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Abstract. It is shown that in elliptic cohomology - as recently formulated in
the mathematical literature - the supercharge of the supersymmetric nonlinear
sigma model plays a role similar to the role of the Dirac operator in X-theory.
This leads to several insights concerning both elliptic cohomology and string
theory. Some of the relevant calculations have been done previously by
Schellekens and Warner in a different context.

If M is a spin manifold of dimension n, we can consider the Dirac operator i]/>,
acting on a field ψa which is a section of the spinor bundle S. More generally, if R is
any representation of the structure group Spin(n) of the tangent bundle, we can
consider the Dirac operator acting on a field ψΛii α, and i being respectively a spinor
index and an index labeling the representation R; in mathematical terms, ψ is a
section of S® TR, TR being the Spin(n) bundle associated with the representation R
of Spin (n).

In [1], an infinite series of representations Rb i = 0,1,2,... was singled out. The
first few were

9

= A2T@T,

Here 1 is the trivial representation, T is the fundamental (vector) representation of
SO(N), and Ak denotes the fcth antisymmetric tensor product. The special role of
these operators was as follows. Let M be a spin manifold with a compact symmetry
group G. It is sufficient in what follows to consider an S1 [i.e., 1/(1)] subgroup of G.
Let K be the generator of this S1 action. Assuming that the symmetry generated by
K lifts to the spinor bundle, K commutes with the Dirac operator iψ (or a
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generalized Dirac operator acting on sections of S®TR\ so it makes sense to
consider the index of the Dirac operator acting on states ψ with

Kψ = kψ (2)

for fixed k. (As K generates an Sι action, the eigenvalues k are integers or
halfmtegers, depending on whether the Sι action is "even" or "odd", i.e. depending
on whether e2πiκ= +1 or e

2πίκ= — 1.) We will denote the index of the operator iίj)
in the subspace of states obeying (2) as ck. The function £ cke

ιkθ is called the
character-valued index of the Dirac operator.

For the ordinary Dirac operator, i.e. for R0 = l, Atiyah and Hirzebruch proved
that ck = 0 for all k [2]. The proof was a simple application of the fixed point form of
the index theorem [3]. In [4], it was conjectured for the Rarita-Schwinger case,
Rι = T, that the character-valued index is a constant, i.e. that the ck are all zero for
fcφO. (This was proved in [4] for homogeneous spaces. The restriction to /cφO is
necessary, since for HP2 one has c o = — 1 . For odd actions, co = 0 and the
restriction on k is unnecessary.) Trying to prove this conjecture by methods of
equivariant S1 spin bordism, some of whose properties were established in [5],
Landweber and Stong established in [1] that £c fc = 0 if the S1 action is odd and
semi-free (for the action to be semi-free means that every xeMis left fixed by the
identity in S1 only or by the whole group), and moreover that for semi-free S1

actions on spin manifolds the corresponding statement is valid not just for the
Rarita-Schwinger operator but for the whole infinite series of operators indicated
in (1).

Subsequent work [6, 7, 15] showed, roughly, that it is possible to use elliptic
modular forms to write a generating functional for this infinite series of operators.
To be precise, the modular forms in question were modular forms for the
congruence subgroup Γo(2) of SL(2, Z), which can be viewed as the subgroup that
leaves fixed one of the three non-trivial spin structures on an elliptic curve.
Ochanine introduced [6] the notion of an "elliptic genus" and synthesized the
above statements in the following conjecture: for any elliptic genus and any spin
manifold M with S1 action, the character valued elliptic genus is a constant. I will
not here give Ochanine's definition of an elliptic genus, since a notion adequate for
our purposes will appear presently. Progress toward proving this conjecture was
described in [8]; in particular, it was shown that ck = 0 for odd semi-free actions.

In recent work, Landweber et al. have interpreted the elliptic genus as a natural
invariant in a generalized cohomology theory, "elliptic cohomology" [9]. Roughly
speaking, elliptic cohomology is proposed as a generalization of K-theory, the
elliptic genus being related to elliptic cohomology the way the Dirac index is
related to i^-theory. It is then natural to ask whether there is an operator -
analogous to the Dirac operator - whose index gives the elliptic genus. The
purpose of the present paper is to argue that the operator in question is the
supercharge of the supersymmetric nonlinear sigma model, and to indicate some of
the implications of this for topology and string theory.

Apart from the facts cited above, another clue to the connection between
elliptic cohomology and string theory appears in the work of Hopkins, Kuhn, and
Ravenel [10], who computed in elliptic cohomology the Euler characteristic of a
quotient M/G and obtained formulas similar to those that have appeared in
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orbifold calculations in string theory [11]. Some of the key formulas below have
been first written by Schellekens and Warner [12] in their work on anomaly
cancellation. They interpreted equations such as (10) below as a generating
functional of anomalies.

The present paper is mostly explained in "physical" terms. A mathematical
account will be presented elsewhere, with an interpretation of the key formulas in
terms of a fixed point theorem for the natural circle action on a Dirac-like operator
in free loop space, along the lines of [13].

Looking at the representations in (1), a string theorist may well note that the kth

representation in (1) coincides with what appears at the kth mass level of the Neveu-
Schwarz sector of open superstrings. Thus, in this sector, the ground state |Ω> is a
spin(n) singlet. Excitations are created by fermionic creation operators ψl,
k = — Jr, — f, — f,... and bosonic creation operators aι

k, k = — 1, — 2, — 3,.... At the
first excited level, we have \pl_ 1/2 |Ω>, transforming as Γ, at the second level we have
ΐ//_1/2φ

J_1/2 |Ω> and αLJΩ), transforming as Λ2T@T; at the third level we have
^-i/2^J-i/2^-i/2l^X ψi-ί/2<zi-ί\Ω)9 and ψL3/2\Ω), transforming as
Λ3T'®(T'(x)T)©T. Assuming that this continues to all orders, we can write down
the "partition function" or generating functional for the representations Rk. It is

Σqk/2Rk= ® ΛqkT (X) SqlT. (3)
. - 1 1 1 1 = 1 , 2 , 3 , . . .
K 2 , 2 , 2 , . . .

Here ΛtTis an abbreviation for 1 +tT+t2Λ2T+ ... and StT is an abbreviation for
1 + tT+t2$2T + ..., with SkT being the fcth symmetric tensor power of T. In (3), q is
a formal variable; one is to expand in powers oϊq, the coefficient of qk/2 being the fcth

representation in the series (1). The Dirac index for spinors with values in the
graded representation (3) is a power series in q which can be regarded as the
universal elliptic genus; a particular elliptic genus can be obtained by setting q to a
definite complex value.

Now, we discuss precisely what operator has the elliptic genus for its index. We
will consider a closed type II superstring with Ramond boundary conditions for
right movers and Neveu-Schwarz boundary conditions for left movers. The right
moving Ramond boundary conditions give spinor quantum numbers, and the left-
moving Neveu-Schwarz boundary conditions give the series of operators (1).

Let Q be the supercharge of the right moving degrees of freedom:

Q = 7 dσgij(X\σ)) d + Xι(σ) ψj

+(σ). (4)
oo

Its square is the Hamiltonian Lo of the right moving modes. In (4) gtj is the metric of
M and σ is a standard angular parameter; Xk are coordinates of the manifold M
and ψk are their superpartners. Let (— \)FR be the operator that counts right-
moving fermions modulo two. Then

ρ(-if*+(-if*ρ=o, (5)

and we are tempted to define the index of Q to be the number of zero eigenvalues of
Q with (— 1)FR = + 1 minus the number with (— 1)FR = — 1. The correct notion in
this context, though, is a more refined character-valued index. Q commutes with
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the momentum operator

P = L0-L0, (6)

which generates a rotation (δσ = const) of the circle S1 on which the sigma model is
defined. We denote as bλ the index of Q restricted to the subspace Hλ of Hubert
space in which P = λ. We then define the character-valued index of Q to be

F(q)-=Σb,qλ- (7)
λ

What values of λ appear as eigenvalues of P ? At first sight one might expect
that they are integers, since P generates a rotation of Sι, and one might expect that
exp2πz'P = l. This is wrong for several reasons. First, because of the leftmoving
Neveu-Schwarz boundary conditions, a 2π rotation of the circle multiplies the
quantum state by a factor of (— \)FL. Second, looking at things from a path integral
point of view, the 2π rotation of the circle is an example of a modular
transformation (τ->τ +1). Under this transformation, there is a global anomaly in
the fermion determinant, and the quantum wave function acquires a phase e~

ιπd/8

under a 2π rotation, d being the dimension of M. The correct operator statement is

exp 2πίP = ( - 1 f1^ exp - iπdβ . (8)

The eigenvalues of P are therefore of the form / = H - - , where n is an integer,
16 2

even or odd for ( — 1)FL= + 1 or (— 1)F^= — 1. The —d/ίβ is just the ground state
energy of the Neveu-Schwarz sector. Since the exp( — iπdβ) in (7) comes from a
topological invariant, a global anomaly in the fermion determinant, quantum
corrections in the sigma model do not shift this factor from its free field theory
value.

We thus rewrite (7) as

F(q) = q'ά/16Σhιq
ι/2 (9)

leZ

to emphasize that the eigenvalues of P range over a known, discrete set. We now
can assert that the bb being integers, must be topological invariants, unchanged
under any smooth deformation of the nonlinear sigma model under discussion. In
particular, we can go over to a limit in which the radius of M is very large, that is, in
which the metric of M is g = ί2g(0), where g(0) is some fixed metric and we take
f-»oo. The spectrum of Q can then be worked out in a systematic expansion in

powers of 1/ί. In flat space, states of Lo = 0, L0=P= h - have quantum
16 2

numbers S®Rt. Therefore, in the leading large t approximation, the Q eigenvalues

with small Lo and P— h - are just the eigenvalues of the ordinary finite
16 2

dimensional Dirac operator iϊj) acting on sections of S®Rt In particular, bι is
equal to what we will call index (Rj), the index of the Dirac operator in this
representation, and thus

X ^ V / 2 . (10)
1 = 0, 1,2,...
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Using the characterization (3) of the Rk and the ordinary Atiyah-Singer index
theorem [14] to determine the integers index (Rt), we have

ch (x) AqkT (x) ^ 7 Λ [ M ] . (11)

While not obviously equivalent to the original definitions of the elliptic genus,
(11) can be shown to be equivalent to them [9]. Indeed, one can show from (11) that

with η(q) the Dedekind eta function, and Φ(q) a modular form of weight d/2 for the
congruence subgroup Γo(2) mentioned earlier. Φ(q), which according to (11) is
determined by characteristic numbers of the manifold M, is what has been defined
in [6, 9] as the elliptic genus. This has been proved explicitly by Landweber [9]
and Zagier [15]. The explicit formulas that arise are similar to what we will meet in
Eq. (16) below.

However, the simple modular properties of (11) have a natural "physical"
explanation. We can write

F(q) = TrqLoqLo(-ί)FR, (13)

since, in the usual way, states of L o φ 0 will cancel out of the trace. Equation (13)
can then be represented by a path integral on an elliptic curve defined by a lattice
(1, τ) in the complex plane (q = e2πn). The subgroup of SL(2, Z) that leaves fixed the
right-moving Ramond and left-moving Neveu-Schwarz boundary conditions is
Γo(2). The path integral representation makes it clear that \F(q)\ is Γo(2) invariant;
the behavior of the phase of F(q) under Γo(2) involves the global anomaly noted
earlier. It should be noted that, up to phase, the product (η(q)η( — q)/η(-q1/2))d

transforms with weight d/2; this is why Φ(q) has weight d/2.
The ring of modular forms for Γo(2) is isomorphic to C[δ, ε], where δ and ε are

generators of weight two and four, respectively. In [9], it has been found that
periodic cohomology theories can be obtained with Z[£] [ δ ^ ε " 1 ] or

£ 5, ε,(<52 — ε)" 1 ] as coefficient ring.
In fact,

so the quantum field theory is producing Φ(q) ε(qll2)~d/8 for the elliptic genus. This
perhaps is a suggestion that it is ε that should be inverted in defining the
cohomology theory.

The remainder of this paper will be devoted to a brief discussion of
mathematical and physical applications of the connection between quantum field
theory and the elliptic genus.

Considering first mathematical applications, let us examine in the light of
quantum field theory the question which motivated the development of elliptic
genera and elliptic cohomology. Thus, as in our initial comments, let M be a spin
manifold with S1 action, generated by K. We have then a more refined notion of a
character valued index. The supercharge commutes with the S1 x S1 action
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generated by P and K. Let bltk be the index of the supercharge Q for states of

P=-^p + Lκ = k. Thus,
16 2

ΎτqLoqLoeiθκ(-l)FR = q~d/16Σbι kq
ι/2eikθ. (15)

We know that bhk = 0 for / <̂  0 since the Hamiltonian of the quantum field theory is
bounded below. Actually since the blk are topological invariants, they vanish if

-f - is less than the ground state energy in the large radius limit.
16 2

Consequently

bltk = 0 if Z<0. (16)

We would like to prove that bι k = 0 if fcφO.
To do so, we generalize the problem and consider a one parameter family of

theories with "twisted boundary conditions." Without spoiling supersymmetry, we
can consider a one parameter family of nonlinear sigma models, with boundary
conditions

, (17)

=-eiaKψ'L{σ).

Mathematically, this means that (for instance) σ->X(σ) no longer defines a map
S1—>M, but a section of a twisted M bundle over S1.

With the boundary conditions (17), the operator relation (8) is modified to

exp2πiP = {-lfLexpiocK exp - ^ - , (18)
8

since now a 2π rotation of S1 brings about an extra transformation by emK. This
shifts the allowed eigenvalues of P, which are now of the form

d n oik

where k is the eigenvalue of K and n is as before. At general α, (15) is thus replaced
by

TrqL°qL°eiθκ(-l)FR = q~'"lt> Σ bnΛ(a)qn'2 + amπem• (20)
n,k

By continuity, the integers bnk(a) are independent of α. Setting α = 2π, we learn
from (20) that

ΎΐqLoqLo{-l)FR = q-d/iβΣbnfkq
n/2 + keikθ. (21)

n,k

But α = 2π is equivalent to α - 0 . So, comparing (21) to (15), we find

bnΛ = bn + 2kΛ (22)
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Iterating the identity (22) t times, for any integer t, we learn

Together with (16), this gives us the desired result

feΠifc = 0 for fcφO. (24)

To make this argument into a rigorous proof, a cut-off version of the nonlinear
sigma model might suffice. The cutoff of [16] or [17] might be suitable. The
properties of quantum field theory used in the argument are relatively modest and
certainly do not include relativistic invariance.

Continuing with our discussion of mathematical applications of the connec-
tion between quantum field theory and the elliptic genus, we note that alternative
nonlinear sigma models will give rise to alternative elliptic genera. For example,
consider an N = ̂  supersymmetric nonlinear sigma model with right-moving
fermions only, coupled to the spin connection of the manifold M. Adopting
periodic boundary conditions for the right-moving fermions (in both σ and τ
directions), one sees that

G(q) = TrqLoqLo(-\)FR (25)

will transform simply under the full modular group SL(2, Z) [SL(2, Z) invariance is
violated only by the global anomaly], since the fermion boundary conditions are
5L(2,Z) invariant. The formula analogous to (11) is

G(q) = q-V24 ίΛ(M)ch (gζ SqlT\ [M]. (26)

This will have a simple transformation law under SL(2, Z) provided M is a spin
manifold with px(M) = 0, so that the nonlinear sigma model is free of anomalies. In
fact, under this condition

where Φ(q) is a modular form of SL(2, Z) of weight d/2. The latter statement is
closely related to observations by Schellekens and Warner [12] concerning
anomalies. They and independently Zagier [15] obtained the formula

<%) = exp ( Σ 7^7 G2k(q) Σ uA, (28)
\k=i(2k)l i /

where the u{ are formal eigenvalues of the curvature two form, and

G2k=-^ + Σ^2k-1(n)q" (29)

is the Eisenstein series of weight 2k. The G2k are modular forms (of weight 2k) for
k> 1. G2 will not appear in (28), so that Φ(q) will be a modular form, precisely if
£M? = 0, that is if p1(M) = 0. [The nonlinear sigma model under discussion only

i

makes sense if in addition M is a spin manifold; this is not needed in order for Φ(q)
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to be a modular form, but it is needed in order for G(q) in (27) to be the character-
valued index of an operator, and so to have integral ^-expansion.]

Finally, we can consider an N = \ supersymmetric nonlinear sigma model with
additional left-moving degrees of freedom. This is the case most closely related to
heterotic strings. If M is endowed with an N dimensional vector bundle V with
structure group SO(N\ and we introduce N left-moving fermions coupled to F,
with (say) Neveu-Schwarz boundary conditions, then (11) is replaced by

(x) ΛqkV (x) Sβ,7Λ[M], (30)
1 ^ 1 1 = 1 . 2 . 3 . . . . )

2 , 2 , 2 , . . . /

which might be interpreted as the elliptic index of a vector bundle. If one adopts
Ramond boundary conditions for left-moving fermions, (30) is replaced by

_ (d-N)

H(q) = q~ 2 4 (A(M)ch\(A+(V)-A4V)) (x) Λ.qlVSqlT])lM}9 (31)
V L / - 1 , 2 , 3 . . . . \)

where A+(V) and A_(V) are the positive and negative spinor bundles associated
with V. The conditions for the quantum field theories that give (30) and (31) to
make sense are w2(F) = w2(T) = 0, Pι{V) = p1(T). [In the case of (31), the former
condition can be relaxed to w2(F)=-w2(T).] Under these conditions, (30) and
(31) lead to modular forms of level two and level one, respectively. The genus
(31) is unstable, in contrast to the others considered earlier. It is roughly a
generalization to elliptic cohomology of the Euler characteristic of a vector
bundle.

If M admits an S1 action, one may wonder whether the genera (26), (30), (31) are
governed by theorems analogous to the theorem governing the original elliptic
genus (11) whose proof we sketched earlier. [In the case of (30) and (31) it is
necessary to assume that the S1 action lifts to an action on F ] Such theorems
indeed exist, but the situation is subtler than that surrounding (11) because of the
possibility of anomalies in the S1 action. To avoid such anomalies, all statements
about pγ must be replaced by equivariant statements. If BS1 is the classifying space
of the group S1, and M is a manifold with S1 action, there is by definition of BS1 a
corresponding fiber bundle X over BS1 with fiber M. T and V are then the
restrictions to M of bundles T* and F* over X. One says that Pι{T) = p1(V)
equivariantly if Pi(T*) = p1(F*). This is the condition for the S1 action on M to be
anomaly free in the nonlinear sigma model. Under this restriction, the genera (30)
and (31) are governed by the same statement as (11): the Sι character-valued
generalizations of these genera are constants. A subtler theorem arises if /^(T*)
— pχ(V*) is not zero but is the pullback to X of a cohomology class on BS1. In this
case, the anomaly in the S1 action is purely a c-number, and the S1 character-
valued generalizations of (26), (30), and (31) are not constants but transform as
Jacobi forms [18]. I will discuss these matters elsewhere.

Finally, we will devote the rest of this paper to physical considerations
concerning elliptic cohomology. If one asks in field theory whether a space-time
manifold M is "the same" as a space-time manifold M', the answer is that this is so if
and only if M and M' are isomorphic topologically. Indeed, topology is by
definition that which cannot change continuously in field theory.

The answer to the analogous question in string theory is much less obvious.
Even if M and M' are distinct in the sense of field theory, they might be isomorphic
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in string theory. One way to pose this question involves considering nonlinear
sigma models. For simplicity, consider first bosonic sigma models. The simplest
class of sigma models on a manifold M depends on the choice of a metric gu on M.
The action is

l^^σdX^X^X^σ)) (32)

with Σ being a Riemann surface. More generally, giving expectation values to
vertex operators of massive fields, we consider

I1 = ψ2σ{dX d«Xj

gij(Xk(σ)) + daX> d«χi dβX
ι dβ Xmuijlm{X\σ)) + . . . ) , (33)

a sigma model with arbitrary couplings.
Now, in the generality of (33), it is not at all obvious that topologically distinct

manifolds give rise to distinct sigma models. Given a simple sigma model (32) on
some manifold M, perhaps with some cunning choice of couplings it is equivalent
to a complicated quantum field theory (33) on the manifold AT. In this case, the two
manifolds M and AT would really be equivalent in string theory; by suitable
adjustment of couplings in (33), one could interpolate smoothly from a simple
quantum field theory on M to a simple one on A/'. The case of a group manifold,
which under appropriate conditions gives the same sigma model as a flat torus, is
an example of this [19].

The issue is thus to distinguish topologically not just between manifolds M and
M but between quantum field theories in which the target spaces are M and AT. To
gain some insight into this question, we must find topological invariants
associated with quantum field theories. For bosonic sigma models, it is not clear
how to do this. For supersymmetric sigma models, though, the situation is
different. Given a sigma model with (1,1) supersymmetry, that is, with both left-
and right-moving ]V = 1 supersymmetry, we are free to choose fermion boundary
conditions for both left- and right-moving modes. We have seen that with left-
moving Neveu-Schwarz boundary conditions and right-moving Ramond bound-
ary, we can extract a topological invariant, the elliptic genus. If the elliptic genera
of two manifolds M and M' are not equal, then the (1,1) supersymmetric sigma
models based on M and M' are topologically distinct. Likewise, by choosing
Ramond boundary conditions for both left- and right-movers, we can compute the
ordinary supersymmetric index Tr(— 1)F, which equals the Euler characteristic of
M. We conclude that the sigma models based on M and M' are topologically
distinct if M and AT have distinct Euler characteristics. The appropriate elliptic
genus, but not the Euler characteristic, is likewise an invariant for sigma models
with right-moving supersymmetry only.

These are some of the simplest topological invariants of nonlinear sigma
models, but there are certainly others. For instance, apart from the ordinary Dirac
index, one has in conventional Riemannian geometry mod 2 counterparts of the
Dirac index which appear in 8/c-f 1 and 8fc + 2 dimensions. In 8fc +1 dimensions,
the mod 2 index arises because the spinor bundle is real, and the Dirac operator ilj)
is imaginary and hermitian. It follows that if λ is an eigenvalue of φ , so is — λ, with
the same multiplicity. From this one at once deduces that the number of zero
eigenvalues of φ is a topological invariant modulo 2 [14].
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An analogous argument is possible for supersymmetric nonlinear sigma
models. The role of complex conjugation is played by the CPT operation (9, an
anti-unitary operation which we can take to obey Θ2 = l. Let Q be the right-
moving supercharge. The argument will depend on the nature of the left-moving
degrees of freedom in a way that will become clear.

Assuming that there is only one right-moving supercharge, ΘQΘ must be a
multiple of β,

ΘQΘ=±Q. (34)

However, the sign + 1 on the right-hand side of (34) depends on the dimension d of
the target manifold M and the choice of left-moving degrees of freedom. The sign
can be determined as follows. Since the possible values are discrete, the sign is a
topological invariant and can be computed by going over to the large radius, field
theory limit. In that limit, Q reduces to ilf) acting on spinors with values in some
vector bundle F which depends on the choice of left-moving degrees of freedom. (F
is simply determined by the ground state in the left-moving Hubert space.) If, for
instance, left-moving spinors are absent, or obey Neveu-Schwarz boundary
conditions, or describe E8 current algebra, F is trivial. In that case, the
conventional analysis shows that in 8fc-f 1 dimensions, the sign in (34) is —1.

Just as in the classical situation, the relation ΘQΘ=— Q for appropriate
nonlinear sigma models in 8fc +1 dimensions means that the number of zero
eigenvalues of Q is a topological invariant modulo 2. Actually, we can do better. As
Θ and Q commute with the momentum operator P, one obtains a mod 2 invariant
for each eigenvalue of P. It is interesting to speculate that these might sum up to
some kind of mod 2 modular form.

Similar remarks could be made about mod 2 invariants for sigma models in
8fc + 2 dimensions, but I will forgo a discussion of this subject here. Further
remarks about the role of the world-sheet CPT operator in string theory can be
found in the appendix.

A further comment about topological invariants of sigma models is in order.
Even if two manifolds M and M' have different dimension, the corresponding
sigma models might be isomorphic. For instance, in the case of bosonic sigma
models, a model defined on a group manifold can be equivalent to a model defined
on a flat manifold of dimension much lower. However, we will now argue that for
supersymmetric sigma models there are strong restrictions on this phenomenon.

We have already seen in the discussion surrounding Eq. (34) how to extract a
dimension dependent invariant from a supersymmetric sigma model. One could
try to proceed in a similar vein and find the whole mod 8 periodicity of the Clifford
algebra as an invariant of sigma models. I will instead use another, simpler
argument to this effect.

Consider first sigma models with (1,1) supersymmetry. Pick Ramond bound-
ary conditions for right-movers and Neveu-Schwarz boundary conditions for left-
movers. Then, as we have already discussed, in connection with Eq. (8), the global
anomaly

exp2πϊP = (-l) f l-exp(-ϊπd/8) (35)

is a topological invariant. In particular, the expression (— l)F^exp( — iπd/S) is an
invariant property of a nonlinear sigma model, independent of a particular
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description of the model in terms of a manifold M. At first sight, this might seem to
show that the dimension d of M is an invariant mod 16. Actually, the overall sign of
the operator (— VfL is ill-defined [this operator is defined abstractly by saying that
it anti-commutes with left-moving fermions, a property that defines (— 1)FL only up
to sign], so d is really only an invariant mod8.

Now consider a sigma model with (0,1) supersymmetry. Pick Ramond
boundary conditions for right-movers, and assume that the left-moving internal
degrees of freedom are a modular invariant combination, for instance trivial. Then
(35) is replaced by exp2πiP = exp — ίπd/12. This means that for such sigma models,
d is an invariant modulo 24.

The above comments on topological invariants of nonlinear sigma models are
certainly far from complete. The hope should be that a proper variant of elliptic
cohomology will emerge as the correct framework for this discussion, unifying the
above observations and pointing the way to new and perhaps less obvious
invariants.

In conclusion, the supersymmetric nonlinear sigma model plays in elliptic
cohomology a role similar to the role of the Dirac operator in X-theory. Elliptic
cohomology is thus likely to enter in illuminating the mysterious generalization of
ordinary geometry and topology afforded by string theory. A properly developed
theory of elliptic cohomology is likely to shed some light on what string theory
really means.

Appendix. CPT Conservation on the World Sheet and in Space-Time

In this appendix I will briefly describe another role of the world sheet CPT
operator, beyond that described in the text.

CPT conservation is well known to be a general property of quantum field
theory. String theory generalizes quantum field theory in a still largely mysterious
way. It is incumbent upon us to ask whether CPT is conserved in string theory.

We certainly do not understand string theory well enough to prove a general
CPT theorem in string theory. However, we can ask whether CPT conservation
holds in the framework of the calculations that we are currently able to perform.

Nonlinear sigma models offer a general framework for discussing effective four
dimensional physics. Compactification on M 4 x K can be described by a suitable
sigma model. Why should CPT be valid in this framework?

A typical consequence of CPT is the equality of particle and anti-particle
masses. Why should this hold in the framework of sigma models?

Given a particle of mass m and charge e, we must show that there is another
particle of mass m and charge —e. In the context of sigma models, particle masses
m are eigenvalues of the sigma model Hamiltonian H. H commutes with the world
sheet CPT operator (9, which however anticommutes with conserved charges.
Conservation of Θ thus ensures that for every H eigenstate with eigenvalue m and
charge e, there is an H eigenstate with eigenvalue m and charge — e. Thus, the
equality of particle and anti-particle masses in space-time follows directly from the
world-sheet CPT theorem. This is an illustration of a general rule by which space-
time phenomena are manifestations of analogous world-sheet phenomena.
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