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Abstract. We consider packings of the two Ammann rhombohedra used for
tiling the three dimensional space. We define decorations for the facets of the
rhombohedra. Using elementary algebraic topology, we prove that any tiling
by these rhombohedra with matching decorations is a quasiperiodic Penrose
tiling. The proof does not involve any reference to self similarity.

1. Introduction

Since their invention by Roger Penrose, his well-known aperiodic and five-fold
symmetric tilings of the planes have motivated numerous works [1-3]. See [4] for
a review on the Penrose and related tilings. The construction and therefore a
possible description of these tilings is controlled by their strong self-similarity
properties, known as "inflation" and "deflation", which give access to some of their
main properties, and specifically to their aperiodicity. On the other hand, these
tilings can be obtained through a local "growth process" constrained by the so-
called matching rules: there exists a set of decorations of the edges of the tiles
(which can of course be realized in many different ways), such that any infinite
tilings in which the decorations of the edges of any adjacent tiles coincide is a
Penrose tiling.

Although the Penrose tilings had early attracted the interest of some
crystallographers [5] speculating on their possible implications for solid state
physics (and who have first empirically observed their quasiperiodicity using
optical transforms), it is the discovery of icosahedral quasicrystals [6] in rapidly
cooled alloys of Aluminium and Manganese which has triggered an intense
interest for these structures in the solid state physics community. See [7] for a
general review. Three dimensional analogues of the Penrose tilings were soon
devised [8, 9] and their quasiperiodicity proved [9]. These 3-dimensional tilings
are packings of two rhombohedra with identical facets known as Ammann
rhombohedra, and they are icosahedrally symmetric in the same loose sense as the
Penrose tilings are five-fold symmetric.

Up to now, only global methods such as the strip projection method are known
to construct these tilings, and it was interesting to look for matching rules
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analogous to those relative to the 2-dimensional case. In fact, our interest for this
question relies mainly on physical grounds: the quasicrystals are known to grow
fast from the melt, in such a way that it seems unlikely that their (meta)stability
could depend only on "large scale" features of their structure (with respect to the
atomic scale). On the contrary, it seems likely that the growth of quasicrystals is
mainly governed by local phenomena. In this respect, the inexistence of matching
rules of reasonable short range for the 3-dimensional Penrose tilings would result
in an hardly understandable situation. Of course, we do not mean that atoms obey
matching rules, nor even that there exists a specific relation between the atomic
structure of the quasicrystals and the 3-dimensional Penrose tilings, but only that
the existence of matching rules supports the idea of a local growth process resulting
in a global quasiperiodic ordering.

Such matching rules do exist, as proved in this paper. They consist in the
matching of decorations defined on the facets of the two rhombohedra, in complete
analogy with the 2-dimensional case. However, we need fourteen different
decorations for the thick rhombohedron, and eight for the flat one, in sharp
contrast with the only two Penrose rhombs (it is not proved that this number
cannot be reduced).

The paper is organized as follows:
In the next section, we recall the strip projection method used to construct
quasiperiodic tilings of the 3-dimensional space by means of the two Ammann
rhombohedra, which is the natural setting to define our decorations. This is done
in the third section, where we first define the decoration of the facets and then study
the decorated rhombohedra which result from this decoration. In order to
introduce homological methods, we sketch in the fourth section another
description of the tilings, known as the cut method, in which the quasiperiodic
tilings are obtained through a plane section of a periodic "oblique" tiling in six
dimensions. Then we state in the fifth section some elementary results of algebraic
topology, and show their relevance for our problem. The sixth section is devoted to
a more precise study of the geometry of the oblique tiling, which prepares for the
proof of our main theorem, given in the seventh section. The last section is devoted
to some comments concerning the limitations of the theory and its applicability to
other cases.

2. The Strip Projection

2.1. Let us first briefly recall the strip projection method used to construct
3-dimensional Penrose tilings. The reader is referred to [9] for a full exposition on
the subject. They can be obtained through specializations of a general method
which yields quasiperiodic tilings in any dimension. We describe it only in the
icosahedral case. Let Z6 be the canonical hypercubic lattice in R6 with basis
{ε l5 ...,ε6}, and let y6 be the corresponding hypercube defined by:

Consider the representation of the icosahedral group which permutes the
canonical basis of 2Z6 in the same way as the natural action of this group in IR3

permutes 6 suitably chosen of the 12 vectors of the regular icosahedron (see Fig. 2
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Fig. la-d. The polyhedra which are referred to throughout the paper: a a triacontahedron, b a
dodecahedron, c a thick rhombohedron, d a flat rhombohedron

Fig. 2. The projections of the canonical basis vectors of R6 in E1 and E"

for our choice). This group action obviously leaves invariant the lattice 26, and
when decomposing it into irreducible representations, one finds two invariant
3-dimensional subspaces, endowed with the two non-equivalent 3-dimensional
representations of the icosahedral group. Now let E" and E1 be these two
3-dimensional subspaces and let us define an open strip in IR" by shifting the cell y6
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along an affme p-plane parallel to E" :

where α is a translation vector in R6.
It is proved in [10] that for translations α such that the boundary of the strip

does not contain any point of Z6 (notice that this condition is generic on α), the
strip Sα exactly contains an unique 3-dimensional surface built up of 3-dimensional
facets of the lattice Z6, which goes through all the vertices of 2£6 falling inside Sα.
The tilings we are looking for are the projections of these 3-dimensional surfaces
on E1 1, and the prototiles are the projections of the 3-dimensional facets of the
lattice Z6; the twenty different 3-dimensional facets of Z6 project onto two
different rhombohedra, each of which being realized in ten orientations. They are
the well-known rhombohedra introduced by Ammann, with identical rhombic
facets [with angles Atn(2) and n-Atn(2J] (Fig. 1). The lattice Z6 projects on E" and
E1 on homogeneous ^-modules and the unit hypercube of Z6 projects onto a
rhombic triacontahedron K, a polyhedron with the same 30 rhombic facets, 60
edges and 32 vertices, which presents the full icosahedral symmetry (Fig. 1).
Observe that this construction is equivalent to the following: Let π" and π1 be the
orthogonal projections on E1 1 and E1 respectively, and let:

K = π1(y6) - π^So) , Kα = π1(7ό + α) = π^SJ

(we shall say that Kα is the profile of the strip). The vertices of the tiling
corresponding to α are the projections on E" of the vertices of Z6 which project on
E1 in the interior of Kα, whenever α is such that the boundary of Kα does not
intersect the dense ^-module π\Z6).

Now, if the boundary of Kα intersects π1^6), we can again obtain a tiling if we
specify, for each pair of opposite facets in the boundary of Kα which contain points
of π1^6), which one is kept and which one is discarded (we have to be careful if
adjacent facets are concerned!) and finally, if in such a situation we project on E11

all the vertices which fall in the closure of the strip Sα, we get the superposition of all
possible choices (we shall encounter such situations later in this work).

2.2. This description of the quasiperiodic tilings is very well suited for the study
and the classification of the local patterns which appear in the tilings: examine for
instance whereall the vertices which are the origin of an edge of a given orientation,
say π1^), are: in order for the point x to be such a vertex, we must have altogether
in the tiling the vertices x and x + π"^), that is, if x = π"(ξ), the two points
x' = π

±(ξ) and x' + π1^) must fall inside the rhombic triacontahedron which
defines the tiling or, in other words, the point x' must fall in the intersection of the
rhombic triacontahedron K and its translation K — π1^).

More generally consider the map φ:π1(Z6)-^π"(Z6) defined by:

Since the kernels E " and E1 of π1 and π " intersect the lattice Z6 only at the origin, it
is clear that the map φ is one to one (however, observe that φ is very discontinuous:
it maps any bounded set on a discrete set, and thus does not admit any reasonable
continuation to E1). Then the set of vertices of the tiling is simply
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Now, given any local pattern in the tiling attached to an origin x, it is clear that the
set of vertices in the tiling around which this local pattern is realized is simply the
image through φ of the intersection of a family of translations of K (let us call this
intersection the existence domain of the pattern) with one copy of K for each point
in the pattern, the corresponding translation in E1 being the image through — φ ~ 1

of the translation which maps x on this point in E 1 1.
Using the fact that our triacontahedron K is the projection of an hypercube, it

is a simple task to verify the following [9]: (we define ^^π"^) and e\ = n\z$.
The existence domains of any edge et is the rhombic icosahedron spanned by

the five vectors { e ' p j e J } such that Ju{i} = {l, ...,6}. Similarly, the existence
domains any facet {^tf/} is the rhombic dodecahedron spanned by the four
complementary vectors e\ and finally the existence domains of any rhombohedron
{eb ep ek} is another rhombohedron, spanned by the complementary vectors, and
which is of the same type. Observe that these rhombohedra tile the triacontah-
edron in several different ways. In fact, one can see that there is only one such tiling
up to symmetry, and since this tiling does not present any symmetry, there are 120
different tilings of the triacontahedron by rhombohedra. Finally, observe that each
of these existence domains is realized in several positions in the triacontahedron,
according to the vertex of the local pattern chosen as its origin.

We are now ready to state the matching rules.

3. Description of the Matching Rules

3.1. As explained in the introduction, our goal is to find a set of local rules for
packing the tiles, such that the resulting tilings are quasiperiodic. Observe first that
the very possibility for the existence of such rules, depends in an essential way on
the fact that our triacontahedron is not a generic projection of the hypercube.

More precisely, consider a generic projection of the 6-dimensional hypercubic
lattice on a 3-dimensional subspace: then the kernel of the projection is a
3-dimensional subspace which intersects any lattice subspace in general position.
This means that the dimension of this intersection is 0 for 1-, 2- or 3-dimensional
lattice subspaces, and m — 3 for an m-dimensional subspace, m>3.

However, this is not the case for the projection π1 involved in the 3-dimen-
sional Penrose tiling. In fact, we have as a consequence of the icosahedral
symmetry a set of relations of the type: e\—e'4 parallel to ef

2 — e'2, which can be
written:

By application of the icosahedral group, we obtain fifteen such relations. Each of
them means that the corresponding 2-dimensional lattice subspaces spanned by
pairs of vectors of the type {(εl — £4),(ε3 — ε2)} intersects the kernel E1 1 =(π1)~1(0)
along a 1 -dimensional subspace (which is not a lattice subspace!), and this is not
generic.

Observe that the symmetry implies a maximal nongenericity in the sense that
any perturbation of the projection direction breaks at least one of these relations.
In other words, these relations force the icosahedral symmetry.
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In the previous section, we have recalled that the existence domains of the tiles
are rhombohedra which tile the triacontahedron K. By considering the superpo-
sition of all such tilings of K, one gets a cellular decomposition of K in which each
cell corresponds to a possible packing of tiles around a common vertex, and the
boundaries of these cells are all the projections of the 2-dimensional facets of the
hypercube [9]. As a consequence of the above relations, one can see that many of
these projections overlap in K, yielding "flattened" cells of zero volume which
correspond to local packings that do not appear in the icosahedrally symmetric
tilings but would appear in any tiling defined through a "tilted" E11 . Intuitively, one
can hope that by setting rules which forbid these packings, one can force altogether
the symmetry and the quasiperiodicity of the permitted tilings, and this is precisely
what we are going to do.

On the other hand, the form of the rules we are looking for is simply the
matching of decorations of the boundaries of the tiles, which are the 2-dimensional
facets. Their existence domains are rhombic dodecahedra, and we have one
dodecahedron in K for each vertex of the facet. We are thus led to examine more
precisely these rhombic dodecahedra: they present three orthogonal symmetry
planes, two of which intersecting on the long diagonal of the dodecahedron.
Consider the eight sectors in which these three planes partition the dodecahedron
(Fig. 3). We define the matching rules by setting different decorations for the facets
corresponding to different sectors of each dodecahedron and we shall show that
this is sufficient to force the symmetry and the quasiperiodicity of all the tilings
with matching decorations.

The decoration of each facet is simply a label which indicates in which sector of
the relevant dodecahedron falls the image through φ of each vertex of this facet. To
discuss the choice of these labels (which will be referred to either as the decoration
of the facets in E1 1 or the decoration of the dodecahedra in E1) observe first that for
a given direction of facet, the labelling of the four "parallel" sectors in which fall the
image through φ of the four vertices of the same facet must be related, in order to
correspond to the same decoration for the facet. On the other hand, it is natural to
ask for a further condition of symmetry for the decoration, which is simply that the
set of decorated tiles of each type should be the same for the ten different
orientations of the tiles. This will give constraints, not only on the relation between
the decoration of tiles of different orientations, but also on the symmetry of the
decoration of each tile.

To explain this point, let us first briefly precise how the symmetry operations
are related in E " and E1 : Consider a symmetry operation g in the high dimensional
space R6, preserving ̂ 6, E " and E1. Then the Shur lemma implies that it takes the
form:

and this formula defines the associated operations in E1 and in E11 as well as their
relation. Now, observe that it may happen that two sectors of dodecahedra in K are
related in two different ways: first, through a symmetry operation, and second, as
being attached to different vertices of the same direction of facet. In this situation,
the two decorations derived for the second sector from the decoration of the first
must coincide, and this appears as a symmetry constraint on the decoration of the
tile itself.

We shall now establish these decorations.
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n
Fig. 3. The eight sectors of the rhombic dodecahedron

3.2. Decoration of the 3'-Dimensional Tilings. We have sixty dodecahedra to
decorate: one for each vertex of the fifteen directions of facets. Of course, the
decoration of dodecahedra corresponding to different vertices of the same facet are
to be the same, and we shall use the same notation for parallel sectors in parallel
dodecahedra. Let us focus on the symmetry considerations: First, we ask the
decorations of dodecahedra corresponding to different orientations to be mapped
on each other by the icosahedral group, so that we have only one dodecahedron to
decorate. Second, since the icosahedral group is a Coxeter group generated by
reflections, we have only to look at the symmetry planes to determine the
symmetry of the decoration itself. Consider for instance the dodecahedron
(e'2, £3, £4, e'5} (corresponding to the facet {eΛ, e6}) and the symmetry with respect to
the plane {e'2,e'5}. It maps the dodecahedron on itself and exchanges the
quadruplet of sectors (I, IV, VIII, V) respectively with (II, III, VII, VI). It is easy to
see that this symmetry is related in E" to the symmetry with respect to the short
diagonal of the facet, which maps the facet on itself and leaves invariant its origin.
This controls the relation between the sectors of the pairs (I, II), (IV, III), (VIII, VII)
and (V, VI).

Observe that the origin of the facet being preserved by the operation in E" is the
same property that the dodecahedron being mapped on itself by the corresponding
operation in E1. Now consider the symmetry plane {e'3,e'4}: it maps the
dodecahedron on another which corresponds to the same facet, attached to the
opposite vertex while the related operation in E1 1 is the symmetry with respect to
the long diagonal of the facet, which maps the facet on itself but exchanges the
origin with the opposite vertex. Now, this operation exchanges the quadruplet of
sectors (I, II, III, IV) respectively with (V, VI, VII, VIII), and this controls the
relation between the decoration of sectors of the pairs (I, V), (II, VI), (III, VII) and
(IV, VIII). Finally, the symmetry plane [e\, β'6) exchanges the quadruplet of sectors
(I, II, VI, V) respectively with (IV, III, VII, VIII) in the same dodecahedron, while
exchanging in E1 1 the two sides of the facet {β1? e6}. Thus we see that we have only
one independent decoration of the facet, which in view of the symmetries involved
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V v VI v VΠ v VIII

Fig. 4. Decoration of the facets associated with each sector of the dodecahedron

can be chosen as a marking of one quadrant of the rhomb, different on the two
sides of the facet (we choose a white disk on a side and a black one on the other)
(Fig. 4). Then the rule is to match a white disk with a black one, in order to get the
same decorated facet in the two matching rhombohedra.

We have now to examine what are the decorated tiles obtained through this
procedure. Consider the tiling defined by the triacontahedron x' + n±(y6) for any
x'eE1, and the direction of rhombohedron spanned by {eb em9 en}. Then, the
existence domain of these rhombohedra is the rhombohedron x' + {β , e'p e'k}, where
(ϊ'J, fc, /, m, n) is a permutation of (1,..., 6), and we have to examine how this domain
is partitioned in subdomains by the partitions of the dodecahedron attached to
each of its facets.

Observe first that one of the planes in each of the dodecahedra corresponding
to the three facets x' + {e\, e'j} overlaps with the boundary of the rhombohedron, so
that we get only six planes passing through the interior of the rhombohedron from
these dodecahedra. For the opposite facets x' + ek + {e't, e'j], we have to consider the
corresponding dodecahedron translated by —e'k: since ek belongs to one of the
three planes attached to the dodecahedron, we get only two new planes, but one of
these two planes overlaps with the boundary of the rhombohedron as previously,
so that we see that only the plane orthogonal to the long diagonal give a new
partition of our existence domain, yielding three other planes for the three facets.
One has to verify that these nine planes divide each thick rhombohedron into
forty-two subdomains, and each thin rhombohedron into twenty-four sub-
domains. The geometry is too involved for a 2-dimensional picture to be readable,
so we give here a brief description for both types of rhombohedra.

The geometry admits the diagonal of the rhombohedron as a three-fold axis.
The nine planes fall in three families which are: first, three planes containing the
long diagonal of the relevant dodecahedron, which intersect along the three-fold
axis, and second, two families of three planes orthogonal to these long diagonals.
For the thick rhombohedron, each of these last triplets intersects inside the
rhombohedron on a point belonging to the three-fold axis, and the intersection of
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Fig. 5. Four thick and four flat decorated rhombohedra, which generate the whole set

any two planes in these triplets falls on a plane of the first triplet. There is no
intersection of two planes belonging to each of the two last triplets inside the
rhombohedron, and this determines the whole situation. For the thin rhombo-
hedron, the intersection of any pair of planes in the two last triplets falls outside of
the rhombohedron, but we find an intersection for each pair of planes involving
one plane from each of the two last triplets.

One can construct the decorated tile corresponding to each of these
subdomains by looking in which sector of the relevant dodecahedron falls the
origin of each facet, and one is helped in this task by symmetry considerations.
When looking at the decorated tiles which are actually different, we see that we
have only fourteen of them for the thick rhombohedron, and eight for the thin one.
Four of them are depicted on Fig. 5 for each type, and the whole set is generated
through the following procedure: For the thin rhombohedron, take the reflection
of each of the depicted ones in any of its symmetry planes, and inverse at the same
time the color of all the circles. For the thick one, there are two steps. First take the
symmetric of each of the depicted rhombohedra with respect to its center, inverting
the color of all the circles. There are now eight tiles. Second, take the reflection of
each of them in any of its symmetry planes, without changing the circles. Two of
the eight are invariant through this operation, so that we get fourteen different
decorated thick rhombohedra.

Finally, we get relatively few different tiles. This results from the fact that a third
of the new boundaries overlaps with old ones, and this is directly linked with the
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special orientation of the pair (E", E1). The rest of the paper will be devoted to the
proof that the matching of these decorations forces any tiling to be a quasiperiodic
tiling. Here is an outline of the proof: Starting with our set of decorated tiles in the
ordinary 3-dimensional space, we want to describe any tiling by means of these
tiles through a strip projection method with a plane strip, in order to show the
quasiperiodicity of the tilings. Of course, we begin by identifying the 3-dimensional
space with E", and since the projection of Z6 on E" is one to one, we can lift in Z6

the vertices of the tiling in an essentially unique way (up to a translation in Z6).
Now, when studying the strips (not necessarily plane) which contain all these
vertices, we encounter the following difficulty: there exist infinitely many such
strips as soon as there exists one, for we can add some "wiggles" to a given strip
without changing the vertices which it contains. Thus, we have to characterize as
an equivalence class the set of all the strips associated with a given tiling, and to
show that, on account of the matching rules, each class contains a unique plane
strip. To achieve this, we first describe in the next section another construction of
the Penrose tilings, equivalent to the strip method but in which, loosely speaking,
the thickness of the strip is transferred on the vertices. Then the strip reduces to a
3-dimensional surface and we show in the fifth section that the relevant notion of
equivalence for these surfaces is that of singular homology in the complementary
of a certain "forbidden set" Σ. In the sixth section, we show that we completely
express the matching rules by a suitable choice of the forbidden set. Then we
compute the relevant homology group and we show that each class contains
a plane, which proves our claim and justifies the choice of the matching rules
themselves.

4. The Cut Description of the Tilings

4.1. In order to prepare for this proof, let us now describe another construction of
these tilings, known as the cut method [10]. This construction appears as an
adaptation to the case of tilings of the general description of quasiperiodic sets of
points introduced in [11], which is a straightforward generalization of the classical
theory of incommensurate structures of Janner and Janssen. The formulation
given below, which is simpler than the original version of [10], follows a suggestion
of Andreas Dress [12]. The cut construction consists in defining a periodic tiling (re-
ferred to as the oblique tiling) in the high dimensional space R6 (with translation
group Z6) such that the quasiperiodic tilings appear as sections of these peri-
odic tilings through planes parallel to E".

The idea is the following: Consider any tiling of IR" and any plane cut through
this tiling. Each time the cut is generic, that is, intersects transversely the
boundaries of the tiles, the traces of the tiles on the cut make up a covering of the
cut, without overlapping nor hole. But this covering is not a tiling in general, since
there is no reason for the traces of the tiles to belong to a finite set of shapes. For
instance, consider a cut with an irrational slope through the standard square tiling
of the plane: since there is no minimal distance between the vertices of the tiling
and the cut, there is no minimal length for the segments of the induced covering of
the cut, and this entails that there are infinitely many different lengths in this
covering.
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Fig. 6. Construction of the prototiles Cl of the oblique tiling, in the lowest dimensions

Fig. 7. The oblique tiling in the lowest dimensions

However, it is possible to adapt the shape of the tiles of the tiling of R" to the
orientation of the cut, in order to obtain only a finite number of shapes in the
generic cuts: we have to make the boundaries of the tiles parallel to either the cut
E" or its orthogonal E1. The construction of such an "oblique tiling" is as follows.
Since it is recursive, one can explain it for the plane, without restricting the
generality (Fig. 6).

Let us start with the unit square, spanned by the canonical basis (ε1?ε2). We
consider the projections e^π11^) and e'—π1^-) for z = l,2. Observe that ε1 Λε2

= el /\ε2 + e\ A c2 — 1 (this is the area of the unit square), and that the two exterior
products £ 3 Λ ε 2 and e'l/\ε2 are both positive. This means that the two
parallelograms spanned by {e l3ε2} and {e'l9ε2} do not overlap, so that the union
{e\, ε2}u(βΊ 4- {<?!, ε2}) is still a unit cell for the lattice TL2, as depicted on the second
part of Fig. 6. Now, let us proceed to the same decomposition for the vector ε2 and
each parallelogram. For the same reasons, we get a new unit cell of TL2 made of four
subcells spanned by {e'i9e2}y {e\,e'2}, {el9e2} and {el9e'2}. But the two subcells
spanned by {e\,e'2} and {e^e2} are flat and give a null contribution, so that we
obtain finally only two subcells whose union is a fundamental domain of TL2 (last
part of Fig. 6). The corresponding tiling of the plane (Fig. 7) is the oblique tiling.

Observe that whatever the order of the decomposition, the resulting tiling is the
same. Since each tile is the product of the projection of a basis vector on E" by the
projection of the other on E1, it is clear that any cut parallel to E11 which does not
intersect the lattice inherits a tiling by means of the two projections e1 and e2,
which is identical to the non-periodic tiling obtained by the projection method.
Due to its recursive character, the same argument works in any dimension. For the
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3-dimensional Penrose tilings, it runs as follows: start with the unit hypercube
spanned by {ε l 9ε2 5ε3,ε4, £5,ε6}, decompose ε1 as e± + e\ in E" and E1 to obtain a
new cell made of the two parallelohedra [el9 ε2, ε3, ε4, ε5, ε6} and {e'j, ε2, ε3, ε4, ε5,
ε6}, and iterate the process with the next basis vector. Since the property of getting
a cell of Z6 is preserved at each step, we end with a final cell which is a priori the
union of 64 subcells. However, only those which are spanned by three vectors in E1 1

and three vectors in E1 have a non-zero volume, so that the cell of the oblique tiling
is in fact the union of 20 subcells, each of which being the product of an Ammann
rhombohedron in E" by its existence domain in E1, in such a way that any cut
parallel to E1 1 which does not intersect the lattice Z6 inherits a 3-dimensional
Penrose tiling.

More precisely, let Mp denote the set of p-multiindices [ί^ ...,ip} in {!,..., 6},
and 77 the p-dimensional facet of the hypercube y6 spanned by the vectors εί5 for i e I
and I eMp. Then the twenty prototiles Cl of the oblique tiling take the form:

with 7eM3, and where Γ is the complementary of I in (1, . . . ,6).

4.2. Although the definitions of the periodic oblique tiling and of the prototiles C,
are very simple, the overall geometry is rather involved. Here are some details on
the structure of the boundaries of the tiles Cl + ξ. Let us denote dCl the boundary
of Cr: It is a cellular complex of dimension 5 whose cells are (6 — ̂ -dimensional
facets of the hypercube C/5 for q>0. Now, the 5-dimensional cells of dCI fall into
two classes: those which are the product of a 3-dimensional facet π"^) in E" by a
2-dimensional facet belonging to ^(π-^y/c)) in E1 (we shall say that these cells are
parallel to E " and denote their union byd\\ Q) and those which are the product of a
2-dimensional facet of d(π " (}>,)) in E " by a 3-dimensional facet π1(y/c) in E1 (we shall
say that these cells are parallel to E1 and denote their union by 5±C7). Accordingly,
the union of the boundaries of all the tiles in the periodic lattice falls into two
subsets B± and By defined by:

One can verify the following geometric properties: (see Figs. 6 and 7).
- The set of cuts which do not intersect By is generic, and each such cut defines a
quasiperiodic tiling.
- The intersection of such a generic cut with B± is the set of the boundaries of tiles
in this tiling.

More generally, we can describe the set B± and By by their intersections with
the fibers of the projection π1: as already mentioned, whenever the fiber is generic,
its intersection with BU is empty. Let us examine the situation when the fiber
intersects a cell of maximal dimension in d \\ Cl + ξ, and suppose ξ = 0 for simplicity.

Recall that the prototile Cl has the form of a product π"(y /) x π1(y/c), and that
the boundary d^Cj is π^y/) x d(πL(ylc}\ in such a way that each cell in d\\Ct takes
the form of a product π " (?7) x π1(yy), where J E M2 and J C Γ, which means that γj
is a 2-facet of the boundary of the cube y/c. Then the intersection is the product of
a point in π1(yj) by π'^yj). Now observe that the same π1^^ appears in all the
boundaries d \\ CL with J C Lc. This entails that the given fiber intersects these several
boundaries as soon as it intersects one of them, and if one takes into account the
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translations, one can see that the complete intersection is simply the product of a
point in πλ(γj) by π"(yjc), thus is the projection of the 4-facet yjc of the hypercube.
Moreover, π"(y jc) is covered twice by the boundaries of the type ΰ^CjΛ- ξ, namely
from both sides of the affine support of the product E1 1 x π1^). (Notice that we
could get rid of these translations in a systematic way, simply by considering the
cellular decomposition of the torus T6=]R6/2£6 induced by the periodic tiling
rather than the decomposition of R6 itself. However, it is likely that this formally
better description would not help the reader in visualizing the situation.)

Finally we get in the fiber the projection of a 4-dimensional facet of the unit
hypercube, (this projection is a rhombic dodecahedron) together with all its
possible tilings by the projection of 3-dimensional facets. Of course, we do not
assert that this situation occurs only one time in a given fiber: it may happen for
symmetry reasons that a fiber intersects B|( in many different places, and the
previous considerations hold for each intersection. Consider now the intersection
of the same fiber with B1: we have only to observe that we get in the fiber a
boundary of a tile of the type d(π^(γj)) for each cell of By contained in the fiber,
which correspond to the 3-subsets / D J. Loosely speaking, such a fiber is to be
considered as a "bifurcation point" which contains the superposition of the two
regular tilings of a suitable compact neighborhood of the intersection, arising from
a small displacement of the fiber on each side of the hyperplane E" x πL(yj\ and
which differ precisely by the way the projection through π i ! of a 4-dimensional facet
of the hypercube is tiled.

The whole discussion can be carried in higher codimensions. Let us simply
state the following: If the fiber intersects By on a (3 — ̂ -dimensional cell, then it
intersects at the same time all the cells that are contained in the projection of a
(3 -f g)-dimensional facet of the unit hypercube, and the corresponding intersection
with B1 appears as a "bifurcation point" which contains all the possible ways of
tiling the projection of a (3 -f g)-dimensional facet of the hypercube.

As a final remark on this description, observe that one can develop the same
analysis using the fibers of π" rather than π1. Then the generic fibers intersect B,|
along the boundaries of a tiling by means of the existence domains of the previous
tiles. To sum up, let us consider the geometry in the fiber π"~ 1 (x) in the
neighborhood of x when x runs over a generic cut bearing a quasiperiodic tiling:
For x in the interior of any tile, we see in the fiber the (boundaries of the) existence
domain of this tile. When x comes on a 2-dimensional facet of the tiling, we see in
the fiber the existence domain of this 2-dimensional facet, which is a dodecah-
edron, together with its two tilings by means of existence domains of tiles (there are
two such tilings, simply because there are two ways of approaching a 2-facet: from
each side). This superposition yields a cellular decomposition of the existence
domain of the 2-facet, in which each cell corresponds to a possible pair of tiles
sharing a 2-facet, and the situation actually realized around x in the cut
corresponds to the cell in which x lies in the fiber, in higher codimensions, the
geometry is very similar: if x comes on a (3 — ^-dimensional facet of the
quasiperiodic tiling, then we get in the fiber π" ~1(x) the existence domain of this
3 — q facet with all its possible tilings, and each cell of the induced decompositions
corresponds to a possible environment of this type of 3 — q facet in the tiling. In
particular, we recover in the case q=3 the classification of local packings of tiles
around a common vertex which was mentioned in Sect. 3.1 of this paper.



276 A. Katz

5. The Homology Class of a Cut

5.1. Up to now, we have used plane cuts, but we shall need a generalization of this
point of view. Observe that in the previous description the cut plays a double role.
On one hand, it works as a means of selecting vertices or tiles, and on the other, it is
the space on which the tiling is actually built. We shall now distinguish between
these two roles. Let us fix once and for all E" as the space on which the tiling is built
by projection of vertices of Z6 through π". Now one can use 3-dimensional sur-
faces more general than planes to select the vertices to be projected.

To explain the suitable extension of this notion, let us first deal with the
problem of selecting vertices of ΊL6. Consider the set:

)lnB1.
J

It consists in a set of copies of K (recall that the triacontahedron K is the projection
through π1 of the unit hypercube of R6 and is a 3-dimensional cellular complex)
translated at each vertex of 2£6. Let us denote d~ίσξ the set K + ξ . I t is trivial that a
cut along the plane E1 ' -f α selects by intersection with Σ0 exactly the same vertices
as the strip Kα + E", and this is the very relation between the strip projection and
the cut descriptions of our tilings. Now for a general 3-dimensional surface F, we
can consider the family (indexed by ξ e2ζ6) of intersection indices (F|δ~ 1σξ). If we
set the orientations such that for F being a generic plane cut these intersection
indices are 0 or +1, then for a general F we define the selected vertices as those ξ for
which the intersection index ( ¥ \ d ~ 1 σ ξ ) i s -f 1, and we shall consider only surfaces
such that all the intersection indices are 0 or +1. Notice that the intersection index
is well defined only when F does not intersect the boundary σξ of d~ lσξ. We shall
only consider surfaces F fulfilling this condition which generalizes the genericity
condition we have used up to now.

5.2. As is well known from elementary algebraic topology, the notion of
intersection index falls to homology as a pairing between homology groups. We
shall use plain singular homology with compact supports, considering the
intersection index as a pairing between the homology group #3(R6 — Σ0) and the
relative homology group #3(R6, Σ0). More precisely, in order to avoid inessential
difficulties arising from infinite rank homology groups or from the precautions
needed with duality theorems for homology with closed supports, we define a
"large" convex bounded open set U in R6 and we consider instead of the whole
periodic tiling (and the attached geometrical objects such as B|( or Σ0), its
intersection with U. Actually, far from being a technical point, the introduction of
such an U sets the natural context for our main proof, which is of a local nature.

Thus we are dealing in our demonstrations only with finite cellular complexes,
and it is obviously possible to choose U such that any cell, tile, facet etc., which
intersects U is contained in its closure, each time this is necessary for our argument
to work.

5.3. Let us now prove three lemmas:

Lemma 1. For p<n—l, the natural homomorphίsm

H^flR", Σ0nlLJH/ί,,_p_ ̂ onU)
ί's an isomorphism.
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This follows immediately from the exact sequence for relative homology.
Consider this exact sequence:

...^#Π_P(R"HHΠ_P^

If n-p-1 is >0, the groups #n_p(Rn) and Hn,p^i(Έίn) are both zero and the
exactness implies that the central arrow is an isomorphism.

This is of course very classical and we explicit it mainly for stating the two
following remarks: First, the symbol d~1 in the notation d~ίσξ refers to a well-
defined operation, which is the inverse of this isomorphism. Second, this lemma is
false in the case n = 2, p = 1. So the reader should forget from now on about Fig. 7,
which is becoming misleading for the next developments.

Finally, observe that this lemma is independent of the topology of the set Σ0.
We shall use it without reference for other sets Σ.

Lemma 2. The set {σ(,|^EZ6nU} is a basis of H2(Σ0r\lU).

Recall that σξ = dK + ξ, so σξ is topologically a 2-dimensional sphere, and
H2(σξ) = Z. Then the lemma is trivial, since Σ0 is the disjoint union of the
triacontahedra σξ. This is very elementary but important for us, since it shows that
if we consider a cut without boundary (think of any cut across U and close it
outside U) then its homology class in H3(R6 — (Z0nU)) completely describes the
points which it selects. In fact, we shall be mainly concerned in proving that some
special sets of classes are basis of relevant homology groups.

5.4. This conclude our considerations about selecting vertices with homology
classes. Now the natural question arises: Is it possible to enlarge the "forbidden
set" Σ0 to a set Σ such that classes in #3(R6 — (ΣnU)) select not only points, but
whole local patterns, for instance tiles? This is in fact the case, as shows our next
lemma:

Lemma 3. Define Σί as B|(. Then the set {d^Cj + ξ\I E M3, ̂ e^6nU} is a basis of
H2(Σ1nυ).

This will easily follow from the exactness of the Mayer- Vietoris sequence.
Observe first that d |( Cl admits the boundary of a rhombohedron as a deformation
retract (through a retraction along E"), and this proves that H2(d\[\CI} = '%. Now
one can build Z^nU by successive additions of pieces d^C^ ξ, and since U is
convex it is clear that one can proceed in such a way that each new piece is glued on
the periphery of the construction, and thus, is glued along a contractible subset.
Let us compute recursively the homology. Define Σ as the set obtained at the mth

step. Then add a new piece d^Cj + ξto get Σ'. The corresponding Mayer- Vietoris
sequence reads:

C7 + ξ))-»H2(Σ)ΘH2(3 „ C, + ξ}^H2(Σ ')^H,(Σn(d „ C,

Since the intersection is contractible, the two extreme groups are zero, and the
central arrow is an isomorphism. We thus see that

H2(Σ^υ)= 0 H2(d}}
M3 x(Z 6 nUJ)

which proves the lemma.
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The meaning of this result is that any class in #3(R6 — (Σ^ nil)) selects whole
tiles, and that any set of tiles can be selected in this way. In fact, Lemma 1 implies
that H2(^1πU) is isomorphic to //3(1R6, Σ1nUJ), and duality by intersection that
this last group is isomorphic to H3(1R6 — (I\nU)). Of course, these isomorphisms
map basis on basis, in such a way that we get a basis of #3(R6 — (Σ ί nUJ)) made of
classes which select only one tile. Now, an arbitrary set of tile is selected by a class
obtained as the sum of the corresponding basis classes, with coefficients +1.

Observe that since Σ0 C £15 we can consider the classes of σξ in I\. It is clear that
these classes still generate the group //2(Γ1nU), but they are no longer
independent: the relations among them precisely express that any cycle in
#3(]R

6 — (lΊnU)) necessarily crosses simultaneously the eight classes associated
with the vertices of a rhombohedron.

Let us briefly examine how the classes can be realized which span
d~ 1H2(d\\CI + ξ). Recall that the fibers πL~ l(nL(ζ)) intersect I\ in a neighborhood
of ζ along a rhombic triacontahedron tiled in all possible ways by rhombohedra.
Now for each boundary of these rhombohedra, there is a pair (/, ξ) such that it is a
deformation retract o ί d ^ C j + ξ. Then the class of this boundary spans the group
H2(d\\Cj + ξ), and we can take the whole rhombohedron as the generator of
d~ΐH2(d^CI + ξ). Observe that this realizes the same class in the eight different
triacontahedra corresponding to the eight vertices of each facet, and that the direct
sum of all the groups d'iH2(dll Q + ξ) is #3(R6, I^nlU). Finally, observe that the
constraints resulting from the enlargement of Σ0 to Σί are rather weak: we get tiles,
but we still have very far to go to get tilings, since any set of tiles (including
interpenetrating tiles) can be obtained in this way.

This situation changes drastically when one takes the matching rules into
account.

6. The Geometry of the Oblique Tiling

6.1. In Sect. 4.2, we have given a description of Σ1 =B| j through its intersections
with the fibers of the two projections π" and π1. In the fibers of π", the description
was global (we get the boundaries of a tiling by existence domains in the generic
fibers, and the superposition of such tilings in non-generic fibers) but in the non-
generic fibers of π1 the description was only local (we get projections of facets of the
hypercube, and the dimension of the facet depends on the degree of non-genericity
of the fiber). We then mentioned the possibility of finding many different
projections in the same fiber, and we shall now give more precisions on this
question.

Let us parametrize the fibers by points in E1. We study the intersection Z\
nπ L~l(x'\ x'eE1, and we already know that such intersections are made of
rhombic dodecahedra. Recall that Σ1 is the union of all d\\Cj + ξ, so that

Observe that π1(3 y C/) = 5π1(C/). This last set consists in a union of 2-dimensional
facets π±(yj) (they are the facets {e'^e'j} with J = {/,;}), which come by pairs
associated with pairs of opposite facets of the cube ylc. However, since the
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translation which maps each facet on the opposite falls in π1^6), it is sufficient to
keep only one of them and we can write:

π1(Σ1) = π1(Z6)-f U Λyj)
JeM 2

We see that the facets corresponding to a given J cover whole planes through
translations in π1^6), in such a way that π1(Σ1) is made of fifteen dense families of
planes parallel to the fifteen directions of facets. Suppose first that x' belongs to
only one plane (this the lower codimension case). Now the intersection Σί

nπ1"1^') contains all the rhombohedra π"(77 + ξ) such that the boundary of the
rhombohedron πL(yIC} + πL(ξ) contains x', and our next step is to show that this
intersection can be obtained through a strip projection.

In fact, consider the boundary x' + dn\ylc). Then it is immediate that the
origins of the rhombohedra π"(yj + ξ) in Σlnπ± ~ 1(x') are precisely φ(x' + dπλ(ylc)),
and we have to make this construction for all / e M3. However, since we are dealing
with the lower codimensional case, only one pair of facets intersects π1^6), namely
x' + π1^j) and its opposite in dnA-(yIC\ in such a way that we have only to consider
the four directions / with 7c = Ju{/}, iφj, and for these /, only the two facets
parallel to π1^). To each of the vertices selected by this special strip, we attach a
rhombohedron π"(yj). In order to reorganize this set, it is useful to build the strip
which selects all the vertices of the rhombohedra of I^nπ1" *(x'): we simply have
to associate to each facet π^yj) which selects the origin of a rhombohedron, the
octuplet of facets which select all its vertices. We leave it to the reader to verify that
one finally obtains a set of sixteen parallel facets xf -f π1(yj) + v ί? where the sixteen
vectors v f are the vertices of the rhombic dodecahedron π1(yjc).

Thus we find a double description of Σ t n π1 ~ r (x'). On one hand, it is "nearly" a
set of rhombohedra extracted from a 3-dimensional Penrose tiling. More precisely,
observe that the set of sixteen facets fits exactly in the close rhombic triaconta-
hedron x/ + π1(76). However, since our strip involves two opposite facets of
the triacontrahedron, namely:

x' + π^γj) and x/ + π-L(yJ)+ £ e'i9
ieJ c

we get the kind of "overtiling" which was mentioned at the end of Sect. 2.1.
On the other hand, it is a distribution of rhombic dodecahedra. These

dodecahedra are parallel to π"(y jc), and their origins are selected by the strip
x' + π1(7J) + E1 1. We thus get a quasiperiodic set of dodecahedra in the plane
x' + lZ^ e J z e J, A j eR}. Notice that for each of these dodecahedra we have the
superposition of its two tilings by rhombohedra, and this is the "overtiling"
mentioned above. We shall not need a complete description of this quasiperiodic
set. Observe only that a facet is small enough for this set being not connected: some
of the dodecahedra form connected systems, but there are never more than a finite
number of them in each connected component.

Finally, observe that when x' belong to an intersection of different planes in
π1^6), we get essentially a union of sets of the type we have just described. Let us
make two remarks about these results. First, the fact that the intersection Σ1

nπ1 ~ 1(x/) is made of a whole quasiperiodic set (extending to infinity) of polyhedra,
rather than being bounded is a direct consequence of the orientation of the pair
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(E^E11) being non-generic, and corresponds to the possibility for the existence of
matching rules forcing quasiperiodicity, as we shall see below. Second, the
presence of such an infinite set in the fiber is not by itself a constraint on the system
of tiles a cut can select, as already mentioned in Sect. 5.3. Intuitively, one can see
that a 3-dimensional surface can turn around the connected components of Σί and
reach any tile Cl + ξ of the oblique tiling.

6.2. The next step is to express our matching rules in the context of the cut
description. Let us first define the related periodic tiling of R6. Its prototiles are
simply the products of the (decorated) tiles in E" by their existence subdomains in
E1. This amounts only to cutting each Cl in fortx-two or twenty-four pieces so that
it is plain that we get a periodic tiling in R6.

As in the previous case, we can define the subsets B|( and B± of the set of all the
boundaries of tiles in this new periodic tiling. We are specifically interested in the
set B||, and let us call this set Σ2. Observe that we have the relations Σ1 CΣ2 and
π1-(Σi) = π'L(Σ2). The first one is trivial, since all the boundaries of tiles of the
previous tiling appear in the new one. The second merely expresses that any tiling
associated with a generic plane cut can be decorated, which is already known from
the very definition of the decoration.

One can describe Σ2 through its intersections with the fibers of π1 or π". We
shall work out the description of Σ2nπ1~1(x/) for all x'eE1, and let us simply
remark here that the intersection of a generic fiber of π" with Σ2 is the set of
boundaries of a tiling of the fiber by means of the existence subdomains of
decorated tiles. For non-generic fibers, one gets as usual a superposition of such
tilings and one can see these fibers as "bifurcation points."

Now, it is most important to observe that any cut which does not intersect Σ2

exactly selects decorated tiles. To see this, we have only to make a local verification.
In fact, consider a cut which does not intersect Σ1 (and thus selects whole tiles) but
intersects one of the new internal partitions of a tile C/ + ξ. Draw a line on the cut,
going through this intersection, and examine what happens in E" for the
projection of the selected tiles: when one follows the projection of the line, one
enters in the tile π^(γI + ξ) through a facet bearing the decoration corresponding to
a certain subdomain of Cl + ξ, and one goes out through a facet bearing the
decoration of another subdomain. But the resulting tile is not one of our decorated
tiles. We can thus conclude that defining the set Σ2 as the new "forbidden set" is the
exact expression of our matching rules in the context of the cut method.

7. The Main Theorem

7.1. We turn now to the description of the set Σ2. The following lemma is the
geometric key of our theorem. Consider a point x' e E1 belonging to only one plane
of π-^ZΊ). Then the following holds:

Lemma 4. The set Σ2r\π^~l(x') admits a 2-dimensional plane as a deformation
retract.

Proof. Since the matter is becoming rather technical, we choose a precise direction
of plane in order to fix completely the notations. So, let x' belong to a plane in
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π-L(Σ2) parallel to { e f

ί 9 e ' 5 } . Then the fiber π1"1^') intersects in addition to the
previous dodecahedra coming from Σ^ a new set of rhombohedra coming from the
internal partitions of the tiles Q. We shall describe them through a strip
projection: as already mentioned, we get a rhombohedron π^(yr) + ξ for all ξ such
that π1"1^') intersects all the boundaries (including the internal ones) of the
rhombohedron π1(y/c), and these ξ are selected through a strip with a profile
x' + 8π:L(y[c) (here the symbol d refers to all the boundaries, including the internal
ones.) Since we are interest only in the cells parallel to the direction {e'1? e'5}, let us
enumerate the relevant rhombohedra. We know already the set of rhombohedra
belonging to Σ l 5 and we are interested now in the contribution of the internal
partitions. They fall in two sets: those which are spanned by a edge and a diagonal
of a facet, and those which are orthogonal to a facet of the rhombohedron. Let us
deal separately with each type.

The two diagonals of facet parallel to the plane [e\, e'5} are e'3 — e'6 and e'2 — e'4,
which are found in the four rhombohedra {e\,e'29 e'4}, {V5, e'2ί e'4}, {e\, £3, e'6}9 {V5, e'3,
e'6}, and for each of them, we get in the fiber a rhombohedron spanned by the
"complementary" vectors. It will be convenient to consider these last rhomboh-
edra as attached to vertices falling under π1 on the symmetry plane Q parallel to
{e\, e'5} of the triacontahedron x/ + π1(y6). We obtain in this way (the notation
{u,v} denotes as usual the parallelogram spanned by the vectors u and v):
- the rhombohedron { — <?3,e5,<?6} through the strip xr+ e's + e'4 + {e\, e'2 — e'4}\
- the rhombohedron {e^.— e^e^ through the strip x' + ef

2 + e'3 + {e'5)e
r

4. — e'2}:>

- the rhombohedron { — e2, e4, e5} through the strip xf + e'2 + er

3 + [e'l9 e'6 — e'3};
- the rhombohedron { — e2, e4, e^} through the strip xf-\-e'2 + er

3-\-{ef

5, e'6 — e'3}.
The second set of internal boundaries comes from the symmetry planes of the
dodecahedra which are orthogonal to their long diagonal. We find such
boundaries parallel to {e\, e'5] in the four rhombohedra (e3, e'4, e'6}, [e'2, £3, e'6}, [e'2,
e'4, e'6}, {e'2, e'3, e'4}. Thus we find in the fiber the corresponding rhombohedra which
are the four rhombohedra with the facet {el5 e5} in their boundary. The profiles of
the associated strips are not so simple to set out: they are made for the thick
rhombohedron of its intersection with two planes orthogonal to a facet direction
going through the small diagonal of the two corresponding facets, and for the thin
rhombohedron of its analogous intersections with two planes going through the
long diagonal of two parallel facets. Observe that these intersections come by
parallel pairs: for instance, one component in the rhombohedron {<?3, e'4, <?'6} is
mapped by the translation e'2 on a component of the rhombohedron {e'2, e'3, e'6}.
Since similar considerations hold for the other component of the same rhomboh-
edron and for the other pair of rhombohedra, one can keep only one component
for each rhombohedron, and consider it as the profile of a strip selecting pairs of
rhombohedra, each pair being made of two rhombohedra symmetric with respect
to the plane {e^e5} and sharing a facet falling in this plane.

Finally, one can synthesize the construction as follows: Consider the
dodecahedron x' + {e'2, £3, £4, e'β}, (the existence domain of the facet {e^e5})
together with its tiling by the four previous rhombohedra. Then the profiles we are
looking for are the intersections of these rhombohedra with the symmetry plane Q,
and since Q is also a symmetry plane for the dodecahedron, their union is easily
seen to be a rectangle. We will content ourselves with this description.
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Fig. 8. The profile of the strip defining the quasiperiodic tilings of

Fig. 9. The six tiles of the tiling of IP

The next step is to show that the union of all these rhombohedra and of the
dodecahedra coming from Σ1 covers a plane and thus can be retracted onto this
plane. This plane is the affine support IP of ^(Qnπ1^6)) along which are
distributed all our polyhedra. To do this, we define a quasiperiodic tiling of this
plane and we show that the tiles are the intersections of the plane with our
polyhedra. Let us consider the 4-dimensional plane M in R6 spanned by (ε1? ε5,
ε4 — ε2?

 εβ ~ £3} which projects on Q in E1 and on IP in E". We construct a tiling of IP
through a strip projection involving the traces of Z6 and y6 on EL One easily
verifies that the profile of the corresponding strip is precisely the intersection of the
triacontahedron with Q (Fig. 8), and that we get in this way a tiling by means of six
tiles depicted on Fig. 9: they are a rhomb, a rectangle, and two pairs of symmetric
parallelograms. Now, all we have to do is to observe that these tiles are the traces of
our polyhedra on IP: the rectangle is the intersection with IP of the dodecahedra
coming from 2^, the parallelograms are the traces of the first set of rhombohedra
discussed above, and the rhombs, which are parallel to [ e i 9 e5}, belong to the
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second set of rhombohedra, which all intersect P on their boundaries. Moreover,
the existence domains of the tiles of this tiling of P exactly coincide with the profiles
of the strips selecting the corresponding rhombohedra (see Fig. 8): the rhomb is on
one hand the existence domain of the rectangle and on the other the profile of the
strip which selects the dodecahedra of I\, each parallelogram is the domain of a
parallelogram of the same type and the profile of the strip which selects the relevant
rhombohedra, and finally the rectangle is the domain of the rhombs and the union
of the strips selecting the pairs of rhombohedra whose common facets falling on P
are the rhombs. This proves that the plane P is completely covered by the
intersection Σ2ππ1~ \x')> Thus we see that this set can be retracted on the plane P,
which proves the lemma.

As a remark, observe that we can reorganize this set of rhombohedra much as
we have done for Σ1. We get in this way a quasiperiodic packing of the three
orientations of dodecahedra for which P is a symmetry plane, which covers P
without holes. Moreover, when xr moves on the plane Q — e'2 — e'3, we immediately
see that for each x' we get another tiling of P, in such a way that the tiling changes
with x', but not the plane it covers. We thus get an "homotopy skeleton" of Σ2

which is very simple: it is a union of 4-dimensional planes parallel to M, and to its
images through the icosahedral group.

Let us describe the situation when the point x' lies on the intersection of two or
more of the planes of Z2. In such a case, we have to consider several symmetry
planes Q and their images P. Since these planes are parallel to the fifteen symmetry
planes of the triacontahedron, it is clear that they intersect either on a two-fold axis
of the triacontahedron or on its center, and this is the second key of our theorem.

Observe that when these symmetry planes intersect on a point, then this point
is either in π1^6) or in the projection of the centers of the hypercubes of R6, and we
find at these points the whole star of fifteen planes. In each fiber of π1 above a point
belonging to an axis, we find the corresponding union of packings of tiles covering
their respective planes, plus other tiles whose vertices come from the edges of the
triacontahedron x' + yό or from the intersections of the internal partitions, and
which "thicken" the intersection of the planes. We do not need to describe these
extra tiles since they do not change anything to the homotopy type of Σ2nπ-L ~ ̂ x'),
which is represented by the union of 2-dimensional planes. Finally, one verifies
that above the projections of vertices or of centers of hypercubes of 2£6, the set Σ2

nπ1~1(x/) has the homotopy type of the union of the fifteen symmetry planes
intersecting on a point.

7.2. We can now state our main theorem:

Theorem. Any tiling of the three dimensional space by Ammann rhombohedra with
matching decorations is a quasiperiodic Penrose tiling.

Proof. We shall compute the homology group H3(1R6 — (Σ2nU)). As shown in
Sect. 5, it is isomorphic to the group #2(Σ2nU), and using the previous lemma, this
group is very easy to compute.

Let us define a retraction by deformation of Σ2nU onto a 2-dimensional
cellular complex. As is well known, such a retraction is an homotopy equivalence
and preserves the homology. We define our retraction by "gluing" together a
family of homotheties which retract each fiber of π1 on a point, and for this we



284 A. Katz

have to choose an homothety center in each fiber. Observe that in the fibers with a
star of fifteen planes we have no choice, since the unique possible homothety center
is the point on which the planes intersect. Now, observe that since along any
symmetry axis starting from such a point in E1, we find another point of the same
kind, it is natural to define the homothety center on each fiber above the segments
thus defined on any symmetry axis, through a linear interpolation between the
endpoints of these segments, which yields a point on the intersection of planes in
the fiber, and finally since these symmetry axes define a triangulation of each plane
in π1(Z2nlU), we choose the center on the generic fibers through a linear
interpolation between the vertices of the triangles, which yields of course a point in
our plane in the fiber.

It is clear that this construction provides us with a continuous retraction of
Σ2nU onto a 2-dimensional complex. Now, observe that the restriction of π1 to
this complex is one to one, since we have exactly one point in each fiber. Moreover,
our choice of the homothety centers entails the continuity of the inverse map π1 ~ ί .
This means that this complex is isomorphic to π^I^nU), which is what we need.

In fact, it is obvious that H2(πL(Σ2r\Vύ) is generated by the boundary of each
cell it defines in E1, so we obtain through duality by intersection a basis of
//3(1R6 — (Z2nU)) made of classes which cross each cell only once. This classes can
be realized by a piece of a plane parallel to E" going through U, closed outside U
by, say, a 3-dimensional hemisphere. This basis is very well suited for our purposes
since it is composed of classes whose intersection indices with the triacontahedra
σξ for ξ eZ6nϋ is 0 or 1: we conclude that we have classified with this basis all the
packing of tiles with matching decorations coming from hypercubes contained
inϋ.

To complete the proof, we have now only to observe that any infinite cut must
yield such a restriction to each U. But since the cells of π1(Σ2πU) shrink to zero
when U becomes larger and larger, this is possible if and only if the cut is a union of
planes, and each of these planes defines a quasiperiodic Penrose tiling. Q.E.D.

8. Comments
As one can see, the structure of the proof is in fact simple, and our approach is
clearly not restricted to the 3-dimensional Penrose tilings. There are three steps in
the general case (which involves a projection from R" onto Rp for p-dimensional
tilings): the first one is to express the matching rules through a "forbidden set"
which must not be intersected by the cut selecting the vertices, and this is the hard
core of our method. The second step is to compute the p-th homology group of the
complementary in IR" of this forbidden set, in order to classify all the possible
packings of tiles defined by such cuts. Finally, to prove that the matching rules
force the quasiperiodicity of the tilings, it remains to show that in each homology
class which defines a tiling, there is a p-dimensional plane: since these packings of
tiles are not whole tilings in general, we have to sort out the homology classes
which correspond to tilings (which are packings without holes nor overlappings).
This is a difficult task in the general case, and we do not know any characterization
of these classes: for instance, a cut will surely define a tiling if it is a section
(avoiding the forbidden set) of the fiber bundle

R"^>EI !,
but this sufficient condition is not necessary.
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It is important to observe that for the matching rules discussed here, this last
step is in fact trivial: we have not to worry about those classes which correspond to
tilings, since the computation of the homology group directly exhibits a basis made
of classes which contain a plane. It is then evident that the classes which define a
tiling are simply the elements of this basis, with a coefficient +1. Technically, this
follows from the strong property that the projection π1(Z2) of the forbidden set is a
deformation retract of Σ2 [recall that this retraction is the composition of a first
retraction of Σ2 onto a set of 4-dimensional planes, followed by a second retraction
on one point in each fiber of π1 and the projection onto π1(Z'2)].

This situation results in a major simplification and it may be useful to describe
the difficulties which arise when this third step is no longer trivial. We shall briefly
examine the case of a simpler decoration of the 3-dimensional Penrose tilings and
the case of the (generalized) 2-dimensional Penrose tilings.

A simpler set of decorations of the two Ammann rhombohedra is readily
obtained from ours by forgetting about the colour of the marks. This corresponds
to a decomposition of the rhombic dodecahedron in only four sectors, involving
the two symmetry planes which contain the main diagonal of the dodecahedron,
and results in only two different decorated rhombohedra of each type.

The study of the forbidden set Σ2 corresponding to these new matching rules
runs as in the previous case, and yields of course a smaller set: specifically, the set
Σ2nπ1~1(x /) (above an x' belong to only one symmetry plane) does not cover
completely the plane P, and it is immediate that the "holes" are the rhombs of
Fig. 9, whose existence domain is the rectangle in Fig. 8, since these contributions
to Σ2 precisely come from the internal partitions of the rhombic dodecahedra
which are orthogonal to the main diagoal and which are missing in these simpler
matching rules.

Accordingly, we find holes in the 4-dimensional planes on which is retracted
Σ2, and the main question concerns the topology of these holes: of course, the
projection π1(Z2) will no longer be homotopic to Σ2, but we need only the equality
of their second homology group to conclude, so that we have to examine if we
change this H2 when we "fill" these holes.

Using for instance the Mayer-Vietoris sequence, it is easy to see that we do not
change the H2 if the holes which we fill in the 4-dimensional planes are
topologically 4-dimensional balls, but we do change the H2 if these holes have the
homotopy type of a cylinder J53 x R, where B3 is a 3-dimensional ball, since its
boundary gives a contribution to H2(Σ2) which vanishes upon the filling. Now, one
can verify by a careful inspection of the local patterns in the tiling of IP that this is
precisely what happens: the holes glue together to form a set of cylinders B3 x IR,
and are thus large enough for a cut to "escape" through them.

From a purely geometrical point of view, one can describe the situation as
follows: a 3-dimensional cut and a 4-dimensional plane generically intersect in R6

along a one dimensional line, so that an hole in the 4-dimensional plane large
enough for the cut to get through must extend at least along a whole line, and this is
what happens in our case.

These considerations suggest that the simpler matching rules do not force the
quasiperodicity. However, let us stress that they do not constitute a proof of
anything, for at least two reasons: we have not studied what happens on the
intersections of the 4-dimensional planes, and we have not shown that the cuts
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which "escape" through the holes actually define tilings without overlappings nor
holes. To get a definitive answer on this question requires more work (see also [13]
and [14] for tentative simple matching rules).

Our last comment will concern the 2-dimensional Penrose tilings. As is well
known (see for instance [9]), they can be obtained through a projection technique
which we recall very briefly below: Start with R5 equipped with the hypercubic
lattice Z5 and consider the group which permutes the five basis vectors. When
decomposing this group action into real irreducible representations, one finds one
invariant line (the main diagonal of R5) and two invariant planes. Then choose one
of these planes as E" and the sum of the other plane and of the diagonal as E1. The
strip construction along E" yields tilings of E" by means of the projections of the
ten 2-dimensional facets of the hypercubic lattice, which are the two Penrose
rhombs, each of which being obtained in five different orientations. The profile K of
the strip is as usual the projection on E1 of the unit hypercube. It is easily seen to be
a rhombic icosahedron, the parallelohedron spanned by the five vectors e'iy
z = l , . . . ,5 of Fig. 2.

There is a specific feature in this construction, which does not exist in the
icosahedral case, and which comes from the fact that the projection π1^5) is not
homogeneous in E1: since E1 intersects Z5 along a 1-dimensional lattice (carried
by the diagonal), π1^5) falls on a set of equidistant planes orthogonal to the five
fold axis of the icosahedron (which is parallel to the diagonal). As a consequence,
the properties of the tilings depend on the position of the icosahedron Kα with
respect to this set of planes, and they fall in classes known as "local isomorphism
classes" (see [14]), which are classified by the position of Kα along the diagonal. In
particular, the original Penrose tilings, for which matching rules are known and
which present strong self similarity properties, are obtained for the translations α
such that the vertices of the icosahedron Kα fall on the previous set of planes. The
other positions correspond to the so-called generalized Penrose tilings.

Let us now turn to the decoration of the rhombs, whose construction is
completely analogous to the icosahedral case: we have to decorate the edges of the
rhombs, and the existence domains of these edges in the icosahedron are again
rhombic dodecahedra. One can easily verify that in order to recover the de Bruijn's
arrowing of the Penrose rhombs, one has to partition the dodecahedra in four
sectors defined by the two symmetry planes intersecting on the long diagonal of the
dodecahedron: on account of the symmetry requirements, one finds that there are
to kinds of marks, which can be identified with the single and double arrows of
de Bruijn.

The next step is to obtain the decorated rhombs which result from these
decorations of the edges. The existence domains of the rhombs are rhombohedra,
and one can see that each rhombohedron is partitionned into four subcells by the
partitions of the dodecahedra attached to the edges of the rhomb. On account of
the symmetry, one gets only two decorated rhombs of each type: one pair are the
classical decorated Penrose rhombs, and the other pair was first introduced in
[15].

Finally, one can observe that the geometry of the existence subdomains of
decorated tiles in the icosahedron is such that when the icosahedron has its vertices
on the planes which carry τιL(E?\ then only the subdomains of the two decorated
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Penrose rhombs are intersected by these planes. Thus we recover the well known
fact that the original Penrose tilings can be decorated using only one thick and one
thin decorated rhomb, while one needs two thick and two thin decorated rhombs
to decorate the generalized Penrose tilings with matching decorations (see [15]).

However, our main concern is with the converse question: is this decoration of
the rhombs sufficient to force the quasiperiodicity of the tilings? As for the
icosahedral case, we switch to the corresponding cut description and we study the
set Σ2 associated to these matching rules, through its traces on the fibers of π1,
which are planes parallel to E".

We give only the results which we have obtained, and we encourage the reader
to work out the details: this is essentially a paraphrase of the previous discussion of
the icosahedral case. Since for a generic x' in E1, the intersection Σ2r\nλ-~l(x'} is
empty, we have first to find the projection πL(Σ2}: it is made of a set of ten dense
families of planes, parallel to the ten directions of facets of the icosahedron. For an
x' belonging to only one of these planes, we look for the set Σ2ππ1~1(x /) This
intersection is a collection of rhombs obtained with a relevant strip, and they are
arranged in a "ribbon" which covers a whole infinite line in the fiber, much like the
corresponding set of rhombohedra covers a whole plane in the icosahedral case.
Let us remark here that the matching rules appear sufficiently strong, in the sense
that if we add more constraints to them (for instance by taking into account the
third symmetry plane of the dodecahedron like in the 3-dimensional case) we do
not change the homotopy type oϊΣ2r\π L~l(x'\ but we only thicken the patch of
tiles which will still cover the same infinite line. Thus we do not find the kind of
difficulty that we have encountered with the simplified matching rules in the
3-dimensίonal case.

The next step is to examine the situation when the point x' is on the intersection
fo two planes. Of course, we find in the fiber π1 ~ 1(x') the union of the two "ribbons"
corresponding to each plane, and the relative position of the two ribbons depends
on the pair of planes under consideration. More precisely, one can observe that
there are five pairs of planes such that these ribbons are parallel: they are the pair
({e\,e'2}, {e'3,e'5}) and the four other pairs obtained through the five-fold
symmetry. Let us now explain why this situation breaks down our machinery.

Recall that the key of our approach is that the forbidden set Σ2 has the same
homotopy type that its projection on E1. In the icosahedral case, this follows from
the fact that we can for any x' retract Σ2nπ1~ l(x') onto a point, and this is possible
because for any x' this set is (homotopically) a union of concurrent planes, and thus
is a contractible set. This is no longer the case for the 2-dimensional Penrose
tilings: in some fibers we find a pair of parallel lines, in others we find a set of non-
concurrent lines, which can be retracted on a polygon but not on a point. Then it is
not true that the group H2(Σ2} is isomorphic to H2(πL(Σ2}} and we cannot
conclude. On the other hand, we cannot claim that these decorations do not force
the quasiperiodicity of the tilings (although this seems likely) because we do not
know how to characterize the classes in H2(Σ2)^ H2(R5 — Σ2) which correspond
to tilings.

As a last remark on this question, let us mention that the special behaviour of
the original Penrose tilings is linked with the following: when the point xf belongs
to one of the planes on which falls πL(E?\ and simultaneously to two planes of
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π1(Σ2) giving parallel ribbons, then these two ribbons overlap in such a way that
their union has the homotopy type of a single line and that we can again retract Σ2

nπ1" *(x') onto a point. With this remark and the constraint of using only the two
decorated Penrose rhombs to build a tiling, it seems possible to prove the
quasiperiodicity of the original Penrose tilings within our framework. Since this
property is already known as a consequence of the work of de Bruijn (see [2] and
[9]), we have not worked out the details.
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