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Abstract. Smoothing properties, in the form of space-time integrability properties,
play an important role in the study of dispersive evolution equations. A number
of them follow from a combination of general arguments and specific estimates.
We present a general formulation which makes the separation between the two
types of ingredients as clear as possible, and we illustrate it with the examples of
the Schrodinger equation, of the wave equation, and of a class of 1+1 dimensional
equations related to the Benjamin-Ono equation. Of special interest for the
Cauchy problem are retarded estimates expressed in terms of those properties.
We derive a number of such estimates associated with the last example, and we
mention briefly an application of those estimates to the Cauchy problem for the
generalized Benjamin-Ono equation.

1. Introduction

A large amount of work has been devoted in the last twenty years to the space-
time integrability properties of solutions and to the smoothing properties of
dispersive partial differential equations of the type

dtu-Lu = f9 (1.1)

where u is the unknown (possibly vector valued) function, defined in space-time
Rw+1, L is a skew adjoint operator in some Hubert space J f of functions of
the space variable, for instance Jf = L2(R"), and / can be a given external
source term, or a (possibly non-linear) function of the unknown function u, or
a combination of both [3-10, 12-24]. Let U(t) = exp(ίL) be the unitary one
parameter group in J f generated by L. The Cauchy problem for (1.1) with initial
data u(t = 0) = uo is formally equivalent to the integral equation

t

u(t) = U{t)uo + ί dτ U(t - τ)/(τ) (1.2)
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and an essential role in the treatment of that problem is played by the properties
of the operators

(1.3)

/-* J dτU(t-τ)f(τ). (1.4)
o

A number of those properties are expressed in terms of norms involving space
and time integrals of / and of the images of wo and / , and possibly space
derivatives of those functions. They can be regarded as smoothing properties of
the equation in so far as less derivatives occur on uo and / than on their images.

The formulation and proof of those properties combine abstract arguments
and specific estimates, which are not always clearly separated in the existing
applications. In the present paper, we first present a general framework which
makes that separation as clear as possible, and illustrate it with several examples
taken from the literature, namely the Schrodinger equation [7, 14, 24], the wave
equation [3, 19] and a class of equations in 1 + 1 dimensional space time which
is related to the generalized Benjamin-Ono equation [15, 17]. That material is
presented in Sect. 2.

The previous framework allows for a satisfactory treatment of the term 1/( )MO
in (1.2), but it may not be sufficient to treat the integral term in (1.2) because of
the retardation property τ < t in the time integration. We consider that problem
in Sect. 3. We first identify two cases, already widely used in the applications,
where the retardation introduces no additional complication. We then come
back to the 1 + 1 dimensional class of examples mentioned above, and study in
some detail the cases where the retardation has a non-trivial effect. We prove in
particular that under suitable additional assumptions, the retardation essentially
does not spoil the previous space-time integrability properties. The results are
contained in Propositions 3.2-3.6. We finally mention briefly an application of
the previous results to the Cauchy problem for the generalized Benjamin-Ono
equation.

Technical proofs are collected in an Appendix.
We conclude this introduction by giving some notation that will be used freely

in this paper. We denote by || | |r the norm in U = ί/(R n ). Pairs of conjugate
indices are written as r and F, where 2 < r < oo and r~ι +r~ι = 1. With any
r, 1 < r < oo, we associate the variable α(r) = 1/2 — 1/r. For any interval / of
R, possibly IR itself, and for any q, r, 1 < q, r < oo, we denote by Lq(I9L

r) the
space of measurable functions / from / to U such that | | / | | r e Lq(I). In order
to avoid possible sources of confusion, especially in 1 + 1 space-time dimension,
we shall indicate by subscripts t and x the name of the variables in those spaces.
For instance Lq(K,Lr

x) (respectively L|(R,LJ) if n = 1) denotes the space of Lq

functions of the time variable (respectively of the space variable) with values in
the U space of the space variable (respectively of the time variable). We denote
by Sfn+ι and Sf'nΛ_γ the spaces of rapidly decreasing functions and of tempered
distributions in R n + 1 , by & and &n the Fourier transform in R n + 1 and in R n (of
the space variable) respectively. Finally, we denote by *, * x and *t the convolution
in space-time, in space and in time respectively.

A preliminary version of the contents of this paper has been presented in [6].
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2. General Framework and Examples

The space time integrability properties associated with the equation (1.1) can
be considered from two different points of view, namely the operator point of
view [7] and the point of view of the Fourier transform [22]. We begin with an
abstract result which is relevant to both and which although elementary, lies at
the root of the matter. For any vector space ®, we denote by £2* its algebraic
dual, by S£a(β,X) the space of linear maps from 2 to some other vector space
X, and by (φ,f)® the pairing between ^ * and 9 (with / e 3f and φ e &*),
which we take to be linear in / and anti linear in φ.

Lemma 2.1. Let ^ be a Hίlbert space, X a Banach space, X the dual of X,
and 3) a vector space densely contained in X. Let T G 5£a{β,^) and let T* e
JSffl(Jf,®*) be its adjoint, defined by

(T*υ,f)9 = {v9Tf)9 Vfe@, VvGJtf,

where (,) is the scalar produit in 34? (antilinear in the first argument). Then the
following three conditions are equivalent.
(1) There exists a, 0 < a < oo such that for all f G 2,

(2.1)

(2) ^ ( T * ) c X*, and there exists a, 0 < a < oo, such that for all v e 2tf

| |T%;X* | | < α | M | . (2.2)

(3) @(T*T) a X* and there exists a, 0 < a < oo, such that for all f e @,

| | Γ * Γ / ; X * | | < α 2 | | / ; X | | , (2.3)

where || || denotes the norm in J^. The constant a is the same in all three parts. If

one of (all) those conditions is (are) satisfied, the operators T and T T extend
*by continuity to bounded operators from X to 34? and from X to X* respectively.

Proof From the fact that Sf is densely contained in X, it follows that X* is a
subspace of ^ * .
(1) => (2). Let veJίT. Then, for all / € 2

= \(υ9 Tf)\ < \\v\\ || Γf || < a\\v\\ | |/;X| | .

(2) => (1). Let / 6 2. Then for all v e JT

|<ι;,77>| = | ( T % , / ) ^ | < \\T*v;X*\\ | |/;X|| < < φ | | | |/;X| | .

Clearly (1) and (2) imply (3), and therefore (1) or (2) imply (3).
(3) => (1). Let f e®. Then

( Γ / , 7 7 ) = (T*Tf9f)9 < \\T*Tf\X*\\ II/ XH < fl2||/;X||2. (QED)

The following corollary is extremely useful.

Corollary 2.1. Let 3tf, 9 and two triplets (Xu Tuai)t i = 1,2, satisfy the conditions
of Lemma 2.1. Then for all choices of i, j = 1,2, @(T*Tj) a X*, and for all

WTfTjf XΐWZOiajWf XjW. (2.4)
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In particular T*Tj extends by continuity to a bounded operator from Xj to X*,
and (2.4) holds for all f eXj.

We now describe the operator point of view, which provides the basic example
for the situation of Lemma 2.1. Let J f be a Hubert space, and U SL unitary
strongly continuous one parameter group in J f. Let / be an interval of R,
possibly R itself. We define the bounded operator A from Lι(I9 J f) to #f by

Af = JdτU(-τ)f(τ). (2.5)

Then its adjoint A* is the operator

A*v(t) = U(t)υ (2.6)

from Jf to L 0 0 ^, #C), where duality is defined by the scalar products in J f and in
L2(/,^f), so that A*A is the bounded operator from L1 {!,#?) to L°°(/, 2tf) given
by

A*Af = j dτU(t-τ)f(τ) (2.7)

which we shall write more concisely as A*Af = U *t f. Clearly the conditions of
Lemma 2.1 are satisfied with X = V (I,Jf), T = A, a = 1, and 2 any dense sub-
space of X. The relevance of the operator point of view for the Cauchy problem
for the equation (1.1) is obvious from a comparison of (1.2) with (2.6), (2.7).

The operator point of view, Lemma 2.1 and Corollary 2.1 immediately yield
the well known properties of the Schrodinger equation in R n ,

where A is the Laplace operator. The associated unitary group U in Jf == L2

X is
given by

1 2

or equivalently
U(t) = (2πitΓn/2 cxp(ix2/2t) *x. (2.8)

It follows from (2.8) that U(t) extends to a bounded operator from Lι

x to L™
with

|oo<(2π| ί |Γ w / 2 | | ι ; | | 1 (2.9)

and by interpolation with unitarity in ĉ f, to a bounded operator from Ux to Ux

with
\\υ{t)υ\\r<{2π\t\)-n^\\υ\\-r (2.10)

for 2 < r < oo, with α(r) = 1/2— 1/r. It follows then from the Hardy-Littlewood-
Sobolev (HLS) inequality [11, p. 117] that the operator A* A defined by (2.7) with
/ = R extends to a bounded operator from Xr = Lf(R,L£) to X* = Lq

t(R,Lr

x)
for 0 < 2/q = na(r) < 1. The range of values of r is 2 < r < oo for n = 1,
2 < r < α o f o r r c = 2 and 2 < r < 2* = 2n/(n — 2) for n > 3. In particular,
the condition (3) and therefore all conditions of Lemma 2.1 are satisfied for the
operators defined by (2.5)-(2.7) with / = R and the previous spaces Xr. The
implication (3) => (2) yields the estimate
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for all v G L2, and Corollary 2.1 yields the estimate

| | t/^/;Lf(R,L?)| | <C||/;Lf2(R,LJ)|| (2.11)

for all pairs (q,r), (qi,r\) and {qi.ri) as above. In particular, the well known
but remarkable decoupling of r\ and τι in (2.11) is a special case of the trivial
Corollary 2.1.

We now turn to the point of view of the Fourier transform [22]. We consider
an ^-dimensional piecewise smooth surface Σ in R n + 1 , and a positive measure
σ supported by Σ and such that σ G «^+i> so that <$fn+ι\Σ <= Lr(Σ,σ) for all
r, 1 < r < oo. We try to implement the situation of Lemma 2.1 by taking
Jfσ = L2(Σ,σ), 3) = c^n+i and by defining the operators B and B* by

9 (2.12)

σ) (2-13)

for all / G #Vμi and t; G J f σ . The adjoint 5 * is defined by the scalar products
in L 2 (R n + 1 ) and in L2(Σ,σ), and therefore depends on σ. The operator B*B is
given by

B*Bf = (2π)" ( n + 1 ) / 2 #'- 1 (σ) * / (2.14)

for all / G ̂ n + i . More explicitly, with z G R Π + 1 and ζ G Σ,

exp(-ιzC), (2.15)

(B*v) (z) = (2π)"^+ 1)/2 / dσ(ζ)v(ζ) exp(izζ), (2.16)

(B*Bf) (z) = (2π)-^+1> / dσ{ζ)dz'f{z') exp(i(z - z')C) (2.17)

Clearly £ extends to a bounded operator from L^R""1"1) to #&(Σ) and 5 * also
defines a bounded operator from Lι(Σ9σ) to ^ ( R " + 1 ) .

We are interested in spaces X implementing the situation of Lemma 2.1. For a
fixed surface £, we shall call admissible the pairs (σ,X) such that the conditions
of Lemma 2.1 hold for 30* = J f σ , Of = ̂ n+ι and T = B. In the present case, one
can take advantage of the existing topology on 2f to replace ^ * by <2>* = S^'n+V

Before turning to examples, we give a general invariance property of the notion
of admissible pairs. We study the effect of multiplying σ by a weight function
w"1 defined in R n + 1 , which we assume to be suitably regular, almost everywhere
positive and finite, both in R n + 1 and on Σ, and such that w~ισ G &"n+ι Let
(σ,X) be an admissible pair, let W be the operator w(—Nz) and let

W1/2X = {/ : W~ί/2f G X) . (2.18)

Any / G X is mapped by B to Bf e Jί?σ and by B*B to £ * £ / G X*
Correspondingly, Wx'2j G P F 1 / 2 * is mapped by B to Wι'2Bj G Jfw-i σ and by
B*B = W~λB*B to W~lWl/2B*Bf = W~^2B*Bf G ̂ - J / 2 X* = (W1/2X)*.

Therefore if the pair (σ,X) is admissible, so is also the pair (W^σ, W1I2X).
In the applications, one is often naturally provided with various admissible

pairs (σ,X) with different σ, thereby implementing the situation of Lemma 2.1
with different spaces Jf7

σ and different adjoint operators B*. If all the measures
under consideration are absolutely continuous with respect to a fixed measure
σo, namely have the form σ = wσo for a suitable w, one can take advantage of
the previous invariance property to work with a fixed Hubert space Jf = J f σo
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and a fixed adjoint operator B* = B*o by replacing the admissible pairs (σ,X)
by the admissible pairs (σo, W1/2X). Note however that for given σ and σo, the
function w is defined at best on Σ whereas it is required to be defined in R" + 1 to
allow for the definition of the operator W. In practical cases, we shall encounter
a compelling criterion to remove that ambiguity (see next section).

The important Corollary 2.1 has an obvious analogue in the point of view of
the Fourier transform.

Corollary 2.2. Let Σ be as above and let (σuXi), i = 1,2, be two admissible pairs
such that σ\ and 02 are absolutely continuous with respect to each other. Then the
operator #'~1((σiσ2)1^2)* is a bounded operator from X\ to X* and from X2 to

xl
We now describe the first basic example of an admissible pair. That example

will eventually provide a contact with the operator point of view. We assume that
there exists an orthogonal decomposition R n + 1 = R@R" (we denote by z = (t9x)
and ζ = (77, ξ) the corresponding decomposition of the generic variables) such
that Σ takes the form

Σ = {ζ:η = Φ(ξ)}9 (2.19)

where Φ is a piecewise smooth function from an open subset Ω of R" to R (one
could assume without essential difficulty that Σ is a finite union of such surfaces.
See Remark 2.1 below for a related question). We can then use ξ as a coordinate
on Σ, identify 2/eσ with L2(ΩJσ(ξ)) and rewrite (2.15), (2.16), and (2.17) as

Bf(ξ) = (2πΓ{n+l)/2 f dtdxf{U x) exp(-ίtΦ(ξ) - ίxξ), (2.20)

( β » (ί, x) = (2πΓ<w+1)/2 / dσ(ξ)v(ξ) exp(iίΦ(ί) + ixξ)), (2.21)

(B*Bf) (ί,χ) = (2πΓ{n+1] f dσ(ξ)dt'dxff(t\x')

x exp[i(ί - tf)Φ(ξ) + i(x - xf)ξ]. (2.22)

In order to obtain the first class of examples, we assume in addition that
there exists a suitably regular positive function w defined on Σ such that w~ισ
projects onto the Lebesgue measure dξ in Ω. Then the Plancherel theorem in the
variables (x, ξ) yields the relations

\\Bf;L2(Σ9w-ισ)\\ < ( 2 π ) " 1 / 2 \\f ;Lι

t(R,L2

x)\\ (2.23)

||£σ*ι;(ί, );L 2 | | = (2πΓ1/2 \\υw;L2(Σ,w-γσ)\\

= (2πΓ 1 / 2 | | ι ; ;L 2 (Z,wσ) | | . (2.24)

In particular, B is bounded from Lj(R,L2) to L2{Σ,w~ισ) and B* from L2(Σ,σ)
to L£°(R,L2). We can now use the invariance property to obtain admissible
pairs: we extend w from Σ to R" + 1 , define again W = w(—Nz) and obtain the
admissible pairs (σ,X = VF~1//2Lj(R,L2)) for that particular σ.

If on the other hand we assume that Ω = R n, then we can make contact
between the operator and Fourier transform points of view. We define the
operator

L = iΦ(-Nx) (2.25)

and the unitary group
t/(ί)=exp(iίΦ(-ίV J C)). (2.26)
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Then for all / e ^n+1

Bf = (2π)" 1 / 2 J% / dτ £/(-τ)/(τ) = (2π)-^2^nAf , (2.27)

where A is defined by (2.5).
If we assume both that there exists a w as above and that Ω = R n, then the

previous example becomes a special case of the basic example in the operator
point of view. In fact, in addition to (2.27), we have now

B*v = {2π)-ι/2V{t)^-χwv = {2π)-ι/2A*&r-γwv. (2.28)

We extend w from Σ to R n + 1 by taking the (unique) extension which is indepen-
dent of η, so that the previous X becomes

X = W-i/2L\ (R, L2

X) = L\ (R, W~1/2L2

X) (2.29)

and we obtain finally the following identifications:

L2(Σ, σ) - ^ - > X* = Lf>(

| (2.30)

The fact that the final spaces are different in the upper and lower parts of the
diagram is due to the fact that the adjoint operators B* and A* are defined with
the dualities of L 2 (R n + 1 ) and L 2(R,^f) respectively.

The previous correspondence extends in an obvious way to the case of general
admissible pairs (σ,X), where X is not necessarily of the form (2.29), and provides
the translation of the admissibility of (σ, X) into properties of A, which are of
direct relevance for the equation (1.1). In fact, let (σ,X) be an admissible pair
such that there exists w defined on Σ with w~ισ projecting onto the Lebesgue
measure dξ. We extend w to R" + 1 as a function of ξ only and define again
W = w(—Wz). We then obtain the diagram

*L2{Σ9σ) ^L^ x*

}w (2.31)

In particular, A* and A*A are bounded operators from W ι^2L2

x and from X
respectively to W~XX*. This suggests that the equation (1.1) in the form (1.2)
should be solved in the space W~ιX* (or in an intersection of such spaces
associated with the same σ) for initial data M0 G / = W~ι/2L2

X and with
f e X. Note also that the invariance seen above for the admissible pairs (σ,X)
is translated, in the operator formalism, into the obvious invariance under the
replacement of Jf by SJtf*, where S is an operator commuting with £/(•), for
instance of L2

X by W~ι/2LX. In the study of the Cauchy problem for the equation
(1.1), 2tf is the space of initial data wo, and that invariance is important in
allowing for some flexibility in the choice of that space. An example of special
interest is the case where w(ξ) = (1 + ξ2)\ s £ R, where Jtf = W~1/2LX is the
usual Sobolev space Hs.
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We now turn to a second class of examples which is obtained by generalizing
the spaces Xr that occur in the case of the Schrodinger equation. In that special
case, they are readily obtained from the explicit representation (2.8). In more
general situations, they will be obtained from (2.14), from space time estimates
of J^" 1 (σ) and from suitable inequalities such as the Young or HLS inequalities.
The case of the Schrodinger equation is especially simple in that respect for
two reasons: (i) the optimal space-time estimates are naturally obtained for the
measure dσ(ξ) = dξ for which the operators (A, A*) coincide with the operators
(B,B*), namely w = 1 in the diagram (2.31), and (ii) tF~ι(σ) can be computed
explicitly, thereby yielding the estimate (2.9) immediately. In general (i) it will be
necessary to consider various choices of σ and (ii) the explicit computation of
J Γ ~ 1 (σ) will have to be replaced by stationary phase estimates. We now describe
a class of examples in space dimension n = 1 [15], which illustrate that situation
and fit nicely into the general formalism. The basic ingredient consists of estimates
of $F~ι(σ) in space-time, as mentioned above. Those estimates are obtained by
the method of stationary phase. The basic technical result is the following [15].

Proposition 2.1. Let Ω c R be a finite union of open intervals, let Φo € ^2(ί2),
ΦQ real valued with ΦQ =f= 0. Assume that ΦQ has bounded variation in all compact
subsets of Ω and behaves as a power in a neighborhood of δΩ in the following
sense: for any ξ* G dΩ there exists β e R, β φ 0 and C\, Ci, C3 > 0 such that for
ξ e Ω, ξ in a neighborhood of ξ*, the following inequalities hold:

ξ*+2δ

J |d*S(ί)l

if\ξ*\ < 00, and

ζ*+δ

2ξ

1

ί-2

<c3\ξf - 2

(2.32)

(2.33)

(2.34)

(2.35)

if ξ* = +co. (the exponent β may depend on the point ξ*).
Then for all t φ 0

J (2.36)

where Cφ0 depend on Φo through ΦQ only.

For completeness, and also as a preparation to the proof of the more general
Proposition 3.3 below, a proof of that proposition is given in the Appendix.

Proposition 2.1 yields a second example of an admissible pair, and by inter-
polation with the first example, a one parameter family of such pairs [15].

Proposition 2.2. Let Φ satisfy the assumptions made on Φo in Proposition 2.1. Then
the following pairs are admissible:

(1) dσ(ξ) = dξ, X = L\ (R, L2

X) (X* = L»(R, L2

X)), (2.37)
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(2) dσ(ξ) = \Φ"{ξψ2dξ, X = L?/3(R,Z4) (X* = L?(R,L?)), (2.38)

y interpolation

(3) dσ(ξ) = |Φ"(ξ)|α<r>dξ, X = Lf(R,L^ (X* = L?(R,Ly) (2.39)

with 2/q = α(r) = 1/2 - 1/r, 2 < r < oo.

Proo/ The first case has already been established. The second case follows from
(2.14) and Proposition 2.1 via the condition (3)of Lemma 2.1. In fact

F-ισ = {2π)-χ f dσ(ξ) exp(iίΦ(ξ) + ixξ). (2.40)

By Proposition 2.1 with Φ$ = Φ + xζ/t, we estimate

\^~ισ\ < CΦ\t\-1/2 (2.41)

uniformly in x, since C<p depends only on ΦQ = Φ", and the result follows from
the HLS inequality [11] in the time variable. QED

In the point of view of the Fourier transform, one starts with a surface
Σ a R n + 1 without making reference to a specific decomposition R n + 1 = R θ R " .
One may therefore expect to obtain different examples of admissible pairs by
applying the same methods to various such decompositions, in so far as Σ can
be decomposed as a finite union of pieces described by functions Φ satisfying the
assumptions of Proposition 2.1. In space time dimension 1 + 1, a case of special
interest is obtained by exchanging ξ and η (or equivalently x and ί). That case
has been considered in [15]. We shall state the results in the special case where Φ
is a bijection from R to R, which is relevant for the generalized Benjamin-Ono
equation with Φ(ξ) = ξ\ξ\2μ, μ > 0. We shall indicate briefly in Remark 2.1 below
the modifications that would be necessary to treat more general cases, covering in
particular the Schrodinger equation with Φ(ξ) = ξ2 and more general equations
with Φ(ξ) = \ξ\2^ μ>0.

Let Ψ be the inverse function to Φ, namely Φoψ = ψ oφ = 1. One can then
rewrite £ * given by (2.21) with n = 1 as

B*v(t9x) = (2π)-1 / dσ(Ψ(η))v(Ψ(η))exp\itη + ixΨ(η)]. (2.42)

In the special case dσ(ξ) = dη, the Plancherel theorem in the time variable gives

| | £ > ( ,x);L?| | 2 = {2π)-χ J dη\υ(Ψ(η))\2 = {2n)~l f dσ(ξ) \v(ξ)\2, (2.43)

thereby yielding (via the second condition of Lemma 2.1) the admissible pair
(dσ(ξ) = dη = \Φ'(ξ)\dξ, X = L ^ R , ^ 1 ) ) . Since we have assumed Φ and ψ to
be bijections of R, we could recast that example in a form similar to (2.5), (2.6),
(2.7) by introducing the unitary one parameter group

V(x)=exp[ixΨ(-idt)]

in L^(R), describing the propagation in the x direction of functions of t. However
that group does not play any interesting role in solving the Cauchy problem for
the equation (1.1).

One can also apply Proposition 2.1 in the permuted situation, namely estimate

F-χ{σ) = {2π)~ι f dσ(Ψ(η)) exp[ίtη + ixΨ(η)]. (2.44)
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In particular, if Ψ satisfies the assumptions made on ΦQ in Proposition 2.1 and
if one chooses dσ(ξ) = \Ψ"(η)\1/2dη, then

W~γ(p)\ < C | * Γ 1 / 2 (2.45)

uniformly in f, which in the same way as in Proposition 2.2 yields the admissible

pair (σ,X = L4

x

β(R, L\)) for that σ.
These remarks lead immediately to the following proposition [15].

Proposition 2.3. Let Φoψ = ψoφ=l and let Ψ satisfy the assumptions made

on Φo in Proposition 2.1. Then the following pairs are admissible

(1) dσ(ξ) = dη = \Φf(ξ)\dξ, X = Li(R,L?) (X* = L?(R,L?)), (2.46)

(2) dσ(ξ) = \Ψ»(η)\ι'2dη = \Φ"(ζ) I Φ\ξψ2 dξ,

X = L*/ 3(R,L\) (X* = L*(R,Lf)), (2.47)

and by interpolation

(3) d σ ^ ^ l Φ ^ ^ r W l Φ ^ ξ ) ! 1 - 3 ^ ) ^ ,

X = L?(R,Lj) (X* = L|(R,L[)) (2.48)

wiί/ι 2/̂ f = α(r) = 1/2 - 1/r, 2 < r < oo.

The proof has been already given except for the elementary computation of

Ψ"(η) = -Φf(ξΓ3Φ"(ξ).

Note also that the families of admissible pairs of Propositions 2.2 and 2.3 have

a common member, namely (dσ(ξ) = \Φ"(ξ)\ι/3dξ, X = L6J*tQBL2)).

Remark 2.1. The extension of Proposition 2.3 to the case where Φ is not one to
one from JR. to JR. is easy. We assume that R = (J / ; is the union of a finite

j

number of intervals where Φ is monotonous. Each / ; is mapped in a one to one
fashion on an interval Jj. Let Ψj be the inverse map from J ; to Ij. Then, for
instance

j

= ^ (2π)"1 / dσj (Ψj (η))v(Ψj (η)) εxp[itη + ixΨj (η)], (2.49)

j J

where dσj(ξ) = χιj(ξ)dσ(ξ). One can then reconstruct estimates similar to those
of Proposition 2.3. For instance if dσj (ξ) = χj} (η)dη, the Plancherel theorem in
the time variable gives

/ dt\B;jV(t9x)\2 = (2U)-1 f dηχjj(η) \v(Ψj(η))\2,

and therefore

| | 5 > ; L 2 | | 2 < iV(2π)"1 £ / dηχJ}{η) \v(Ψj(η))\\ (2.50)

j J

where N is the number of terms in the sum (2.49). Of special interest is the case
where Φ is an even function which maps R + onto R + in a one to one way, for
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instance Φ(ξ) = \ξ\2μ. With Ψ the inverse map from R + to R + and σ an even
measure, one obtains from (2.49)

B*υ(t9x) = £ (In)-1 ί dσ(Ψ(η))v(±Ψ(n)) exp[ίtη ± ίxΨ(η)] (2.51)

± J

and for dσ(Ψ(η)) = dη

\\B;;L
2\\2 < 2(2π)"1 j dηΣ \v(±Ψ(η))\2. (2.52)

o ±

The estimates based on Proposition 2.1 via (2.45) extend in an obvious way to
the present situation and one obtains the same family of admissible pairs as
in Proposition 2.3, with the same spaces X and associated measures which are
piecewise as indicated.

We finally mention the case of the wave equation in 1R"

d2u -Au = f

for which the Cauchy problem with initial data u(0) = UQ9 δtu(0) = vo is equivalent
to the integral equation

ί

. - 1 /u(t) = (cosωήiiQ + ω 1 ( s i n ω φ o + / dτω 1 sinω(ί — τ)/(τ) ,

o

where ω = (—A)1/2. The relevant unitary group in that case is U(t) = exp(ϊ'ωί) and
the relevant surface Σ is defined by Φ(ξ) = \ξ\. The known space time integrability
properties associated with that equation [3, 8, 19, 21, 22] are naturally obtained
in the form of the admissibility of the pairs

(dσ(ξ) = |£Γ<»+1>«M#, X = Lf(R;β° 2)) (2.53)

with 0 < 2/9 = (n — l)α(r) < 1. Here Bf2 are homogeneous Besov spaces (see [2]
for general information and [8], appendix for a summary and for the notation).
Similar but more complicated results hold for the Klein-Gordon equation [4], see
also [9]. The proofs are a combination of dyadic decompositions and stationary
phase estimates.

3. Retarded Estimates, Applications

We have seen in the previous section that the existence of admissible pairs (σ, X)
yields a natural framework to solve the equation (1.1) in the form (1.2). In
particular the diagram (2.31) suggests to look for solutions in W~ιX* for initial
data wo G W~1/2Ll and / G X. In that discussion however, we have overlooked
the fact that the time integral in (1.2) is restricted to 0 < τ < t. The restriction
τ > 0 is relatively harmless since it can be incorporated into the definition of /
as a support condition in time. That restriction does not spoil the basic estimates
in so far as the multiplication by a sharp cut-off function in time is a bounded
operator in X. We shall say that X is time cut-off stable if it possesses that
property uniformly in the cut-off time. It is important for the applications to
look for admissible pairs (σ, X) for which that property holds.
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We have seen in the previous section that the admissibility of (σ, X) is preserved
by the change σ —• w - 1 σ, X —• WιllX for an arbitrary positive suitably regular
function w defined in ]Rn+1, a property that is useful to reduce various admissible
pairs to the case of a single measure σo on Σ. We now have a compelling criterion
to remove the ambiguity of extending w from Σ to R w + 1 which occurs in that
reduction, namely the requirement that time cut-off stability be preserved: if X
is time cut-off stable, that condition imposes to extend w as a function of ξ only,
so that W does not contain time derivatives in its definition.

We now concentrate on the second restriction τ < ί, which is much more
serious. It replaces the operator A* A by the retarded operator

(A*A)Rf(t) = / dτU(t - τ)θ(t - τ)/(τ), (3.1)

*where θ is the Heaviside function, and similarly B*B by the retarded operator
(cf. (2.14))

(B*B)R = (2πΓ ( « + 1 ) / WV)) * . (3.2)

The retardation breaks the factorisation of A*A and β * β as a product and
therefore makes Lemma 2.1 inapplicable. This leaves open the question whether
the estimates obtained for A*A and B*B in the previous framework still hold
for the retarded operators. That question occurs both for the diagonal estimates
from X to X* and for the non-diagonal estimates from X\ to X* that appear
in Corollaries 2.1 and 2.2. The present section is devoted to that problem. We
shall first describe a few cases, already widely used in the literature, where the
estimates obviously extend to the retarded operators, and then consider non-
trivial situations associated with the special case covered by Propositions 2.2 and
2.3.

The first obvious situation is that where one of the spaces is of the type
L\ (R, Jf) and is best described in the operator point of view.

Proposition 3.1. Let ̂  be a Hίlbert space, X c £f'n+1 a Banach space, let X be
time cut-off stable, and let the conditions of Lemma 2.1 hold with T = A defined
by (2.5). Then the operator (A*A)R is (strictly speaking extends to) a bounded
operator from Lj(R,^f) to X* and from X to L?(R, Jf).

Proof We prove the second property, from which the first one follows by duality.
Let f e@. Then for each ί,

<aίSup\\θ(t-');B(X)\\\\\f;Sup\\θ(t-');B(X)\\\\\f;X\\ (3.3)

by the unitarity of U in Jf, the estimate (2.1), and the time cut-off stability
of X. QED

The second obvious situation where retardation preserves the estimates, and
which we refrain from formalizing, is that where the boundedness of A* A or
B*B follows from space-time estimates of !F~ι(σ) such as (2.41) or (2.45) or from
time estimates of space norms such as (2.9).

The previous two situations cover the cases of all the spaces associated with
the Schrodinger equation in Sect. 2. In particular the estimates (2.11) extend to
the retarded operators. The same situation prevails for all the estimates associated
with the admissible pairs (2.53) in the case of the wave equation. In both cases,



Smoothing Properties for Dispersive Evolution Equations 175

the time cut-off stability of the spaces X follows immediately from the fact that
time occurs in the form of an I?- condition with no derivatives.

We next consider in more detail the case covered by Propositions 2.2 and 2.3.
We take n = 1 and define L and U by (2.25), (2-26) for some Φ satisfying the
assumptions of Proposition 2.1 with Ω = JR. and the assumptions of Proposition
2.3. For definiteness, we use the notation Xι = L}(K,LI), X2 = l4(R,L 2 ), X3 =

L?/3(IR,ί4), XA = Ly 3(R,Lj) and similarly dσx = dξ, dσ2 = dη, dσ3 = \Φ"\ι'2dξ,

dσ^ = \Ψ"\ί//2dη for the associated measures. Proposition 3.1 shows that the

retarded estimates hold from Xγ to X* (and from Xt to X*) for all i, 1 < i < 4.

The second obvious situation ensures the retarded estimates from X3 to X* and

fromX 4 toX4*.
We now turn to the less obvious cases, beginning with a study of the retarded

operators from Xt to X* for i = 2,3,4. We recall that Φ is assumed to be
a bijection from R to 1R and that the measures σ, , i = 2,3,4 are absolutely
continuous with one another. We denote by A the Fourier transform with respect
to ί, we recall that

θ(ή = (iπiΓ1 f dη(η - iO)"1 exp(fcι ), (3.4)

and we introduce the functions

h2(η,x) = (2πiΓl f dσ2(ξ') (η'-η- iθ)~ι exp(ix^), (3.5)

ht(η,x) = (2πίΓι {dσi{ξ)/dσ1{ξ))-ι/1

x / dσi(ξ') (η'-η- iO)'1 exp[ix(ξf - ξ)], (3.6)

Ki(t;x,x') = / dσi(ξ)hi(η9x) exp[ίtη + ί(x - x')ξ] (3.7)

for i = 3,4, where the auxiliary measures σ, are defined by σ, = ( σ ^ ) 1 / 2 . Here
and below it is understood that η = Φ(ξ), ηf = Φ(ξf). By Corollary 2.2, the
properties of interest are the boundedness properties of the operators (B?B)R

from Xi to X* and from X2 to X* for / = 2,3,4. We first proceed to an algebraic
reduction of the problem.

Proposition 3.2. Let f,g e 9*2. Then
(1) The following identity holds

(g, (<£)*/> = (2π)"! / dxdxfdη-g(ηj)f(η,x')h2(η,xf - x). (3.8)

A sufficient condition for (B*2B)R to be bounded from X2 to X* is that h2 e L°°(R2).
Then

| | ( < £ ) * / ; * * || < (2π)"1 ||A2||oo 11/;^2II. (3.9)

(2) The following identity holds for i = 3,4

/ dτ\{BlB)Rf(τ,y)\2 = (2πΓ3 / dtdxdt'dx'f(t,x)f(t',x>)

x{θ{t-1?)K,(t-e;x-y,x!-y)

+ θ(t' - ήKtf -t;x'-y,x- y)}. (3.10)

A sufficient condition for (B^B)R to be bounded from X3 to X* and from X2 to

X* is that K3 satisfies the estimate

\K,{t-χ,x')\<C\t\-1'2. (3.11)
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A sufficient condition for (B$^B)R to be bounded from X4 to X* and from X2 to

X* is that K4 satisfies the estimate

\K4(t;x,x')\ < C\x-x'\~1/2. (3.12)

Proof. Part (1). We introduce the representation (3.4) of θ in the definition
(B*2B)R and obtain

(g,(B*2B)Rf) = (2πΓ 2 / dtdxdt'dxfg{t,x)f{tr,x')

x / dσ2(ξ') exp[i(ί - t')ηr + i(x - xf)ξf] (2πO"1

x / dη(η -η'- iθ)~ι εxp[i(η - ηf) (t - tf)}.

Integration over ί, t' and comparison with (3.5) yields (3.8) immediately. The
subsequent statement as well as (3.9) follow directly from (3.8).

Part (2). We compute

/ dτ\(BlB)Rf(τ,y)\2 = (2π)"4 / dtdxdtfdx'f{t,x)f{t\xf)

x / dσi(ξ)dσi(ξf) exp[i(j; — x')ξ' — i(y — x)ξ]

x JΓ dτθ{τ - t)θ(τ - if) exp[ΐ(τ - t')η'-i(τ - t)η]. (3.13)

The last integral is explicitly computed to be

Γ 1 (η - η' - JO)"1 {θ(t - tf) exp[ί(ί - t')η'] + θ(tf - t) exp[i(ί - ί 'M},

so that (3.13) reduces to (3.10) with

x exp[i(y - x r )f - Oy ~ x)ξ + i(f - t')ηf] (3.14)

which is readily seen to coincide with (3.6), (3.7) by exchanging (ξ, η) and (ξr

9 η').
The subsequent boundedness statements follow immediately from (3.10), from

the HLS inequality and from (3.11), (3.12) respectively. QED

Remark 3.1. If one replaces [2πi(ηf — η — iθ)]~ι by δ(η — η')9 one recovers the
estimates of the previous section for the operators without retardation. With
those estimates already available, it is therefore equivalent to establish the new
ones with an ίO prescription or a principal value prescription for the (η' — η)
denominators.

In the framework of Proposition 2.1, the proof of the estimates (3.11) and
(3.12) can be further reduced to that of estimates of the functions hu i = 3,4, by
means of the following result.

Proposition 3.3. Let ΦQ satisfy the assumptions of Proposition 2.1. Let h £ (Ή1 Π
L00) (Ω) and assume that for each ξ* £ dΩ, h satisfies

for some neighborhood V(ξ*) of ξ*, if ξ* ηf= +oo, and

ξti(ξ) € Lm(V±ao) (3.16)

if ξ* = ±°o Then

: C Φ o , f t | ί Γ 1 / 2 , (3.17)
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where Cφoh depends on ΦQ through Φ(f only, and depends on h through the norms
||ft;L°°(Ω)||, \\(ξ-ξ*)hf(ξ);L™(V(ξ*))\\, \\ξh'(ξ);L™(V±OD)\\ if ±00 G ΘΩ, and
\\h'\U°{K)\\ only, where

K = Ω\ (J F(£*).
\ξ*edΩ

The proof is a minor variation of that of Proposition 2.1 and is given in the
Appendix, following the latter.

In order to give a relatively explicit class of examples where the previous
functions hi satisfy the assumptions of Proposition 3.3, we now restrict our
attention to the case where

Φ(ξ) = ξ\ξ\2» = sgnξ\ξf (3.18)

with μ > 0, β = 2μ + 1 > 1, which is relevant for the generalized Benjamin-Ono
equation. The inverse function Ψ is then

(3.19)

with y = β~ι, and the functions hu up to constants and change of variables and
an irrelevant phase factor for hi, reduce to the form

h(η,x) = (2πίΓl f dηf{ηf - η - i0)~l \η'/η\δ exp[ix(Ψ(η') - Ψ(η))] (3.20)

for various values of δ which depend on i. More precisely, from Propositions 2.2
and 2.3 and from (3.5), (3.6) one obtains the relevant values δ2 = 0, £3 = —1/4
and £4 = 7/4 — 1/2, corresponding to dσ2 = dη, dσ^ = ξ^2~ιdξ = η~ί/2dη and
dσ4 = ηy/2~ιdη respectively. The assumptions of Proposition 2.1 are satisfied by
Φ with Ω = R\{0}, and the limit points ξ* are 0 and +00 with the same exponent
β. By homogeneity, the function h depends only on one variable, namely

h(η,x) = h(η\x\β

9±ϊ) for x^O.

The basic estimates can then be stated as follows.

Proposition 3.4. Let 0 < γ < 1, - 1 < δ < y and let h be defined by (3.19), (3.20).
Then the following estimates hold for all η £ 1R, η φ 0;
(1) For - 1 < δ < 0,

\h(η,±l)\<C. (3.21)

For 0 < δ < y,
* ) . (3.22)

(2) For y - 1 < δ < 0,

\ηh'(η,±l)\ <CU (3.23)

For - 1 < δ < y - 1,

l i y Λ ^ + l ί l ^ C i ί l + li/Γ"-5-1). (3.24)

The proof of Proposition 3.4 is given in the Appendix. With that proposition
available, it is straightforward to derive the retarded estimates in the case (3.18).

Proposition 3.5. Let Φ be defined by (3.18) with β > 1. Then
(1) The operator (B*2B)R is bounded from X2 to X*.

(2) The operator (B*3B)R is bounded from X3 to X* and from X2 to X* for
β > 4/3 (i.e. μ > 1/6).
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(3) The operator (B#4B)R is bounded from X4 to X2 and from X2 to X* for
β > 3/2 (i.e. μ > 1/4 j .

Proof The results follow immediately from Propositions 3.2, 3.3 and from the
estimates (3.21) and (3.23) of Proposition 3.4, which ensure that Λ2 £ L00 and
that /*3 and Λ4 satisfy the assumptions of Proposition 3.3. The restrictions on
β in parts (2) and (3) are equivalent to the condition y — 1 < <5* for i = 3,4
respectively, required for (3.23) to hold. QED

Remark 3.2. If Φ is a polynomial with Φ' non-negative, then the function hi can
be computed in a semi-explicity way by the method of residues. In that case Φ
is necessarily of odd degree In + 1, and dσ2(ξ) = Φ'(ξ)dξ. For any η e R, the
equation Φ(ξ) = η has one real root ξo = ξo(η) and n pairs of complex conjugate
roots {ξj(η)9ξj(η))9 1 < j <n, with I m ξ ; > 0. One then finds from (3.5),

,x) = θ(x)ίeixξo+ ^ eixξΛ-θ(-x) £ eίx~ξ'. (3.25)

V
In particular HΛ2II00 = n + I and the boundedness of (B*2B)R from X2 to X*
follows directly from Proposition 3.2, part (1). That example covers the case of
the generalized Korteweg-de Vries equation (3.18) with μ = n a n integer. In that
case ξj = ξ0exp[2πij/(2n+l)].

We now come back to the more general situation (in space dimension 1)
covered by Propositions 2.2 and 2.3 and study the boundedness of the retarded
operator (B#B)R from X$ to X* or equivalently from X4 to X* for the appropriate
σ, namely σ = (σ^σ^1^2 (see Corollary 2.2). For that choice of σ and under suitable
assumptions on Φ which are satisfied in particular in the special case (3.18), one
can show by an extension of Proportion 2.1 that σ satisfies the estimate

W-ισ){Ux)\<C\t\-VA\x\-VA. (3.26)

By the HLS inequality, that estimate implies that (B#B)R is a bounded
operator from Lf'(]R,Lj) to Lp(R,L^2) and from Lq

x

l(R,LF

t

l) to Lf(K,Lr

t

2) for
1 < qi9 π < 00 and l/q\ + I/42 = 1/π + l/r2 = 1/4. That result however does
not cover the case of (Xi,X*) or (X^X*) because (i) the case where one of the
exponents is 1 or 00 is a forbidden limiting case for the HLS inequality and (ii)
more important, an application of that inequality can yield only pairs of spaces
where the time and space integrations occur in the same order. Disregarding the
difficulty with limiting cases, one would get at best the boundedness of (Bd B)R

from X-i to Lf(LA

x), which by the Minkowski inequality is larger than X* and
actually strictly so, and similarly from X4 to L™(LA

t) which is strictly larger
than X*. We shall therefore follow a different track, which consists of artificially
restoring the factorisation of Lemma 2.1 for the retarded operator. This can
be done at the cost of (i) restricting the time integrals to a bounded interval /
and producing constants that tend to blow up as Log |/|, and (ii) introducing
logarithmic singularities in the time integrals. In the elementary framework of
Lq(U) spaces used so far, logarithms are replaced by small powers, and we end
up with the following result.

Proposition 3.6. Let Φ satisfy the assumptions of Propositions 2.2 and 2.3 and let
σ = (σ^σ^)1^2. Let I be a bounded interval. Let 2 < r < 00 and 2 < q < 4. Then
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the operator (B?B)R is bounded from L$(I,LX) to Lx(R,Lr

t(I)) and by duality from

ί4/ 3(R,LΪ(/)) to Lΐ(I,L?) with

\\{B*sB)Rf;L*M,Ut{I))\\ ^ Caqbr\I\1/r+1/q-1/4 \\f;Lf(I,Lx)\\ (3.27)

and a dual estimate with the same constant. The constants aq and br tend to infinity
when q —> 4 and r —>• oo respectively.

Proof. We use the representation of the θ function

θ(t - t') = π~ι f dτθ(t - τ)θ{τ - t') \t -τ\-χ'2 |τ - ί'Γ1/2 (3.28)

to write, for f,g e ί/Ί with time support in /,

(g,(B~B)Rf) = (4π3)-' / {dσi(ξ)dσ,{ξ)γ'1dτ dtdxdt'dx'

x g(t,x)θ(t - τ) (ί - τΓί/2f(t',x'Mτ -1') (τ - ί')"1 / 2

x exp[i(t - t')n + i(x - x')ξ], (3.29)

where η = Φ(ξ) and all time integrals, in particular that on τ, are taken in /. We
now apply the Schwarz inequality in ξ and τ to obtain

|(g,(B~B)f)\2 < (4π3Γ2J3J4 (3.30)

with

J3 = / dtdxdt'dx'f(t,x)f{t',x')

x / dτθ(τ - t)θ(τ - t') (τ - t)~1/2(τ - £')" 1 / 2, (3.31)

J4 = f dtdxdt'dx'g(t,x)g(t',x')

xfdσ4(ξ)exp[i(t-t')η + i(x-x')ξ]

x / dτθ(t - τ)θ(t' - τ) (ί - τ)-1'2^' - τ)"1/2. (3.32)

Taking for definiteness / = [0, T] and changing the integration variable from τ
to t V t' + τ\t — t'\ with tVί ' = Max(ί,ί'), we can rewrite the integral over τ in
(3.31) as

T τ

ί dτ(τ - t)-1/2(τ - t'Γ1'2 = ί dτ[τ(τ + 1)Γ1/2

ίVί' 0

= 2Log(τ1 / 2 + ( l + τ ) 1 / 2 )

with τ = \t - t'\"ι(T - t V t') That integral is therefore estimated by

... < 2Log2(l + τ ) 1 / 2 = Log4(l + τ ) < Log(4T|ί- ί 'p 1 ). (3.33)

The same estimate holds for the integral over τ in (3.32). Using the estimate
(2.41) satisfied by σj, we can now estimate

h < C f dtdxdt'dxΊf(t,x)f(t',x')\ \t - ί'|-1/2 Log(4Γ|ί - ί'Γ1)

< C||/;Lf([0,Γ],Li)||2 || \t\-^2Log(4T/t);L^2([-T, T])\\

by the Young inequality,

||/ LHi, Lι

x) \\2 (3.34)
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with

by homogeneity. Similarly we use the estimate (2.45) satisfied by σ$ to estimate

J4 < C||g;Lf(R,LJ([0, T])||2 || Log(4Γ/ί);ί//2([-Γ, T])\\

= CT2^b2

r\\g;L4J3(R,mi))\\2 (3.35)

with

The boundedness properties of (B*B)R and the estimates (3.27) and its dual
follow immediately from (3.30), (3.34), and (3.35). QED

In conclusion, the estimates of B# B between the spaces X\ and X* corre-
sponding to the extremal cases of Propositions 2.2 and 2.3 extend to the retarded
operators (B*B)R with the following qualifications:
(1) in a straightforward way if i = 1 or j — 1 or (i,j) = (3,3) or (4,4).
(2) in finite time intervals and with a small loss of regularity in time if (i, j) = (3,4)
or (4,3) (Proposition 3.6).
(3) In the special case (3.18) if i = 2 or j = 2, 2 < i9 j < 4, under the conditions
of Proposition 3.5.

The last result certainly extends to a level of generality comparable to that
of Propositions 2.2 and 2.3, with one restriction to be discussed in Remark 3.3
below.

Remark 3.3. Most of the results of Propositions 3.2-3.6 extend to the case where
Φ is not monotonous from R to R, in the line of Remark 2.1, with one exception
that will be mentioned below. Proposition 3.2 still holds with the functions /*2, h
and Ki(i = 3,4) now being finite sums of expressions of the type (3.5), (3.6), (3.7)
corresponding to the intervals of monotonicity of Φ. Proposition 3.3 is insensitive
to that generalisation and Proposition 3.6 extends in a straightforward way to
the more general situation. At the level of generality of Proposition 3.4, the most
natural and interesting example of a non-monotonous Φ is Φ(ξ) = \ξ\2μ. In that
case, the estimates of Proposition 3.4 still hold for δ φ 0, so that Parts (2) and
(3) of Proposition 3.5 still hold in that case (now with y-1 = β = 2μ). On the
other hand, for Φ even, Φ a bijection from 1R+ to R + with inverse map Ψ, the
function fe that occurs in (3.8) is now replaced by

00

h2+(η,x) = (in)-1 J dη'{η' - η - iO)"1 cos[x!Pfa;)] (3.36)

o

and for Φ(ξ) = \ξ\2μ (and in more general circumstances), that function develops
a logarithmic singularity for small η (or small x) (see Remark A.I) so that Part
(1) of Proposition 3.5 does not hold in that case. This fact can be remedied by
considering instead of (B*2B)R the operator H(B*2B)R, where H is the Hubert
transform in x, or equivalently multiplication by i sgn ξ in Fourier transformed
variables. With that replacement in (3.8), Λ2+ is replaced by hi- defined by

00J dη'(η' - η - iO) sin[x«P(fj')] (3.37)
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and h2- e L00 for Φ(ξ) = \ξ\2μ, so that H(B*?B)R is bounded from X2 to X*. In
the special case where Φ is an even polynomial with ξΦf(ξ) > 0, h2- can actually
be computed by the method of residues in the same way as in Remark 3.2. For
instance, in the case Φ(ξ) = ξ2 of the Schrodinger equation, one finds

h2- = (2π)"1 / 2ξ'dξ'{ξ'2 - η - iO)"1 exp(ix£')

= iθ(x) Gxp[ixη1/2] - ίθ(-x) exp[-ίxη1/2] (3.38)

with η1'2 = \η\V2 if η > 0 and η1/2 = i\η\V2 if η < 0.
We conclude this section by describing briefly an application of the previous

results to the Cauchy problem for the generalized Benjamin-Ono equation

dtu-Lu = DV'(u), (3.39)

where u is a real function defined in space time R 2 , dt = d/dt, D = d/dx,
L = iΦ(-iD) (cf. (2.25)) with Φ defined by (3.18), or equivalently L = D\D\2μ,
and V e ^(R.ΊR) with 7(0) = 7'(0) = 0. That equation reduces to the usual
Korteweg-de Vries equation for μ = 1 and to the usual Benjamin-Ono equation
for μ= 1/2 in the special case V'(u) = u2. The Cauchy problem for that equation
with initial data M(0) = wo is equivalent to the equation

u = A*u0 + (A*A)Rθ(t)DV'(u) (3.40)

with A, A* defined by (2.5), (2.6) and U(t) = exp(ίL) as before.
A large amount of work has been devoted to that problem, especially in

the special cases μ = 1 and μ = 1/2 (see [1, 10, 13, 17] and references therein
quoted). In the present framework, as explained in Sect. 2 [see especially (2.31)],
one is led to treat that problem as follows: one looks for admissible pairs (σ, X)
associated with Σ = {ξ9η = Φ(ξ)}, one takes initial data i / o G / = !F\γl}(Σ,σ)
for such a σ, and one tries to solve (3.40) by contraction in W~XX* or in an
intersection of such spaces. For that purpose, one has to ensure that (.4*^)^ is
bounded from X to W^X*, or equivalently that (B*B)R is bounded from X to
X*, and that the map u —> DV'(u) is bounded from W~ιX* to X. The main
difficulty with that scheme comes from the derivative in DVr(u), which has to
be compensated by the smoothing properties of (A*A)R. Now it follows from
(2.31) that if (σ,X) is an admissible pair with X some space such as occur in
Propositions 2.2 and 2.3 and if dσ(ξ) = w(ξ)dξ9 then the smoothing expected
from (A*A)R is w(—iD). More generally, the smoothing from Xi to X* for two

such admissible pairs (σuXϊ) with doi = Widξ is [wz (—iD)wj{—iD)]1/2. We have at
our disposal the spaces X of Propositions 2.2 and 2.3, and we continue to label
the extreme cases thereof as Xu 1 < / < 4, in keeping with the notation of this
section. With Φ given by (3.18), the associated measures σ, become dσ\(ξ) = dξ,
dσ2(ξ) = \ξ\2μdζ, dσ3(ξ) = \ξ\μ~1/2dξ and dσA{ξ) = ξ~{/2dξ, and the maximum
amount of smoothing, namely 2μ, is associated with the space X2. If one uses
the boundedness of the retarded operator in the simple case where one of the
spaces is X\, then the maximal amount of smoothing is μ, corresponding to the
pair (Xι,X*) and one can set up a contraction scheme for μ > 1 only [17]. On
the other hand, if one uses the pair (X2,X*), and for that purpose, Proposition
3.5, the amount of smoothing is 2μ, thereby allowing for a contraction scheme to
work down to μ = 1/2.
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Following this path, one can prove the following result, which we state in a
somewhat loose way in order to avoid technicalities. We use the standard Sobolev
space Hs defined by the norm

Let μ > 1/2, 0 < s < 1/2, 2s > 1 - μ, and let V e ^ 2 ( R , R ) satisfy

\V"(Ql)-V"(Q2)\<C\Ql-Q2\ Σ Iρ^- 1 (3.41)
Uj=l2

for some pu Pi satisfying

[ μ + s μ + 1/4 J 1 - 2s

and all ρi, ρ2 in 1R. Let w0 € Hs. Then the Cauchy problem for (3.39) can
be solved locally in time by a contraction method; namely there exists T > 0
depending on ||wo;#ΊI such that (3.40) has a unique solution

The space $£{!) is an intersection of spaces of the type X* a n c * X* a t t n e

regularity naturally associated with the fact that wo € H\ and with the additional
complication that Sobolev spaces have to be replaced by Besov spaces in its
definition, in order to cover the case of non-linearities as general as allowed by
(3.41).

One sees in particular that the value p = 4 is always allowed by the condition
(3.42) and that for p = 4 one can solve the Cauchy problem for (3.39) with initial
data wo = # s for 2s > 1 — μ, and in particular for s arbitrarily small if μ = 1.
The upper bound in (3.42) is optimal, but we have made no effort to optimize
the lower bound, and that given in (3.42) is not significant.

The details will be given elsewhere.

Appendix

This appendix is devoted to the proofs of Propositions 2.1, 3.3, and 3.4. Those
proofs are based on standard stationary phase estimates. That of Proposition 2.1
is a minor variation of the proof given in [15]. We begin with two elementary
lemmas.

Lemma AΛ.Let I = [a,b], Φ e ^ 2 (/,R) with Φf > 0, Φ" > 0 and <p €
with bounded variation. Then

bb , b V

J φeiφ < 2Φf(aΓl I \φ(a)\ + J \dφ\ j . (A.I)

Proof. Integration by parts yields

b

ί φe
iΦ = eίφ(iΦ'Γιφ\b

a + i ί eiΦd(φ/Φf)
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< \φ(a)\Φf(aΓl + \φ{b)\Φ'{b)-γ + J \d{φ/Φ')\

a
b

< 2\φ(a)\Φ'(aΓl + J (\d(φ/Φ')\ + d{\φ\/Φ'))

a
b

<2\φ{ά)\Φ'{aΓι +2 I Φ'-ι\dφ\ (A.2)

since Φf is increasing. (A.I) follows immediately from (A.2). QED

Lemma A.2. Let I a R be an interval, Φ G ̂ 2 ( J , R ) with Φ" > m > 0 and Φ" of
bounded variation in I, namely

v = ί \dΦ"\ < oo.

Then

( Φ"1/2 eiφ
(A.3)

Proof. Let / = (a, b) {a and/or b can be infinite). There is at worst one point of
stationary phase in /, which we take to be zero. We consider the intervals (α, 0]
and [0, b) separately and add their contributions. Let 0 < ε < b. We estimate

/ Φ"γl2eiφ < ί Φ/

J /
n '

by Lemma A.I,

with

M = Φ"{εγ/2

Ό

[ \dΦ"γl2\

and v+ = f \dΦ"\. We optimise in ε by taking

o

Φ'{ε)2 = 2Mm 1 / 2 = 2(m

(If Φ'{b) < 2Mm 1 / 2, we take simply ε = b) Then
b

e

i φ <2V2(l+v+/m)i/2

from which (A. 3) follows by adding the contributions of (α,0] and [0,fo). QED

Proof of Proposition 2.1. We first extract from Ω a finite number of compact
intervals, the contribution of which is correctly estimated by Lemma A.2, so as
to be left with sufficiently small neighborhoods of points of dΩ. After suitable
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changes of variables and of signs, the latter can be reduced to a finite number of
intervals of the type [0,1] or [l,oo), where Φo satisfies ΦQ > 0 and (2.34), (2.35).
We treat those two cases together by considering the interval [0,oo) with those
two conditions. That interval contains at worst one stationary phase point ξo.
We separate out the contribution of the interval [£o/2,2£o] which we estimate by
Lemma A.2 as

/
£o/2

Φ
,"1/2 jφ

e0 e0 < 4|ίΓ1/2(2 + v/mγ12 < (A.4)

since

m = Inf

ξo

For ξ φ [ξo/2,2ξo], Φ'o stays away from zero. For instance for ξ > 2£o,

J Φ' {β I ) 1 (1 2 1 ^ ) ^ 1 >Φf

0(ξ) > J Φ'o> c,{β - I ) " 1 (1 - 21

ξ/2

(A.5)

and similarly for ξ < ξo/2. We assume for definiteness that β > 0 and we split
R+ as

/o = [O,ξi] with ξi = \t\-

Ij = [2J-ιξu2Jξ1] for 7 >

We estimate the contribution of /0 by

Γ n\n Λ Γ

JΦ0 e »<J (A.6)

and we estimate the contribution of that part of / ; which is not contained in
Ko/2,2£0] by the use of Lemma A.1, of (A.5) and (2.34), (2.35), thereby obtaining

(A.7)

Summing (A.7) over j and adding (A.4) and (A.6), we obtain (2.36). For β < 0,
we use the same method, except that the L1 estimate is now used in the interval
[ξi,oo) instead of [0, ξ{\. It is obvious from the proof that the constant CΦo

depends only on ΦQ. QED

Proof of Proposition 3.3. For any function / of bounded variation in / = [a,b],
we use the notation

Var/(/) = / \df\9 \d\f(I) = |/(α)| + | / ( 6 ) | . (A.8)

1



Smoothing Properties for Dispersive Evolution Equations 185

The proof of Proposition 3.3 is a variation of that of Proposition 2.1. It consists
in decomposing Ω as a union of intervals in the same way as in the latter, and
adding the contribution of those intervals. In each such interval, we use one of
the following two estimates.

(i) an L1 estimate. In that case, inclusion of h yields the same estimate multiplied

by IIΛIIoo.
(ii) an estimate of the type (Var+|5|)/ with / = IΦ^Γ1 |#ol 1 / 2 .
Inclusion of h replaces such an estimate by

(Var+|a|) ifh) < ||Λ||oo(Var+|5|)/ + (VarΛ) \\f\U

^(Plloo + VarΛ)(Var+|5|)/. (A.9)

It is therefore sufficient to prove that Var/ι(J) is uniformly bounded in / for
those intervals / that occur in the proof of Proposition 2.1 and for which the
second type of estimate is used. In a compact K c Ω excluding sufficiently small
neighborhoods of points of dΩ, we estimate

Varh(K)< \\ti\L\K)\\. (A. 10)

In the remaining neighborhoods of points ξ* e dΩ, which we take as before to
be either ξ* = 0 or ξ* = oo, the relevant intervals are of the type / = [ξ,aζ] for
some fixed a > 1 and variable ξ. In such an interval

aξ

Var/z < j ξ'-'dξ'Wξ'dh/dξ'Wπ < Wξdh/dξUUtga, (A.ll)

ξ

and the result follows from (3.15), (3.16). QED

Proof of Proposition 3.4. By Remark 3.1, one can replace the iO prescription by
a principal value prescription in the integral over ηf. Furthermore, it is sufficient
to consider the plus sign in h and the case η > 0.

Part (1). For any interval /, we define

g(η,I) = J dη'\ηf\δ(ηf - η)'1 exp[i!P(ι/')], (A. 12)

where the integral is a principal value if η e I. We use three types of estimates.

Estimate 1. For 2a < η, we rewrite

a

= J ζ~ldζ{\η + ζ\δ

o

and we estimate

iΛi - a,1 + a])\

a

<Jζ-ldζ{\(ηJ{+ζ)δ-(η-ζ)δ\+ηδ(Ψ(η
o

< Ca(ηδ~ι + ηδ+->-1) < Cηδ

if either 2a = η < 1 or la = ηι~y > 1.
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Estimate 2. For any compact interval / not containing 1, we estimate

\g(η,ηl)\ <ηδ J dη'\η'\δ W - lp 1 = Cηδ . (A. 14)

Estimate 3. By integration by parts, for any closed interval / not containing 0 or
77, we estimate

|g(ff,J)| < (Var+|3|)/(/) < 4||/;L°°(J)||, (A.15)

where

ίW) = W\δ W-nΓ'ψ'WΓ1 = y-ιW\δ+ι-y to' -i/Γ1 (A.i6)

since / has at most one extremum in /, at ηr = ηm = —η(y—δ) (1 +<5 —y)""1 < η/2.

We now estimate g(τ7,]R) separately for η > 1 and η < 1.
For η > 1, we use
• the estimate (A.13) in [η — a,η + a] with 2a = η{~y > 1,
• the estimate (A.14) with / = [-1,1/2] in the interval [—η9η/2],
• the estimate (A. 15) in the remaining intervals (—00,-77], [η/2,η — a] and

In all cases, we obtain estimates of the form Cηδ. Note in particular that a
has been chosen so that f(η±a) = Cηδ. Collecting those estimates yields (3.21)
for η > 1, independently of the sign of δ.
For η < 1, we use
• the estimate (A. 13) in h/2,3^/2], thereby obtaining Cηδ,
• the estimate (A.14) in [—η,η/2] and [3^/2,3^] thereby obtaining again Cηδ:,
• the estimate (A. 15) in (—00,77 —2] and [η +2,00) thereby obtaining a constant
(which is not as good as ηδ for δ > 0).

In the remaining intervals [η — 2, —77] and [377, η + 2], we could use a rough L1

estimate for 5 7̂  0, namely

|g(ιy, [77 -2,-77] U [377,77 + 2])| < Jζ-ιdζ[(ζ+η)δ + (ζ -77)^]

However for δ = 0, we need to take advantage of the principal value cancellation.
More generally for any δ we estimate

|g(77,[77-2,-77]U[3τ7,77+2])
2

< J ζ-ldζ{(ζ + 77)̂  - (C - 77)* + ζδ(Ψ(η + 0 - n>7 - 0)}

< 21+<5|1 - 77̂ 1 + 21+y+δy-1

< 4(1 + 2γ-{) Max(l, 77 )̂. (A. 18)

Collecting the previous estimates yields (3.21), (3.22) for 77 < 1.
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Part (2). With ξ = Ψ(η) = sgaη\η\γ and similarly ξ' = Ψ(ηf), we compute

(ηd/dη) J dη'\η'/η\δ{η' - η)~' exp[i(£' - ξ)]

= y(ξd/dξ) J dη'\η'\δ(η' ~ I ) " 1 e x p p ί « ' - 1)]

= iyξ I dη'\η'\δ(ξ' - 1) (ηf - I ) " 1 exp[iξ{ξ' - 1)]

= iy I dη'\η'/η\δ(ξ' - ξ) {ηf - η)'1 cxp[ί(ξf - ξ)] (A. 19)

by changing the integration variable from η' to ηηf and from η' to η'/η before
and after taking the derivative. Note that the singularity at η' = η has now
disappeared. The integrability at ηf = 0 is ensured as before by the condition
δ > — 1. For any interval /, we define

gl(η,I) = iy f dηr\η'/n\δ{ξf - ξ) (η' - η)'1 exp[i(ζf - ξ)]

so that the last member of (A. 19) if gι(η,ΈL). We estimate g\ by a combination
of L1 estimates and integration by parts estimates. The latter yield

0 . (A.20)

where

fnW) = Win? If - ξ\ W - nΓ WΓγ = hWh)
by homogeneity, so that for fixed /

= (Var+|3|)/i(J) (A.22)

independently of fy. Furthermore, the function fη is piece wise monotonous for a
finite decomposition of ΊR. in intervals.

If <5 > y - 1, /,, is bounded, so that by (A.20) and (A.22) with / = R,

|gifo,R)| < (Var+|3|)/i(R) = d < x , (A.23)

which proves (3.23).
If δ < y — 1, we consider the cases η < 1 and 77 > 1 separately.
For η < 1, we use the L1 estimate for |*/'| < η and obtain

- ^ ^ ] ) I < C ^ (A.24)

by homogeneity, and the estimate (A.20) for \ηf\ > η, thereby obtained

\gi(η,K\[-η,η])\ < (Var+|3|)/i(R\[-l,l]) = C. (A.25)

For η > 1, we use the L1 estimate for |f/'| < 1, thereby obtaining

Igifa, ["I, l])l < \\(ξ' - 1) W - I ) " 1 lloo ((5 + l r V " * - 1 (A.26)

and the estimate (A.20) for \η'\ > 1, thereby obtaining

<C{\+ηy-δ~λ). (A.27)

Adding (A.24), (A.25) for η < 1, and (A.26), (A.27) for η > 1 yields (3.24). QED

Remark A.l. If 5 = 0 , the cancellation contained in (A. 18) is essential, and the
contribution of / = R + in (A. 12) exhibits a logarithmic singularity in η for small
η. In fact, for δ = 0 and /? < 1, the contributions of the intervals [0,2^] and
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[a, oo) for fixed finite a are adequately controlled by the previous estimates. Let
now Ψ(a) = π/3. Then

a

Regfo, [2η,a]) = J dη'(η' - η)'1 cos(!P fo')) > (1/2) Log[(α - η)η-{].

Similarly, the function h2+(η,x) considered in Remark 3.3 above exhibits a
logarithmic singularity for small η (or small x). On the other hand the function
h2~(η,x) is clearly bounded.
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