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Abstract: Vertex representations are obtained for toroidal Lie algebras for any num-
ber of variables. These representations afford representations of certain /^-variable
generalizations of the Virasoro algebra that are abelian extensions of the Lie alge-
bra of vector fields on a torus.

0. Introduction

In this paper we construct faithful vertex operator representations for the universal
central extension τn of g 0 <E[tf \ t ^ 1 , . . . , t j ! ] , where g is a simple, simply-laced
finite dimensional Lie algebra over <C. We call τn the n-toroidal Lie algebra. These
representations also afford representations for an abelian extension of the Lie algebra
of derivations of <C[tfι,tfι,... , t ^ 1 ] . This latter Lie algebra is a generalization of
the Virasoro algebra, and so this whole construction is a generalization of both the
Frenkel-Kac and the Segal-Sugawara constructions which are well known for the
case n = 1.

For a suitable non-degenerate integral lattice Γ and an even integral sublattice
Q (cf. Sect. 3), we construct the Fock space V(Γ, b) = <C[Γ] <g> 5(b_), where b is
a Heisenberg algebra defined by Γ. For each a in Q we define vertex operator
X(a,z) (cf. 3.7) such that its Fourier components Xn(oί) act on V(Γ, b). Our first
result (Theorem 3.14) says that the Lie algebra generated by operators Xk(cή (α G
Qy(a\a) = 2) is isomorphic to T[nj. We also prove that the "zero moments" (taking
k = 0 above) generate the Lie algebra η n _i] (Theorem 3.17).

Theorem 3.14 in the case n = 1 is due to Frenkel-Kac [FK] and ηη is the non-
twisted affine Lie algebra. The case n = 2 is due to [MEY]. Our method of proof
here differs considerably from that of [MEY]. It is more explicit in the sense that
we give operators for every vector of T[n] and prove that the necessary commutators
hold. For example the vector h 01\ 11^ t7^ in η n ] is represented by the oper-
ator T/1 (δr) (cf. 3.10) which is not clear from [MEY]. A significant difference is the
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identification of central operators of T[n]. The centre of τ[n] is given by operators
T^{η') and Xkil) with the relation

Here 7,7' are vectors of Q with zero norm and they form an (n — l)-dimensional
vector space over (C. In the case n = 2, zero norm vectors are one dimensional and
due to (*), the T operator can be replaced by an X operator. However for general
n one needs the new T operators together with the relation (*).

By taking n = 3 in Theorem 3.17 we have a new class of representations for
T[2] which are different from the one constructed in [MEY].

An important new development in the present paper is the introduction of a gen-
eralization of the Virasoro algebra. Recall that the Virasoro algebra is the universal
central extension of the Lie algebra of vector fields on a circle. This amounts to
saying that it is the universal central extension of the Lie algebra of derivations of
the polynomial ring C [ t ± ] ] . In the same way the Lie algebra of vector fields on
an n-dimensional complex torus can be identified with the Lie algebra ΌQV A of
derivations of A — <C[tfι,tf\... ,t^1]. However there is a significant difference
when n > 1 because in this case Der A is already centrally closed. Because of this,
finding a good generalization of the Virasoro algebra to n > 1 has turned out to
be difficult, and there have been a number of attempts by physicists to do this. We
put forward one solution to this problem here.

Every element of Der A has an obvious extension to g 0 A. It can be further
extended uniquely as a derivation to T[n] where it leaves the centre i?[n] invariant (cf.
5.1). For each such element we construct an operator on V whose commutators with
the vertex operators of η n ] yield precisely its action as a derivation (Propositions
5.5 and 5.8). Next we attempt to understand the Lie algebra generated by these
operators corresponding to the derivations. We have a complete answer only in
the "zero moments" case (Proposition 5.11), where it is seen to be an abelian
extension of Der A by Ω[n], the vector space which is the centre of η n ] . In general
the operators also generate an abelian extension of derivations on A; however, an
explicit description of the extension Lie algebra remains an open problem. In the
n — 1 it is Virasoro algebra.

In Sect. 1, we recall the construction of universal central extension of 9 0 A
from [MEY]. In Sect. 2, we give a presentation for η n] generalizing that of [MEY]
and also deduce a second presentation starting from a Chevalley Z-basis. The latter
is used to prove our theorems in Sect. 3. The technical lemmas on vertex operators
that are used in Sect. 3 are established in Sect. 4. In Sect. 5 we define the operators
of the generalized Virasoro algebra.

For additional material on recent developments in the theory of toroidal Lie
algebas one may consult [BC, EMY, FM, and MS].

1. Construction of Central Extension Recalled

Let g be a finite dimensional simple Lie algebra over complex numbers (C. Let \) be a
Cartan subalgebra of g, let A denote the corresponding root system, A C ί) , and let
Π = {αi, c*2, ., OLI} be a basis of A. The Killing form ( | •) is non-degenerate on
ί), and we will usually identify ί) with ί) by means of it. We assume that ( | •) is so
normalized that after this identification long roots have square length equal to 2. For
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each root a e A the Lie algebra gα -f [gα, g^Ω] + g~α is isomoφhic to sI2(C). An
sfe-triplet for this is a choice of ea £ gα, e_α e g~α for which, with ha :=
[e α ,e_ α ] , we have [h α ,e t t ] = 2eα, [Jια,e_α] = - 2 e _ α . Using our identification of
ϊ>* with ί) we have [e Q ,e_ α ] = (e Q | e_ α )α, α = ^ j ^ ^ α and (e α |βα) = j ^ ) -

Z,Z. Central Extension. Let $ be any Lie algebra. A central extension of § is a Lie
algebra § and a surjective homomorphism π: § —» g whose kernel lies in the centre
of §. The pair (g, π) is called a universal central extension (also called a universal
cover of g if for every central extension (g, φ) of g there is a unique homomorphism
-0: § —• g for which ήyφ = π.

A Lie algebra g is called perfect if [g, g] = g. It is known that a perfect Lie
algebra admits universal central extension. A good reference to the theory of central
extensions is [G].

1.2. Module of Differentials. Let A be any commutative algebra over C The mod-
ule of differentials (ΩA, d) of A is defined in the following way. Let {α^ be
any basis for A over C and let F be the free left A-module on a basis {dαj ,
where {dai} is some set of equipotent with {α^}. We treat F as a 2-sided A-
module by setting b{da) = {da)b for all a,b in A. Let d: A -* F be the (C-linear
map Σ Cidi ι-> Ŷ  Qdαi and let if be the A-submodule of F generated by the re-
lations d(ab) - (da)b - a(db)a,b e A. Then ΩA := F/K and the canonical quotient
map a ^> da -f K is the differential map d: A~> ΩA>

Up to evident isomorphism (ί?Λ,d) is characterized by the property that for
every A-module M and every derivation D: A —> M there is a unique A-module
map / : ΩA -* M such that

A ^ ΩA

D \ ,/ / commutes.

In this way Derc(A, M) ^ hornA(^A, M).
Let —: ΩA •-> i?^/oίΛ be the canonical linear map. Observe that from d(ab) = 0

we have ad(b) = —(dά)b — —b(da) for all α, b in

(1.3). Consider the Lie algebra

u = A <g>c g (

with Lie structure

[α Θ X, 6 Θ y ] = α6 0 [X,

and
is central in u .

Let ω: u -^ A ®c g be the obvious projection with kernel

(1.4) Proposition. ([K], [MEY]) (u,ω) is the universal central extension of

A Θc 9 ; --1

Throughout this paper we fix a positive integer n. We are interested in commuta-
tive algebra A = A[n] := ( C ^ f 1 , ^ , . . . , t^ J ] the C-algebra of polynomial functions
of the torus C x x ( C x x x ( C x . W e also use the symbol Ω[n] to denote
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(1.5) Notation.
Ψ:=(rur2,...,rn)eZn ,

Di(r):=tγtr

2\..fi

i-ι...tr

n"dtieΩ[n].

Clearly {Di(f), ί — 1,2,..., n, f G Z n } is a vector space basis for Ω[n] over <C.

(1.6). Ω[n] is spanned by vectors Di(r) (i — 1,2,... , n, r G Z n ) which satisfy the
single relation

2. Presentations of η n ]

As in [MEY] we will denote the universal central extension of the Lie algebra
g 0 1E[tfι,tfι,... , t ^ ] by T[n] and its centre by β[n j . In this section we will give
two different presentations for η n ] . The first presentation is similar in spirit to one
given in [MEY]. The second presentation is deduced from a Chevalley Z-basis of g
which is also given in Kassel [K]. This presentation is tailor-made for our theorems
in Sect. 3.

Let A = (Aij)f j = 0 be an indecomposable matrix of affine type X\ (X =
A, . . . , G ) (non-twisted). Let Q be free Z-module on generators α o , α i , . . . , α ^
with basis Π of A We know that there is a Z-valued symmetric bilinear form
( | ) on Q for which, after suitable choice of indexing, 2(ai\aj)/(a3-\otj) = A^.
Let δ — Σfi=oniai, πi G Έ+ , gcd(n o ,ni, . . . ,n^) = 1, be the null root. We as-
sume that the notation is chosen so that no = 1, so αo is an "extension node"
and A\=(Aij)lj=x is of finite type Xg. We assume that ( | ) is scaled so that

(αo|αo) = 2. In general, objects associated with A carry an over-dot, so for in-

stance Q := TLa\ 0 Zα 2 Θ •• Θ ΊLai C Q,Π := { α i , α 2 ? . . . ,α^}.
For each i = 0,1,2,.. ., ί let OL( := 2αi/(αi |a»). Then {a^,..., a/} forms

a basis for the coroot system Δv whose cartan matrix is Aτ. The null root is
Yfi=orii(Xi = δ, where n( := n^(α|o;)/2. The fact that Πi G Z can be verified by
inspection, case by case.

(2.1) Presentation 1. Let r = ( r i , r 2 , . . . , r n _i) G Z n - 1 . We let t = t(Aaff) be the
Lie-algebra over (C with the following presentation.

Generators.

SΛs), α,y(fc), Xfc(± «i), (i = 0,1,2, ,£, s, k, r G Έn~').

Relations.

(TAO) (i) <5r(s) central;

(ii) δr(s) + δk(s) = δr+k(s)

(Hi) ί,(r) = 0,

(TA1) K v(r), αV(g)] = (αt

v | a])δrjr_ + s),

(TA2) [αYfe), ̂ ( i «,)] = ± (α y | α i ) X s + r (± aό)
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2
(TA3) [Xmiβi), XJc-OLj)] = -δij{a({m + n) + - — . — - ^ ( m + n)},

(TA4) (i) [Xm(± αi), X # α,)] = 0

(ii) ad Xo(pίi)~Λi3+ιXrn(θί3) = 0, i φ j

(iii) adXo(~<^)~ τ3+iXm(—&j) — 0> fc+J

(22) Λfote. (i) t is generated by X ^ ( ± α * ) , m G Z 7 1 " 1 , i = 0,1,2,... ,L
(ii) TAO can be replaced by [δL(s), δrn(n)] = 0.
As in the earlier section let g be finite dimensional Lie-algebra with Cartan ma-

trix A, Cartan subalgebra () = C (g)z Q and usual set of generators βi,fi,hi,i =

1,2,...,£. Let ζ be the highest root of Λ relative to Π = {α i ,α 2 , . . . ,α^}

and let eo E cj ,/o £ 9 ^ e chosen so that {eo,/o,/^o} is an 5I2-triplet, where

We will write r = r_ whenever rn = 0.
Then the mapping π

6r(s) ^ 0 ,

• & r n \ ~ O ί i ) ' ^ ί v y j i i I = 1 , 2 , . . . , £ ,

XU-ao) ^ t^t~ι ® f0 (2.3)

defines a surjective homomorphism of Lie-algebras π: t —> g[nj = A[n] (8) g.
As in [MEY] we wish to prove that t is the universal central extension of g ^

in otherwords t = T[nj. The proof is similar to one given in [MEY]. So we only
introduce the necessary notation and sketch the proof.

We begin by introducing a grading of t by TLn~λ x Q by assigning degrees to
the generators as follows.

deg δr(s) = (5,0),

(2.4)

(i = 0,1,2,..., £ and for all k G Zn~ι). We denote the space of elements of degree
(fc,α)intbyt£.

Define

(
\i=0

t ± . = Y^ ta t ± . =a t ± . = y ^ t ± t α . _
H' * Z ^ 21'

+ := linear span of all products [ X . ( A ) , . . . , ^n,
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where β\,β2, - - ,βk € Π, n^^,... ,nk e Έn , and ΣΏLΪ = m

S+ := 2_] ^n a n ( l similarly <S~, and S~
nezn~ι

S^ := linear span of {<Xι(n),δr(rι)}

(2.5) Lemma.
(i) t = 5, and

(ϋ) t a = t + t^ + i , t = r

The proof is similar to Lemma (3.1) of [MEY].

(2.6) Proposition.

(2.7) Corollary.

-aiΓ^'Xrni-aj) = 0 ,

for all i+j, m,ne Zn~ι.

Proofs are similar to Proposition 3.2 and Corollary 3.3 of [MEY].

(2.8) Proposition. (£,i7) is the universal central extension of ^ny

Proof The proof is again similar to the proof of Proposition (3.5) of [MEY]. We
will only indicate the proof when it is different from [MEY].

As in [MEY], kernel Π is central in t. To prove the extension is universal we
construct a mapping ψ from t to T[n]. Explicitly

t^-tn <g) e 0 ,

In order to complete the proof of Proposition 2.8, we have to prove that the
elements on the right-hand side satisfy relations TA.

The relations TAO, TA2, TA4 are essentially trivial using the definition of
Sect. 1:

(TA1) iik + m)(hi \hά).
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(TA3) We need only consider the case i — j since (βi\fj) = 0 if i φ j . Suppose
i = 3 + 0. Then

n - l

2 = 1

If i = j = 0 then

fco - d(t^tn)(t^tn l)(e0 \ /o) =: α .

Consider

n-l

2 = 1

4- Dn(mx)t-t~ι, where fh\ := (m, 1)

n-l

2 = 1

Hence

α = -ψ(o%(m 4- n) 4- 7—j—-<$mte 4- n ) .
( α o | α o ) —

This completes TA3.

(2.9) Proposition.

+ n - 1, (ra,r<5)φ(0,0)
( 2 ) d i r _ m - , , , „ , ^ r < 5 ) = ( 0 ) ( ) ) β

Proo/ Clear, since ψ is a graded isomorphism. Π

(2.70) Presentation II. As earlier let g be a simple finite dimensional Lie-algebra
over C and let A be its roots. Let Q be the root lattice and let e:Q x Q —>• {1,-1}
be a two-cocycle on Q satisfying

(2)

(3)

(4) e(a, β + Ί) = e(α, /?)e(α, 7) . (2.11)

Such an e is known to exist. In fact it is easy to construct in view of (3) (see
[FK]).

We note that e(α, a) = e(α, —a) = - 1 whenever (α, α) = 2.
Let
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be the root space decomposition. Choose a Chevalley basis I α , α G A such that

e(a,β)Xa+β , a + βeΔ

(1) [Xa,Xβ]= iO, a + β£A\J{0},

(2) [

(3) [ftt,ΛJ ] = 0. (2.12)

It is well known that (2.12) defines the finite dimensional simple Lie algebra g.

(2.13) Proposition. [K] T[n] has the following presentation as a Lie algebra. Gen-
erators a 0 Xa, b® h, Ω[n], where a e A, ft <E ί), α, 6 £ A.
Relations

(Rl) (λα + μb) <S) Xa = λ(α 0 X α

(R2) [α

(R3) [α 0 ft,

(R4) [α 0 fti, & 0 ft^ ] = (fti I hj)(dά)b.

(R5) i?[n] is central.

Proof. Follows from (1.3) and (2.12).

(2.14) Remark.
(1) Proposition 2.13 is true for any commutative associative algebra A.
(2) In view of Rl, in R2, R3 and R4, a and b in Proposition 2.13 can be replaced

by any monomials in A.

3. Vertex Operators and the Main Theorems

In this section we recall the basic construction [FK] of vertex operators acting on
Fock space. We will state our main result and give its proof assuming some lemmas
whose proofs will be given in Sect. 4.

Henceforth we will assume that g is a finite dimensional simply-laced simple
Lie algebra. Let A be the corresponding Cartan matrix of order t. Let A^ be the
affine Cartan matrix of the corresponding non-twisted affine Lie algebra of g. Since
g is simply laced, A and Aaff are symmetric matrices and of order ί and £ + 1
respectively.

(3.1). Let A = (Aij) be a square matrix of order ί + n — 1 such that removal of
any n — 2 rows and the corresponding columns in the last n — 1 rows and n — 1
columns determines an affine matrix Aa$. Further assume At+i^+j = 2 for i,j =
1,2,..., n — 1. Observe that rank of A = rank of Aaff = L

Let Γ be a free ^-module on generators a\, a2,..., OLI, at+ι,..., α^+n_i,
di,c?2,. . , d n - i and let ( | ) be a Z-valued symmetric bilinear form on Γ such
that
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(1) {μi I aJ)=Aiij,

ΓO, if j = l , 2 , . . . , 4

(2) (di I aά) = {
[ δij-£f otherwise;

(3) (d, I dj) =0. (3.2)

Let Q be a sublattice of Γ with generators αi, α 2 , . . . , α^+ n -i . Observe that Γ is a
non-degenerate integral lattice and Q is even integral lattice in the sense that (α | a)
is even integer for a in ζ). We will identify Q the root lattice of cj with 0 ^ = 1 Zα^
inside Γ.

Define δ\, ̂ 2, , <$n-i m ^ s u ch that δi = ζ + ĉ ^+z, where C is the highest root
of g. Clearly (^ | dj) — δij.

The ... Γ can also be viewed as a free Z-module on generators αi, α 2 , . . . , α^,
6i, ^2, j ̂ n-ij rfi j ̂ 2, j dn-i and the matrix of the non-degenerate symmetric
bilinear form on Γ defined in (3.2) is given below with respect to the new basis,

(A 0 0\
0 0 / .

\0 / 0/

We briefly review the construction of Fock space and the vertex operators that
act on it. The theory is due to Kac-Frenkel [FK], For further details one may also
consult [FLM, GO and MP]. We closely follow the notation from [MEY].

Let p = (C (8)2 Γ and define a Heisenberg algebra

where each p(k) is an isomorphic copy of p and the isomorphism is by a 1—> a(k).
The Lie algebra structure on b is defined by

Set ί) = C <g>z Q and let α = φkeΈ ί)(k) θ €c.

Define b := Σk Φo P(fc) θ Cc C S, and b± = Σ A ^ O

Similarly define α, α ± by replacing p by ί).
The Fock space representation of b is the symmetric algebra 5(b_) of b_ to-

gether with action of b on S(b_) defined by:

c acts as 1;
α(—771) acts as multiplication by α(—ra), ?n > 0;
α(m) acts as the unique derivation on 5(b_) for which &(—n) —» ^ m ) _ n m(α|6)

for all α, b G t, m, n > 0;

£(b_) affords an irreducible representation of b. However, 5(α_) does not afford
an irreducible representation of α since the form ( | •) is degenerate on I).

(3.3) Definition. A vector δ in Q is called a null root if δ = πi\δ\ + ra2<$2 H \~
mn-\δn-\ for some integers m .̂

Clearly (δ\δ) — 0. Conversely any a G Q such that (a \ a) — 0 is necessarily a
null root.
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(3.4). We first extend e defined in (2.11) to e : Q x Q -> ±1 by e(α,£) = 1 for
any a G Q and δ a null root. We will further extend e to a bimultiplicative map
e : Q x Γ —> ±1 in any convenient way.

For each 7 in Γ let e 7 be a symbol and form the vector space <C[Γ] with
basis {e7} over (C. In particular <C[Γ] contains the subspace C[Q] = Σ α G Q<Ce α .
Following Borcherds [B] we define a twisted group algebra on C[Q] by

eaeβ = e(a,β)ea+β

and make <E[Γ] a C[Q]-module by defining

eaeΊ = e(α, 7 ) e Ω + 7 (α, /? G Q, 7 £ Γ) .

Let M C 5(b_) be any α_ submodule (with respect to the Fock space action).
We define

VXΓ,M):=C[Γ]<8>CM.

Of particular interest in the sequel will be V(JΓ, £(cu)) and V(Γ, 5(b_)) which
we simply denote by V(.Γ) and V(-Γ, b) respectively. We extend the action of α on
M to α on V(Γ, M) by

a(m)(eΊ ®u) = eΊ® a(m)u^ m φ O ,

α(0)(e7 0 u) = (a \ η)eΊ 0 u , m = 0 .

(3.5) Gradation. Let {α*}, {α^} be a dual basis of p. The Segal operators Ln are
defined on V{Γ) by

where : : is the normal ordering defined by

: a(j)a(k) : := < '
[ a(k)a(j), j > k.

The following are well known: (see [GO, KMPS, LFM and KF]).

(1) [a(m),b(n)] = (a\b)mδm,-n;

(2) [L m , a(n)] = na(m + n);

(3) [Lm, Ln] = (n - τ n ) L m + n + «5m+ra,0

 m

i 2 ~ (dim p)c. (3.6)

Using the first of these and the simple computation

it is easy to see that

L0(eμ 0 αi(-ni) ak(-nk))

ni + n2 + + nk)eμ (8) αi(-ni) ak(-nk).

We use this to define a Z-grading on F(Γ, b) :

y m := {̂  G V(Γ,b)\Lov = -mv},
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V(Γ, b) is also graded by Γ with Va = ea ® F for a € Γ.
Hence V(Γ, b) is graded by ΊL x Γ.

(3.7) Vertex Operators. Let z be a complex valued variable and let a G Q. Define

Then the vertex operator for α in Q is defined as

X(a,z):=z 2

where expT(α,z) = expΓ_(α,^)eα^α(0)expΓ+(α,z) and the operator za{0) is de-
fined by

l

Strictly, for each z G C x the operator X(α,2) maps y(F, M) into the space

<C(Γ) <8) S(bl), where

is the completion to formal series S(b-). However X(a, z) can be formally expanded
in powers of z to give

and the "moments"
1 dzχ ( ) J X ( ) n

are indeed operators on V(Γ, M). Moreover, for all υ in M, Xn(a)(eΊ 0 f) =
e 7 + Λ (8) t;7 is obtained from υ by applying some polynomial expressions in the op-
erator α(ra), a E ί), m G Z\{0}.

The basic commutation relations for operators a(k) and Xm(α) on F(Γ, b) are
given by ([KF, GO, MP]).

(1)
fθ if

(2) [Xm(α),Xn(/3)] = <̂  e(a,β)Xm+n(a + β) if (α|/3) = - 1 ;
I - α v ( m + n) - m^m+n5oc if ^ = - α , (α | α) = 2.

(3.8)

(3.9) Lemma. Let a,β G Q with (a\a) = 2 = (β\β) = -(a\β). Then

[Xm(a), Xn(β)] = e(α,

(3.10) Definition. Let heί,ae Z , αrcd /βί η be a null root

where the normal ordering symbol is defined:

: h(z)X(j, z) : := h~(z)X(Ί, z) + X(j, z)h+(z),
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where

h+(z):= Σ Hn)z~n,
O^neZ

h-(z):= £ h(n)z--n,

Normal ordering is necessary for the components of: h(z)X(η, z) : to be well de-
fined.

Note. There is no need for normal order in Lemma 3.9 as the operators a(k) and
Xm+n_k{a -f β) commute. This follows from 3.8(1) since (a\a + β) = 0.

(3.11) Lemma. Let a 6 p, /eί 7 be a null root, and let m,n £ Z.

(1) [Ln, X m ( 7 ) ] = (m + n ) X m + n ( 7 )
(2) [Ln, α(m)] = mα(m + n);
(3) [ L n , Γ

(1) is well known (Proposition 2.7, [FK]).
(2) has already been noted in (3.6).
(3) follows from (2) and (3).

(3.12) Corollary. With the gradation defined in (3.5),

Xm(i) has degree (m, 7)

a(m) has degree (m, 0)

7^(7) has degree (m, 7 ) .

Proof Taking n = 0 in Lemma 3.11 the first component of the gradation follows.
The second component follows from the definition of operators.

Before we state our main theorem we will prove one important relation. First
some notation:

r = ( r b r 2 , . . . , r n _ 0 G Zn~\ rn e TL ,

δL := τ\δ\ + r 2 δ 2 H h r n _i^ n _i .

(3.13) Lemma.

Tr(δ) + rX(δ) 0

Proof From Lemma 3.9, for a,β G Q such that (α|α) = 2 = (β\β) = -(a\β) we
have

0 = [Xm(a), Xn(β)] + [Xn(β), Xm(a)]

= e(a, β)l(m + n)Xm+n (a + β) + ] Γ : (α + β)(k)Xm+n-k (a + β): I ,
I fcez J

where we have used (a\β) = —2,e(a,β) — e(β,a).
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Now choose a = αo + δL, β = —αo for some αo G Q such that (αo|«o) = 2.
Choosing m, n such that m + n = rn we obtain the desired identity. L

Note. In fact if α,/? G Q such that (α |α) = 2 = (/? | /?) = - ( α | /?). Then a = α 0 +
5 and /? = —αo + 5' for some α 0 G Q such that (α 0 l^o) = 2 and δ, δι null roots.

(3.14) Theorem. The Lie algebra ! of operators on V(Γ, b) generated by the oper-
ators Xm{θί + 6), w/zere α G 4 , ί w f l ww// rooί, m G Z, w ίsomorphic to T[n] the
universal central extension of g

To prove the theorem we need the following lemmas whose proof will be given
in Sect. 4.

Lemma A. Let h,g G ί}, α«d fe* δ, δ7 be null roots. Then

[T£(δ),Tξ(δ')] = (h\g)(Ίi+b(δ + (50 + aXa+b{δ

Lemma B. Let h G ί), a E Zi, αnJ feί <5, <57 6e WM// rooί5. Then

Λ 67)] = (ΛI α)X α + 6 (α + δ + £'

Lemma C. Zef 3 ^ ^ ^ IE-linear span of central operators T%(δ'),Xb(δ")i where
<5, δ', δ" are null roots and α, 6 e ί 7%en α// ίAβ relations in 3 ^ operators on
V(Γ, b) are linearly generated by the relations

T*(δ) + aXa(δ) = 0. (3.15)

(3.16) Lemma. There is a natural vector space isomorphism between Ω[n] and 3
given by

Dn(f) -» Xrn{δr) ,

where f = (r, r n ) G Z n .

Proof The proof is clear by noting that the only relation (1.3) in Ω[n] is translated
to the only relation (3.15) of 3 by the above map.

Proof of Theorem (3.14).

Claim L T%(6\T*(β),Xa(δ) G f for all h eh and δ,δf null roots.

(1) T£(δ) is linear in h.

Choosing a — OLI + δ, β = —aι + δf, oti G Π in Lemma 3.9 we have

(2) €(α<, -ai)[Xm(cti + δ), Xn(-ai + δ')]

= (mXm+n(δ -h δ') + Cvtf (« + £')) e ϊ .
By choosing m = 0 and δ = 0 in (C2) we have T^(<S') G ! . By (Cl) it follows

that

(3) T£(«) G I (ft G ί), ί a null root, n G Z ) .

By choosing m = 0 in (2) we have

(4) Ί%*+δ(δ + δ')et.
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But by (3) we have T%*(δ + δ')el (by replacing h by a{ and 6 by δ + <$')•
Subtracting from (4) we have

(5) τδ

n{δ + δ')et.

By taking m + n in place of n in (4) and subtracting it from (2) we have

(6) mXm+n(δ + δ')el.

Hence Claim 1 follows from (3), (5) and (6).

Claim 2. For all null roots δ, δ", the operators Xa(δ), T%(δ/f) are central in f.

By Lemma 3.8(1) and 3.8(2) we have for a G Q, δf null,

and
[X α (ί),X n (α + «/)] = 0,

since (5, a + δ') = 0. Thus Xα(6) is central.
By Definition (3.10) of T*(6") and what we have just seen it follows that T*(6")

commutes with generators of ϊ. This completes the proof of Claim 2.
We shall describe a map linear ψ from T[n] to ϊ and then prove that it is a Lie

algebra isomorphism using Proposition 2.13.
Recall the notation (1.5), f , t f .
Write

^ = fe r n ) , where r e Z 7 1 " 1 , rn e Έ .

Explicitly ^ is given

To conclude the proof of Theorem 3.14 it is sufficient to verify the relations (R)
in Proposition 2.13 are satisfied for the right-hand side. First we will prove another
claim.

Claim 3. Let r,se Zn~\rn,sn£Έ and let f = ( r ,r n ) and s = (s, sn). Then

φ(d(f)ts) - T^+Sn(δL + δs) + rnXrn+Sn(δL + δs) .

In fact

which proves the claim.
We will now verify the relations (R). (Rl) is trivial. (R2) follows from (3.8),

Lemma 3.9 and Claim 3. (R3) follows from Lemma A and Claim 3. (R5) follows
from Claim 2 and Lemma 3.16. (R4) follows from Lemma A and Claim 3.
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In view of the degrees of the operators (3.12) and dimensions of root spaces
(Proposition (2.6)) we see that ker^ c YJrnez

n-ι(τ[n])^n fr°m which it follows that

ker ψ C centre(τ[n]) = Ω[n] .

But Ψ I Ω[n] is injective by Lemma C. Then ψ is injective.

(3.17) Theorem. The Lie algebra ϊo of operators on V(Γ, b) generated by the
operators Xo(a + δ), (a € A, 6 null root) is isomorphic to η n _i] , the universal
central extension of g ® A[n-\y

Proof

Claim 1. T£(δ), T$'(δ) e ϊ0. Choose a = α» + δ, β = - α * + 6f, a{ e Π in Lemma
3.9. Then we have

(Dl) e(α,, -ai)[X0(ai + «), X0(-«i + «7)] - ϊ? i +*(« + «;) G ϊ0 .

Choosing δ = 0, we obtain T^(6f) G ϊo /or α* G J7.
Since TQ{&) is linear in h it follows that

(D2) T$(δ) e ϊo (ft G ί), δ a null root) .

In particular

(D3) T - ^ + ^ e ΐ o .

Adding (Dl) α«d (D3) we Aαve

T*(δ + 5;) G ίo

This completes the claim.

Note that the central operator Xo(δ) cannot be obtained in this manner. In fact
it is not an element of IQ.

Claim 2. ϊ 0 is the € linear span of operators {X0(a + δ),T^(δ),T§(δf)} for a e A,

δ, δf null roots, ft G ί).

It is easy to see from Lemmas A, B and 3.19 that the above linear span closed
under Lie-brackets. Hence it is equal to Io by Claim 1.

Consider the map ψo from η n _i] to ϊ0,

As in the proof of Theorem 3.14, one can prove that ^o defines a Lie algebra
isomorphism.

(3.18) Remark. By taking n = 3 in Theorem 3.17, V(Γ,b) provides a new class of
representations for T[2] which are different from the representations constructed in
[MEY].
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4. Proofs of Lemmas A, B, and C

In this section we prove Lemmas A, B and C stated in Sect. 3.

(4.1) Notation. For h,g £t,a G Q and z, w complex variables, define the following
functions:

h+(z) = V h(n)z-n ,

h-(z) =

h(z) = h+(z) + h (z) ,

,(w): = h~(z)g(w) + g(w)h+(z)

Ύlw-n+ ] Γ g(ή)h(m)z'mw-n.

m<n mέln

(4.2) Lemma. Let h,g et,a G Q and let 7 , 7 ' be null roots.

For \ w \<\ z \

_ r zw

(2) [Λ±(^),y±(tί7)] = O.

(3) [/ι+(^),X(α,w;)] = (h\a)X(a,w)~
(z-w)

— w

(4) [X(a,z),h (w)] = — (h\a)X(θί,z) .
(5) [X(Ί',z),X(Ί,w)] = 0.

ZW
(6) h(z)g(w) = : h(z)g(w): + (g\h)- -z .

(z — w)z

(7) h(z)X(a,w) = : h(z)X(a,w): +(h\α)X(cλ,w)-
z — w

For \z\<\w\

(8) X(a,w)h(z) = : h(z)X(a,w): +(ft|α)X(α,iϋ)—^— .
z — w

Proof. (2) is trivial. (5) follows from 3.8 (2) as (7I7O = 0. (1), (3), and (4) follow
from 3.8 and 3.6(1). (6) follows from (1) and (2). (7) follows from (3). •

(4.3) Lemma. Let h,g et, and let 7 be a null root, \w\<\z\. Then

h+(z): g(w)X(Ί,w):=: g(w)X(Ί,w): h+(z)

+ (h\y):g(w)X(y,w):

(h\g)X(Ί,w)

z — w
zw

(z -
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Proof.

h+(z):g(w)X(Ί,w):

= h+(z){(g-(w)X(Ί, w) + X(π, w)g+(w)}

= \ 9 (w)h+(z) + (h\g) -—^—z \ X{η, w) + ft+(^)X(7, w)g+(w)
I \z ~ w) )

(from Lemma 4.2(1))

= g-(w){X(rr, w)h+(z) + (h\Ί)X(Ί, w)}-^—
z — w

, w)h+(z) + (h 17)X(7, w)^— I g+(w)

zw
(h\g)X(%w)

z-w)2

(from Lemma 4.1(3)). Now rewriting the terms in normal ordering Lemma 4.3
follows. j

(4.4) Lemma. Let g £ 1,7,7' be null roots and let\w\<\z\. Then

f, z) : g{w)X(Ίi w): = : g(w)X(Ί, w)X{J, z): -{J\g)X{i, z)X{η, w) w

z — w

Proof.

X(V, z): g(w)X(rr, w): = X(Ί', z){g-(w)X(Ί, w) + X(Ί, w)g+(w)}

= (g-(w)X(Ί',z) - (g\Ί')X(Ί',z)^^) X(7)W)

+ X(Ί',z)X(Ί,w)g+(w),

using Lemma 4.2(4).
Now Lemma 4.4 follows from rewriting the terms in normal ordering.

(4.5) Lemma. Let ft, g G t, and let 7,7' be null roots. Then

(1) : h(z)X{Ί', z):: g(w)X(>γ, w): = : h(z)g(w)X(Ί\ z)X{Ί, w) :

+ (h\Ί):g(w)X(Ί\z)X(Ί,w): Z

-{Ί

f\g):h(z)X(Ί

f,z)X(Ί,w):

z — w
w

z — w
Zll)

((h\g)-(h\Ί)(g\Ί'))X(Ί',z)X(Ί\w) _ \w\<\z\;
yZ W)

(2) :g(w)X(Ύ,w)::h(z)X(Ί'yz):

is the same as the right-hand side of (\),\z\<\w\.
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Proof.

:h(z)X(Ί',z) ::g(w)X(Ί,w):

= {h-(z)X(Ί', z) + X(j', z)h+(z)} : g(w)X(Ί, w):

i , z): g(w)X(Ί, w): +X(Ί', z): g(w)X(Ί, w): h+(z)

,z) ({h\η): g(w)X(Ί,w): — ^ - +(h\g)X(Ί,w) ZW

y Z — W yZ — W)

(from Lemma 4.3)

w= h~(z) : g(w)X{Ί',z)X(Ί,w): -(Ί'\g)X(Ί',z)X(-y,w)-

1, z)X(Ί, w): h+(z) - (7' \g)X(Ί', z)X(η,

- (Λ17X7' I

ID

(h\g)X(Ί',z)X(Ί,w) ) W)

(from Lemma 4.4).
Now rewriting the normal ordering, Lemma 4.5 follows.
(2) Similar.

(4.6) Lemma. Let a eQ,a G l Then

d-(zaX(a, z)) - za~ιX(a, z) ia{z) + ^ j ^ +

Proo/ This follows from differentiating zaX(a, z). Also see Sect. 2.8 of [FK] for
a sketch of the proof. i

(4.7) Proposition. Let h,g G t, let 7 , 7 ' &e «w// r o o ^ , αwJ /^ί a,b e Z. Then

[ τ β V ) , n5(7)] - (ft I7)Ϊ^ + 6 (7 + V) - ii 10)τα

h

+6 (7 + i)

+ ((ft 19) - (V10)(ft 17)) {T^b (7 + 7') + α*α+6 (7 + V)}

Proof Recall

Consider

M < M \*\<M
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where

F(z,w)=Fι(z)w) + (h\Ί)F2(z,w) f-?—)-tf\g)F3(z,w) (-^-)
\z — w / \z — w j

(ίh\g)-(h\Ί)(g\Ί'))FA(z,wY zw
\z-wf '

and F\,F2,F$ and F4 analytic functions in z and w given by Lemma 4.5.

Now we note ( / / H < w - / / W < H ) f 17 = Jc* V /σ f» w h e r e t h e c o n t o u r C

runs around w and does not have zero in its interior. The contour Cι is around zero.
These contour integrals have been explained in [KMPS]. Now it is straightforward
to evaluate the inner integrals. Using the Cauchy integral formula the inner integral
equals

(h\j)F2(z,w)zawb]z=w - (7'\g)F3(z,w)za~ ιwM]z=w

+ ((^IP) " {h\η){g\η'))—F4{z,w)zawh^λ]z=w .

(4.9)

However

4-F4(z,w)zawb+ι = 4-
dz dz

= za~ιX(Ί', z)<a'(z) + α)X(7, w;)tt;6+1 (4.10)

(by Lemma 4.6).
Hence (4.8) equals

2m£, w
where

Ί',w): ~{Ί'\g):

((Λ\9)-{h\Ί){gIi)){i{w)X{η + τ > ) + aX{Ί

Here we used (4.9) and (4.10) and we are also using the fact that X(j, w)X(Y, w)
= X(η + 7 ;, w), which follows from the definition of vertex operators. Now clearly
Proposition 4.7 follows.

(4.11) Proposition. Let he t, a e Q, let 7,7' Z?e «w// rao^, and let a,b G Z.

[2ί ( 7

; ) , ̂ 6(7 + α)] = (7 + «I /ι)Xα+6 (7 + V + α)

The proof is similar to the proof of the earlier proposition. We only have to use
the following lemma (4.12) in the place of (4.5).

(4.12) Lemma. With the notation as above,

: h(z)X(Ί\z) : X ( 7 + a,w)= : h(z)X(Ί',z)X(7 + α , w ) :

(7 + a\h)X(Ί\z)X(Ί

Proofs of Lemmas A and B. To see Lemma A, take / i , ^ G | , 8 = 7, ^ = 7 ' in
Proposition 4.7, so that (ft, <S7) = (g, δ) = 0.
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Lemma B follows from Proposition 4.11 by taking h eί), a = a e A, δ = 7',
and δ' = 7.

Propositions 4.7 and 4.1 have been proved in a little more generality than is
necessary than we needed here. The reason for this will become apparent in the
next section.

Before we prove Lemma C, we recall the following from [MEY], which though
stated for n = 2 case there, is true in our present situation.

(4.13) Lemma. Let λ £ Γ, let δ be a null root, let N = (λ\δ) and let meΊL. Then

mN(), m + N <0
Xm(δ)(eλ <g> 1) = I e(<5, X)eλ+δ <g> 1, m + N = 0

I 0, m + N > 0

where the operators Sp(δ) are defined by expT_(<5, z) = Σ™=Q Sp(δ)zp .

Proof of Lemmas C. First observe that 3 i s graded by Έ x Γ and is invariant
under the action of Lo and ί) (see 3.5). Hence we can assume the relations in 3 are
homogeneous. ϋ

Let
n-l

where a G TL, δ is a null root, and s\, 82,..., sn are some complex numbers.
Choose λ e Γ such that (λ,6) + a < 0 and put N = (X\δ) and 7 = Σ"^

Consider
0 = e(«, λ) (ϊ?(ό) + 8nXα((5)) e λ 0 1

) S-{a+N)(δ) (by Lemma 4.13)

o+A/"<A;<0

+ 7(α +

+ 5 n e λ + ^ ® S-ia+N)(δ)

= A\ + A2 + A3 + A4, say.

Now we have an equation in V(Γ,b). A\ is linear combination of eλ+δ

® αi(n 1)^2(^2) a>£(ne), where

a 4- A/" < ni, 7i2,.. , ri£ < 0 .

Hence A2 can only cancel with AT, + A4, and the corresponding term in
τ43 + Λι is

R=- {-^ΓW- + ^V
and 7(α + N) + Λ = 0. Hence
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for some complex number B. Furthermore

=Φ Ba - sn = 0 ,

i.e.
n-l

Σ BiΊtiS) + snXa{δ) = B {T6

a(δ) + aXa(δ)} .
2 = 1

This completes the proof of Lemma C.

5. Generalized Virasoro Operators

As in the earlier sections, A = A[n] = (C[tf,tf,... , ί ^ ] . It is well known that
Der A, the Lie algebra of derivations on A, is the C-linear span of

where f = ( n , r 2 , . . . , rn) so that r = (r, rn) .
The Lie bracket given by

[D\f% Dj(s)] = SiD
j(r + s) - rjD\f + s) .

A derivation D in Der A can be trivially extended to a derivation of the Lie
algebra g <g> A. It is a simple fact about central extensions that any derivation of
g 0 A has a unique extension to the universal central extension of q <S> A and leaves
the centre invariant. It is easy to compute the action of Der A on the centre i?[n]
of τ [ n ] :

D\f) 5 ^ ) = SiDά(s + r) + ^ ]Γ rfDtifi + f) . (5.1)

In the classical case n = 1, Der^4[i] is the Witt algebra. The Virasoro operators
L n (defined in 3.5) acting on the Fock space gives rise to a representation of
Virasoro algebra, the universal central extension of Witt algebra.

In this section we construct operators for Der A which act on the Fock space
generalizing the classical case. For n ^ 2 , it is known that Der A is centrally closed.
In other words there are no non-trivial central extensions for Der A, ( n ^ 2 ) . But
our operators generate Der A an abelian extension of Der A. In other words, there
is a surjective Lie algebra homomorphism φ from Der A to Der A such that ker</>
is an abelian Lie algebra.

(5.2). As earlier, let r = ( n , r 2 , . . . , r n _ i ) G Zn~\rn e % and f = (r,r n ) . Recall
d\, d2,..., dn-\ e t from Sect. 3.2. The operators on V that will correspond to the
Dι(f) are given by:

ϊ for 2 = 1 , . . . , n - l , (5.3)

:= - r k f Σ : OiCφWί^, )̂ : —zr» fovί = n. (5.4)
2,Ίΐ% Z

The following Propositions 5.5 and 5.8 describe how the operators at (5.3) and
(5.4) act on T[ny In particular the action on the centre Ω[n] is exactly as defined in
(5.1).
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(5.5) Proposition. Let r, s, ke Zn~\ rn,sn,kn eZ .

(1) [ T ^ O y , T g n ( δ s ) ] = S i T ° n + a n ( δ r + δs)9 geh.

( 2 ) [Ί%(δr),XSn(δs_ + α)] = SiXrn+Srι(δL + δs + α), ^ 4 .

(3) [T r^(<y,T*f(<y + knXSn(δs)]

keZn~\ kn e l

Proof. (1) Choose h = di, g £ ί), y = δr, 7 = <5S, α = r n , and b = sn in Propo-
sition 4.7. Then (Λ|-γ) = ŝ , (/ι|^) = (7ΊΪ7) = 0 and (1) follows.

(2) Choose h~ άi^ ηf = δL, 7 = ̂ , α E 4 , α = r n and b — sn in Proposition
4.11. Then (7 + α | ft) = Si and (2) follows.

(3) Choose h — di, ηf = £ r, 7 = <55, g = δk, α = rn and 6 = s n in Proposition
4.7. Then (Λ| 7) = S i , ( 7 ' | 5 ) ="θ,(Λ|fl) = h and

+ rnXrn+Sn(δ^+δs)). (5.6)

Now choose h = di, 7' = δL, r = δvα = 0, α = rn and 6 = sn in Proposition
4.11.

Then (7 + α I rfj) = Sj and

[ Γ ^ ^ r ) , ^β n(«s)] = SiXSn+rn(δr + δs) (5.7)

(3) follows from (5.6) and (5.7). LΊ

(5.8) Proposition.

(1) [ L r n ( δ r ) , T $ n ( δ s ) ] = s n T r

g

n + S n ( δ r _ + 6 , ) , g e t ) .

( 2 ) [Lrn(δr), Xan{6s + α)] = snXrn+Sn(δL -r £s + α), α G 4 .

(3) [ L / ^

The proof of Proposition 5.8 will be given towards the end of the section.

(5.9). The next natural question is to describe the Lie algebra generated by operators
T^(δr), Lrn(δr). It turns out to be difficult in general. But it has a simple answer in

the "zero moments" case, that is the Lie algebra generated by T^tfr) (l^i^n— 1),
corresponding to Der A[n-\] acting on T[n_i] (see Theorem 3.17).

First we will define an abelian extension of Der A\_n-\y

(5.10). Let A! = A[n_λ] and define Der^4; := Der A! θ Ω'JdA' with Lie bracket

(1) [D\r\ DJ(s)U = SiD*(r + s) - rj

(2) [D^Djϊij]^ = Si
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(5.11) Proposition. The Lie algebra Do of operators on V(Γ, 6) generated by the

operators T0

dτ(6r), 1 rgz'rgn — 1, r^Έn~ι is isomorphic to DerA'.

(5.77) Proof. First we note the following:

(1) [T**(δr)X3(6s)] = 8iΊ^i(δr^6^-rjΊf(δr + δs)--SirjT^(δr + δs).

(2) [tf'Wrltf'Vs)] = Sitf'iδr + δsϊ + δijiTfar + δs)).

(Dl) follows from Proposition 4.7 by choosing ft = di9 g ~ dj, ηf — δr, 7 = δs

so that (ft17) - si9 (g\i) = rJ9 and (h\g) = 0.

(D2) also follows from Proposition 4.7 by choosing ft = di, g — δj, 7' = δr,
7 = δ^ so that (ft17) = s^ (0I7') = 0, and (h\g) = ̂ .

(D3) is clear.

Now we have the isomorphism ψ from Do to Der A' is defined by

Ίf(δr) » D\r),

From (Dl), (D2) and (D3) it is easy to see that Do contains the central oper-
ators To

i(δr) and ψ defines an isomorphism of Lie algebras. Also recall that the
central operators To

δι(δr), 1 ̂ i^n — 1, r E Έn~ι can be identified with Ωf

A/dA'
from Lemma 3.16. M

Remark. The action of Der A' on ΩA> /dA1 has a simple interpretation in terms
of cyclic homology. It is well known that CH\(R) ~ Ωn/dR for any associative
algebra R over C [KL]. Also it is easy to see from the definitions that Der R acts
naturally on ΩR/dR. This is precisely the action in (5.20) (ii).

(5.72) Towards the proof of Proposition 5.8. The techniques to be used in the
proof of Proposition 5.8 are exactly as developed in Sect.4. First we normal order
the products and then evaluate the integrals. We will only sketch the proofs as they
are similar to the ones developed in Sect. 4. To start with we have the following
lemmas. Their proofs are omitted, being straightforward but tedious.

(5.13) Lemma. Let a E Q,7 be a null root, {ai},{a1} dual bases for p, and z
and w complex variables. Then

(1) X(a,z)Σ : ai{w)ai{w)X(Ί,w) :

w
— Σ : a<i(w)aι(w)X('y, w)X(a, z) : —2 : a(w)X{η, w)X(a, z) :

z — w

,2
W

(α \a) :X(i,w)X(a,z): _ 2, \w\<\z
W

_

(2) Σ ' ^i(w)aι(w)X(/y1w) : X(a,z) = same as above, \z\<\w\.(5.14) Lemma. Let ft e I), 7, 7' be null roots, and let {α^}, {a1} be dual bases of
p. Then
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(1) : h{z)X{Ί',z) : : YJai{w)a\w)X{Ί,w) •

= : h(z)Σ.ai(w)aί(w)X(Ί,w)X(Ί',z) :
11)

- 2 : h(z)Ί'(w)X(Ί',z)X(j,w):
z — w

ZΊl)

+ 2: h(w)X(Ί,w)X(j',z): -r, \w\<\z\;

yz — W)

(2) : Σ ai{w)άi{w)X{η1 w) :: h(z)X(jf, z) : = same as above\z\<\ w | .

(5.15) Proposition. Let α, 6 e Z, β G Q, h el), α«d /eί 7, 7' Z?e «w// roo^.

^ + 7 ) + ( « - l + » ) X α + b ( / 3 + 7 ) ) .

(2) Pΐ( 7 ' ) , ib(7)l = -αϊΐ+ 6(7 ; + 7)

We will only sketch the proof of (2). The proof of (1) is similar.
Recall that

and

Lb(Ί)=~2Vil
Consider

tτα

ί ί(7 '),i6(7)] = τ; / ί h

( \

/ / " / / ) F{z,w)-Ϊ^wb, (5.16)

H<N \z\<\w\J z w

where -2F(z,^) - Fλ(z,w) - 2F2(z,w)j^ +2F3(z,w)^ψ,FuF2 and F3 are

analytic functions in z and to given by Lemma 5.14.
As in the Proof of Proposition 4.7, (5.16) equals ^ / ^G(w), where

G(w) = F2(z,w)za-χwb]z=w - -~(F3(z,w)zawM )]z = w

(by the Cauchy integral formula).
First consider

^-(F3(z,w)za-ιwb) = Y (h(w)X(j,w)X(j\z)zawb+ι)

= h(w)X(η, w)wb+ι — [zaX(η!, z)]

= h(w)X(j, w)wb+x(za~ιX{η', z)(η\z) -f a))

(by Lemma 4.6).
Hence

— h{w)X{η, w)wb+ι(wa~ιX(η', tϋ)(7/(it;) -f α))

= —ah(w)X(η + 7 ;, w)wa+b.
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Therefore

±fG(w)— = -^f: Kw)X(Ί + Y, w): —wa+b

2τn w 2πι w

Proof of Proposition 5.8. (1) Follows by choosing b = rn, 7 = δr, h = g, a = sn,
and 7' = (!>s in Proposition 5.15(2).

(2) Choose b = rn, 7 = δr, a = sn, and β = δ^ + a in Proposition 5.15(1). Then

, + ά)- (T6

r^n(δr_ + δs_ + a) + snXrn+Sn(δr_ + δ^ + a))

(3) Choose α = sn, β = δv b = rn, and 7 = δL in Proposition 5.5(1). Then
(β\β) = 0 and

= -Ts

r

:+rn(δL + δg) - (rn + sn)XSn+rn(δr + 6,) , (5.17)

where the last equality follows from Lemma 3.13. Now choose a = sn, h = δk,
η1 = δL, b = rn, and 7 = δL in Proposition 5.15(2). Then

[Ts-(δs), Lrn(δr)] = -snTr-+Sn(6r + o£) (5.18)

Now combining (5.17) and (5.18) we have (3).

We record the following Proposition which determines the commutator products
of the operators defined at (5.3) and (5.4). We are omitting the proof since it is
computational and we have no need of it here.

(5.19) Proposition. Let a,b G TL, and let 7 , 7 ' be null roots. Then

(1) [Lα( 7), W ) ] = (6 - a)La+b (7 + 7') + Res z = 0/(^),

where f(z) := — — {η{z)X(η\z)za)\ η'{z)X{η',z)zh

1 \d\ „ χ v ί , λ 1 w λ b + 1— - -7-2 (7 (z)X(Ί ) z)z ) A (7, z)z

1
\ ]j^{X{i,z)z)\ Ί(z)X(Ί,z)zb

(dimp) [ d?
12
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(2) [Tα

d ( 7 ' ) , Lb(Ί)] = (71 di)La+b ( 7 + 7')

where g(z) \=(dΛη) I —
dz

a)} X(Ί,z)z b+\

(3) [T*(Y), i f (7)] = (71 diKib(Ί + 7 ' ) - (7' I dj)T^b(Ί + 7')

-(71 di)(7' I dj)(Ί2+h{Ί + 70 + 6Xα+6 (7 + 7 ' ) ) .

(5.20) Note. (1) We see that for 7 = 0, La(j) = La. Thus, by taking 7 = 7' = 0 in

Proposition 5.19(1), we have 3.6(3).

(2) Proposition 5.19(3) can be deduced from Proposition (4.7).

(5.21) Open problem. Describe the Lie algebra generated by operators T^(j),

l^i^n— 1 and La{η).
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