > 1, so that my > 1. This is possible, since my —> CXD,
(property (iii)).

Then, for d < 1,
η = d/my ζy < ζγ, ζ < XQ .

On the other hand, when 0 < c 5 < 1, y > 1,

It follows that η < ζ* and Eηl^l~^ < oo.
Condition (i) for η defines d:

d = c-l(l+Eζl~δ[ζ >xo])~l < I -

Condition (ii) for η reduces to

A(γ) = Eζy(XQ)\ogc(dζγ(x0» - [ζ < x0] + Eζl~δ logc dζl~*[ζ > XQ] < 0 .

We now show that the requirement A(γ) < 0 can be satisfied by a suitable choice
of jc0 > 1 and 7 > 1.

The first term in A(γ) is

J(y) := E
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This function increases with increasing γ. In fact

J(γ) = γr(γ) - r(γ) + logc d ,

where

and
J(γ) = γf(γ) ^ 0, y > 0 .

Since
/(I) = /fiΓ1^ log C[C < *o] + log(d//m) ,

and
*o] -» £C = c"1, *0 -> oo ,

then J(\) — » c££ logc ( — cfl < 0, JCQ — > cχo. The second term in A(γ) vanishes as
XQ — > oo. Therefore

^(1) < -6 < 0, V*o > x$ .

Take some XQ > x*, XQ > 1. ^(7) is a smooth function of y in a vicinity of y = 1
and is increasing. Hence A(y) < 0 in some interval 1 < γ < 70- Π

3. Multifractal Dimensions for ^-Cascades: Proof of Theorem 2

The proof uses the following.

Proposition 10 [9]. Let M be the total mass of Jί -cascade measure μ. If
EM logcM < oo, then with probability 1,

lim — log, μ(Δn(t)) = D = 1 - Ew log, w μ-a.s. , (40)
Λ-KX> n

where Δn(t) is the sequence of intervals Δin that contain t.

Proof of Theorem 2. Lower bound. Let q- φ 0 and

The value q — 0 is ruled out, because /(α)Φ 1.
By (28)

cn, (41)

where wq — wq/Ewq and
r — rφ(q}nLn — C

According to Proposition 5, there exists, for wq, a cascade measure μq(dt) with
total mass Mq such that

Mq > 0 a.s, EM* < oo, VA G (1, AQ) .

Therefore (41) can be written as

Λ(ί I Mq) cw , (42)
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where Pn(t\Mq) and Pn(t\Mq) are measurable with respect to the σ-algebra
σ{Pn(t\m > n} and hence are independent of Λ(0> * ^ n-

Since EM* < oo, h e (l,/*o), this implies that

1 log M^ < oc, Vp > 0.

Consequently, applying Proposition 10 to μ^, one gets

lim -1 logc μq(Δn(t)) = D(q) = Φ(q) - Φ(q)q, μ.-a.s . (43)
«— »oo n

We shall show that, with probability 1,

ΛCO^log/UίlM^O, μ?-a.s. (44)

as « — » oo.
Let

be the Peyriere probability [9]. By Chebyshev's inequality

Q ( \ f n ( t \ ω ) \ >ε)<(ε nΓ2Eηn,

where
ηn=n2ff2

n(t)μq(dt)

= $Pl(t\Wq) Pn(t\Wq)Pn(t\Mq)\\ozPn(t Mq)\2dt

= fPl(t\wq) .Pn(t\w(!)Pn(i\ξ)dt

and
ξ=Mq\\ogMq\

2.

.Since P\(t \ wq), . . .,Pn(t \ wq),Pn(t \ ξ) are independent,

Eηn = Eξ < oo .

Using the convergence of

ΣEηn/n2=Eξ^n-2 < oo
«^1 w ^ l

and the Borel-Cantelli lemma, one concludes that

fn(t I ω) -> 0, β-a.s. ,

as « — > oo, whence (44).
Similarly one can show that with probability one

\M")^0, μg-a.s . (45)

as n — > oo. In that case
ξ = q2Mg\logM\2.

To show that Eξ < oo, we use the Holder inequality

Eξ < q2(EMhl/h(E\ log M\2h')l/H', /Γ1 + (h'Γ1 = 1 , (46)
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where h G (l,/*o) The right-hand side of (46) is finite for any h' ', if EM~ε < oo
for some ε > 0. The last requirement is obviously true, if #_ < 0 (Proposition 4).

Using (42) together with (43-45), one obtains, with probability one,

q lim --logμ(zUO) = lim I -- logμq(An(t)) - φn(t) + fn(t)\ - Φ(q)
«— >oo n n—too [ Π \

= [Φ(q) - Φ(q)] - Φ(q) = aq μq-a.s .

However, μq has a carrier of dimension D(q} — Φ(q) — Φ(q)q = /(α), and so

//-dim Jα ^ H-dim (supp μq) — /(α) .

The case q- = 0. Here, it is only the conclusion about the convergence φn(t) — » 0
which needs modification. Let E\logwδ<oo. Then, by Proposition 4,

£|logM|y<oo,(5' > 0. Therefore, if

then

and
oo

if h' p < δ' . Therefore φn(t \ ω) -^ 0 β-a.s. as n — » oo and n G ̂  = {«z: w, +ι/wz ^
A: > 1}. Using the above arguments we get

//-dim Λ(ΛO ^ /(«), a.s .

Proof of Theorem 2. Upper bound. The proof is general and relies on the existence
of the τ-function, which is ensured by Theorem 1. The proof has some intersections
with that of Lemma 3.4 [2].

Let Ω' and N be sets of events and integer numbers for which Theorem 1
holds and M = M(ω) > 0. Then for fixed ω G Ωf,

log φn — > 0, <yΓ 9 « — » oo
where

Let

and Nn(β) be the number of intervals Δin in Gn(β).
By Chebyshev's inequality

oo .

Let q be such that
qβ-τ(q)

Then
7Vw(β) < Δ~f(β)φn < Δ~(m+δ\ \/δ > 0, «yT 3 n > N(δ) . (47)

If β > a, then

f|
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and
a ^ H-dimGβ.

We now show that
H-dimGβ ^ f ( β ) (48)

which implies (13), since β > α is arbitrary.
By definition, the /-Hausdorff outer measure of set G is

Hf(G) = lim HB

f(G) ,
ε— > 0 J

where

and the infimum is taken over all ε-coverings of G. H^ increases as ε — > 0, hence,

for ε : εrt = c~",

Gm(β)\ < £ Hεf(Gm(β}). (49)

By virtue of (47)

He

f»(Gn(β)) < 2Nn(β)A{ < 2At/-™-'\ ne^.

Putting / = f ( p ) H- <5', δ1 > δ, we conclude that the right-hand side of (49) van-
ishes as n —> oo. Therefore Hf(Gβ) = Q and (see [4]) H-dimGβ ^f = f(ρ) + δ f .
Since δ' > 0 is arbitrary, we get (48).

4. Cascades of the General Type: Proof of Theorems 3, 4

Theorem 1 relies on a sequence of propositions that need some explanation in this
new situation.

Proposition 1. In the equation for mass M,

-If V Λ -if I / C Γ \ Λ

{Mi} are independent copies of M that are independent of W = (w\9...9wc).

Propositions 2, 3 constitute Theorems 2(b) and 3 in [3],
Proposition 4 is modified as follows:

Under (2) the following implications are true for W:

(a) Ew~h => EM~h < oo, h > 0,

(b) E log w\h < oo =* E\ log M\h' < oo, W < A, h > 0,

where w is the random component of W.

In fact, one gets using (50),

and so
< (EM~p/c)cEwp .
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It remains to establish the finiteness of EM~ε for some ε > 0. Let

φ(s) = E Qxp(-sM) .

By (50)

Further, similarly to the above,

Under (a),

φ(s2) < p[s~h' + φ2(s)]9 s > SQ, h' < h, c > 2,

while under (b),

y)~Λ -f φc (s)], h' < h, c' > c.

We have arrived at the inequalities considered above (see (19)).
Propositions 5-8 use Theorem 4 in the weak form only, i.e. with the parameter
a=\. The formulations and proofs of Propositions 6-9 are preserved, if wq is
understood as the vector

and as the random component of Wq when integrating on gP(dω). Rearranging the
Wq in Proposition 8, we replace Wq with ζ = {fί}> while when dealing with mean
values ((34), say), we also imply the random component of ζ.
Theorem 2(a) is based on Proposition 10 which is applicable to (μ, W) unchanged
(see, [11]).
Theorem 2(b). The proof totally depends on Theorem 1.
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