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Abstract. In this paper, we construct the Quillen metric on the determinant
bundle associated with a family of elliptic first order differential operators. We
also introduce a unitary connection on λ and calculate its curvature. Our results
will be applied to the case of Dirac operators in a forthcoming paper.

In [Q2], Quillen gave a construction of a metric and of a holomorphic connection
on the determinant bundle of a family of fi operators. On the other hand, Bismut
gave in [Bl] a heat equation proof of the Atiyah-Singer Index Theorem for families
of Dirac operators [AS1] using the superconnection formalism of Quillen [Ql] . In
this paper, we extend the construction of Quillen [Q2] to the case of an arbitrary
family of first order elliptic differential operators.

More precisely, let M-+B be a compact fibering of manifolds and let D+ be a
family of first order elliptic differential operators. D+ can be considered as a smooth
section of H o r n ( # + , # * ) , where f ί+, H™ are infinite dimensional Hermitian
bundles over B. If λ is the line bundle (det Ker D + )* (x) (det Coker D +), we construct a
metric and a unitary connection on λ, and we calculate the corresponding curvature.

To explain the construction, let us temporarily assume that H+, H™ are instead
finite dimensional Hermitian bundles over B which have the same dimension. In this
case λ can be identified with (det H+)* ® det H™, and so is naturally endowed with a
Hermitian metric || ||. Clearly detD+ is a section of λ.

Let D_ be the adjoint of D+, and set

H"0 = H°^®HC2; D = \ " . (0.1)

ID+ 0 J
Then

| |detD + || = [ d e t D _ D + ] 1 / 2 = [detD 2 ] 1 / 4 . (0.2)
Also if H +, H™ are endowed with a unitary connection V", λ is also endowed with

a unitary connection *V. Where D+ is invertible, we have for YeTB,

^ y d e t D + = d e t D + T r [ D ; 1 ^ y D + ] . (0.3)

By [Ql] , the graded algebra End H 0 0 is endowed with a trace Tr and a supertrace
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Trs. We rewrite (0.3) in the form

^ ^ (0.4)

Also since D is self-adjoint, Ίr[D~ίΫyD'] is real, and T r J T ) " 1 ^ ! ) ] is purely
imaginary. Finally observe that

d L o g H d e t D + I I ^ T r C D - ^ D ] . (0.5)

Equations (0.3)-(0.5) fully suggest how to define a metric and a connection when
H+, H™ are infinite dimensional. In fact in [Ql], Quillen used the zeta function
renormalization of the determinant to define the metric || ||. This is also what we do
here. In the right-hand side of (0.4), we should now make sense of Trs[Z>~ 1^MD]. The
idea is to use a heat equation-or zeta function-renormalization and so define
formally,

T r J T T ^ D ] = Fp(Tr s[exp(-ίD2)D-1^"D]), (0.6)

where Fp is an adequately defined finite part of the right-hand side of (0.6) as t J, | 0 .
The real miracle is that the right-hand side of (0.6) naturally appears when

transgressing in the most natural way the heat equation formula for the Chern
character ch(KerZ)+- KerZ)_) obtained in Bismut [Bl, Sect. 2] by using the
superconnection formalism of Quillen [Ql].

Our paper is organized in the following way. In a), we describe the fibered

manifold M->B. In b), we introduce the unitary connection V" on the infinite
dimensional bundle H00. In c), using [Bl,Sect. 2], we prove the analogue of the
results of Atiyah-Bott-Patodi [ABP], i.e. express ch(Ker D+ — Ker D_) in terms of
certain asymptotic expansions. In d), we transgress Quillen's superconnections so
that the right-hand side of (0.6) appears naturally. In e), we calculate asymptotic
expansions related to the right-hand side of (0.6). In f), we describe the determinant
bundle λ as in [Q2].

In g), we construct the Quillen metric on λ. In fact we here consider a family of
metrics because of certain scaling discrepancies. In h), we calculate what will later be
the connection forms of λ.

In i), we prove a key additivity property of Quillen's superconnections. This
permits us in j) to construct the connection 1V on λ and to calculate its curvature.
Finally in k), we prove that in a product situation, *V is holomorphic. This extends
the results of Quillen [Q2].

In [BF2], we will apply our results to the case of a family of Dirac operators. A
future paper by Freed [F] will discuss geometric and topological aspects of this
work and give many examples, particularly related to anomalies. The results
contained in this paper have been announced in [BF1].

a) Description of the Fibered Manifold

n = 2/ is an even integer, and m is an integer. M, B are smooth manifolds of
dimension n + m and m. gB denotes a metric on TB. Z is a compact connected
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manifold of dimension n, which we assume to be orientable and spin, π: M -• B is a
z

fibration of M on B, which is modelled on Z. There is then an open covering % of B
such that if t/e<2f, π'ι(U) is diffeomorphic to U x Z. For ye£, Z y is the fiber

We assume that TZ is oriented and spin. Let gz be a metric on TZ. 0 denotes the
SO(ft) bundle of oriented orthonormal frames in TZ, 0' a Spin(ft) bundle which lifts
0 such that O'^O induces the covering projection Spin(ft)->SO(ft) on each fiber.

σ

Spin (ft) acts unitarily on the vector space of spinors S = S+@S_. Let F =
F + © F _ be the Hermitian bundles of spinors, F = Or x spin^S, F+ =Of xSpin(/i)
S±. Let THM be a smooth subbundle of TM such that

= THM®TZ. (1.1)

THM, TZ are the horizontal and vertical parts of TM. Let Pz be the projection
operator of TM on TZ associated with the splitting (1.1).

We identify THM and π*TB. THM inherits the scalar product gB of TB. We
denote by gB ® gz the metric of TM, which coincides with gB on TB, with gz on TZ
and is such that THM and TZ are orthogonal.

Let VL be the Levi-Civita connection on TM.

Definition 1.1. V denote the connection on TZ

V = PZVL. (1.2)

In [Bl, Theorem 1.9], it is proved that V does not depend on gB. V lifts naturally
into a unitary connection on F±. ξ is a Hermitian bundle on M, which is endowed
with a unitary connection, which we also note V. The Hermitian bundles F± ® ζ are
then naturally endowed with a unitary connection V.

b) Connections on Infinite Dimensional Bundles

™ denotes the set of C00 sections of F ® ξ = (F + ® ξ) 0 (F_ ® ξ) over
M. As in [Bl], we will consider H"°, H + as being the sets of C00 sections of infinite
dimensional bundles over £, whose fibers H™, H^y are the sets of C00 sections of
F®ξ, F±®ξ over the fiber Zy.

For seK, ye£, let Hs

y, H
s

±y be the set of sections of F ® ξ, F± ® ξ over Zy, which
belong to the s-Sobolev space. Contrary to if00, Hs is noί a smooth bundle over B,
but is only continuous.

Let dx be the Riemannian volume element in the fibers Z. H™ is naturally
endowed with the Hermitian product,

h,h'eHy

x>-+(h,hfy=\ (h,h')(x)dx. (1.3)

For yeTB, let Γ" be the lift of Y in THM, so that

YHeTHM, π*YH=Y. (1.4)

We now define a connection on H+ as in [Bl, Definition 1.10].
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Definition 1.2. V denotes the connection on iί 0 0 which is such that if heH™,

VYh = VYHh. (1.5)

By [Bl, Proposition 1.11], the curvature R of V is a first order differential
operator acting fiberwise. Although V is unitary on F ® ξ, V is in general not unitary
on H 0 0, since the volume element dx is not invariant under the holonomy group of
the connection V. However a mild modification of V makes the new connection
unitary.

In fact, let Y be a smooth vector field on B. YH acts on the fibration Z, and in
particular on the volume element dx of Z. For any xeM, the divergence divz(YH) of
YH with respect to dx is well defined. One readily verifies that Y-+άivz(YH)(x) is a
tensor.

Definition 1.3. k denotes the smooth vector field in THM such that for any YeTB

divzY
H(x) = 2(k,YHXx). (1.6)

V is the connection o n H 0 0 defined by the relation

ψγ = Vγ + (k,YHy. (1.7)

Proposition 1.4. The connection V" is unitary on H0 0.

Proof. If h, fc'eH00, we have the relation

The Proposition is now obvious. •

c) Quillen's Superconnections and the Chern Character of Ker D + — Ker D _

D + y is a smooth family of first order elliptic differential operators acting fiberwise on
Z, which sends H+>y into H™ y. D_ y denotes the formal adjoint oϊD+ y with respect
to the Hermitian product (1.3). Dy is the operator acting on H™ = if? y Θ H _ y,

tf00 = //? 0 H™ is a Z 2 graded vector bundle over B. Let τ be the involution of//00

defining the grading, i.e. τ = ± 1 on //+. End//0 0 is naturally Z 2 graded, the even
(respectively odd) elements of End//0 0 commuting (respectively anticommuting)
with τ. If A is a trace class operator acting on H™9 we define its supertrace Tr s A by
the relation

T r s 4 = TrτA (1.10)

End Hf ® A (T*B) is also Z 2 graded. We extend Tr, Tr s to trace class elements A
in End Hf ® A (T*B). Tr A', TrsΛ' are now in A (T*B). We use the convention that if
ωeΛ(T*B),

i4/]. (1.11)
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For any t > 0, Vu + JtD is a superconnection on H°° in the sense of Quillen [Ql] .
By [Bl,Sect.2] (Ψ + ̂ /tD)2 is an elliptic second order differential operator acting
fiberwise, which is even if End #°° ® Λ(T*B).

exp - (Vu + φD)2 is then even in End H°°®A (T*B) and is given by a C00 kernel
Tt(x,x') along the fibers Z. By noting that Tt(x,x) is even in
End(F®ξ)x®Λπ(x)(T*B), and using the convention (1.11), T r ^ T ^ x ) ] is an even
element of A (T*XB).

If £ is a complex vector bundle over B endowed with a smooth connection whose
curvature is L, set

ch^^Trexp-L. (1.12)

chxE is a scaled representative of the Chern character of E. If ωeA(T*B\
ωU) denotes the component of ω in Aj(T*B). If B is compact, by [AS1],
KerZ)+ - KerD_ is a well-defined element of K(B).

We first state a general result which is the natural extension of Atiyah-Bott-
Patodi [ABP].

Theorem 1.5. For any t > 0, the C00 differential form over B

Tr s exp - (Ϋ« + ψD)2 = f Tr s [Tt(x, x)]dx (1.13)
z

is closed and its cohomology class does not depend on t. IfB is compact, it represents in
cohomology ch1(KerZ)+ — KerZ)_). As tHO, for any keN,

Trsexp - (Ϋ» + φD)2 = £ α / ^ + o(ίfc,y), (1.14)
-n/2-[m/2]

(fl; ) are C00 differential forms on B, and o(tk,y) is uniform on compact sets in B.
For p even (respectively odd) a{2p) is real (respectively purely imaginary). Forj Φ 0, â  is
exact. a0 is closed and is in the same cohomology class as (1.13). // B is compact, a0

represents in cohomology cl^ (KerD+ — KerD_).

Proof The first part of the Theorem is proved in [Bl, Theorem 2.6] when V" is
replaced by V, and follows from [Bl, Proposition 2.10] in general.

Also by Greiner [Gr, Theorem 1.6.1], for every yeB, we have the asymptotic
expansion

Tr sexp - t(Ψ + D)2 = £ a'fy)t> + o(tk',y). (1.15)
-n/2

In (1.15), (a'j) are C00 differential forms on B, and o(tk',y) is uniform on compact
subsets of B, because the fibers Z are compact.

Let φt be the homomorphism from A(T*B) into itself which to a one form ω
associates ω/yjt. Clearly

Tr sexp - (Ψ + VίD)2 = Φ,[Trsexp - ί(V" + D)2]. (1.16)
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Also for 0 ^ p ^ [m/2],

By choosing k! large enough, we obtain (1.14). The final statement in the theorem
also follows from (1.15), (1.16).

Let ψ be the linear mapping from End if00 ® A (T*B) into itself which to B = A
dyai- dyap associates B' = dyap dyaiA*, where A* is the formal adjoint of A.
Clearly

(Vu + φD)2 = (VM)2 + Vί(V"D) + ί/)2. (1.17)

Since Vu is unitary, its curvature (^")2 takes values in skew-adjoint elements of
End Z/00. Also since D is self-adjoint, for any Ye TB9 V

U

YD is self-adjoint. We then find
that

= D2, (1.18)

and so

φ(Vu + φD)2 = (-Ψ + φD)2. (1.19)

We then obtain

ψ(exp - (¥u + φD)2) = exp - ( - ^ " + ^/ί/))2. (1.20)

Since Trs vanishes on odd element of End f/00, we get

Trs </φxp - (Vu + Vίi))2) = Tr sexp - (Vu + φD)2. (1.21)

If /I is trace class, clearly Tr s/1* = TτsA. From (1.21), we find that if p is even
(respectively odd) [Tr sexp - (Vu + φD)2~\{2p) is real (respectively purely imaginary).
The corresponding statement on (ctj) follows.

Let c be a C00 cycle in B (so that dc = 0). Clearly, by the first part of the theorem,

(1.22)
c

does not depend on t. Using (1.14), we find that j α 0 coincides with (1.22) and also
c

that J a}f = 0 for y # 0. The theorem is proved. Π
c

Remark 1. The family D gives a map from B into the classifying space Z x BU^.ln
general, the differential forms (1.13) and a0 represent in cohomology the pull back of
cohomology classes on Z x BU^ through the mapping D. This is proved in
Theorem 1.5 when B is compact, and follows from Theorem 1.5 in general by
restriction to compact pieces in B. The results which follow will be true for any
parametrizing manifold B.

d) Transgression of the Chern Character

For s > 0, e~sD2 is given by a C00 kernel on Z. e~sD2VuDD is then a 1-form on B with
values in trace class elements of End//00.
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We now prove a fundamental transgression formula.

Theorem 1.6. For 0 < t < T < + oo, the following identity holds:

[Trs exp - (V" + Vί£) 2 ] ( 2 ) - [Tr s exp - (Vu ^

(1.23)

Proof We will do formal computations, which are justifiable using C00 kernels as in
[Bl,Sect.2].

By proceeding as in [Bl, Proposition 2.10 and Remark 2.3],

—Trs[exp - (Ψ + sD)2] = - d Tr s [D exp - (V" + sD)2],
OS

and so

| - T r s exp - (V" + sD) 2] ( 2 ) = - d\Ίvs D exp - (sΨD + s 2 D 2 )] ( 1 ) . (1.24)
OS

By DuhameΓs formula we have

1

exp - {sVuD + s2D2) = exp - (s2D2) - Jexp - v(sΨD + s2D2)
o

sVMDexp(-(l -v)s2D2)dv. (1.25)

Now V"D being of degree 1 in Λ(T*B\ we have

1

[exp - (sVuD + s 2 D 2 )] ( 1 ) = - J exp ( - υs2D2)sVuD exp( - (1 - v)s2D2)dv.
o

Since by [Ql], Trs vanishes on supercommutators, we get

[Trs D exp - (sΨD + s 2 D 2 )] ( 1 ) = - s Ίvs [exp - s2D2VuDD\ (1.26)

Equation (1.23) follows from (1.24), (1.26). •

e) Asymptotic Expansions of Traces and Supertraces

We now calculate certain asymptotics of traces and supertraces and in particular the
small time expansions of both sides of (1.23).

Theorem 1.7. For any t > 0, the function ^Tr[exp — tD2~\ is real, and moreover

4 T r [ e x p - ί/)2] = - tΊr[exp(-tD2)VuDDl (1.27)

There are C00 real functions A-.n/2~- Ay-on B, and C00 purely imaginary 1 forms
B-n/2'Bj-on B such that for any keN, as ίJ,|0,

Σ Ajtj + o{t\y),
-nil

k

: - X dAjtj-ι+o(tk-\yl
-nil
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Trs[exp(-ίD2)V"DD] = - £ B / " 1 + o(tk~\y). (1.28)
-nil

The various o(tk~ι,y) are uniform on compact subsets of B. Also

dBj = - 2jaf\ - n/2 £j < + oo. (1.29)

In particular dB0 = 0.

Proof Equation (1.27) is trivial. The first line of (1.28) follows from [Gr, Theorem
1.6.1]. Using (1.27), and differentiating the right-hand side of (1.28) we obtain the
third formula in (1.28). Using the same procedure as in (1.17)—(1.19), we find
immediately that Tr s [exp — tD2VuDD~\ is purely imaginary. Differentiating the
parametrix of e~tD2 as in Greiner [Gr, Lemma 1.5.5], we obtain the third line in
(1.28). Using (1.14), (1.28) and comparing the asymptotic expansions of both sides of
(1.23), we obtain (1.29). •

Remark 2. Άo, BQ will play an important role in the sequel. We will prove in [BF2]

that Bo is exact.
We will use the following trivial identities;

(1.30)

Note that in the right-hand side of (1.30), the first term is real, and the second purely
imaginary.

f) The Determinant Line Bundle

The determinant bundle of the elliptic family D+ is the bundle whose fiber λy at yeB
is

λy = (det Ker D + J* ® det (Coker D + J.

Since the dimension of Ker D+ y may jump as y varies, λ is not yet a smooth line
bundle. We now follow Quillen [Q2] to explain how to turn λ into a smooth line
bundle.

Take yoeB. Let J be a finite dimensional subspace of H^ y o which is transversal
to Im(D + y o)[if+ y o] in H°_ >yo. A possible choice for J is KerD_ y o. Using the local
triviality of M -> B, we can as well assume that J is now a smooth subbundle of H™ y o

over an open set U in B containing yθ9 such that the transversality assumption still
holds at any yeU. Since D+ is elliptic, D + 1 J e / / + .

Consider the exact sequence

0-»KerD + - • D ; 1 J-^ J->CokerD + ->0 ^ 3 1 )

We can canonically identify λ and det(D + x J)*(χ)det J by the following construc-
tion. Take s # 0 in det (Ker D+\ s' ΦQ in det (Coker D+). s can completed into
s A s e d e t φ ; 1 J) with S Λ S / 0 . Similarly take ? in ΛdimCokcrD+(J) whose image in
det(CokerD+)is sf.

Then s(χ)(s Λ S)*®(S' A DS)®S'* is non-zero in det(KerD+)(χ)
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det(D;1J)*®det J®(CokerD+)* and does not depend on s, s, s', sf. We can
thus identify s*®s'eλ with (s A S)*®S' Λ Dsedetφ; 1 J)*®det J. (detD;1/)*®
det J is a smooth line bundle over U. If J' is another smooth subbundle of H™ having
the same properties as J, one easily verifies that when identifying (det D + * J)* ® det J
and (detD+1J')®det J' with λ, the transition maps are smooth.

λ then becomes a smooth line bundle over B. We now proceed as in [Q2], Clearly

D2JD-D+ 0 Ί
L 0 D+D_J

The spectrum of D2 is discrete, the non-zero eigenvalues of D + D_ and D_D + agree,
and the corresponding eigenspaces are mapped isomorphically by D. For a > 0 not
in the spectrum, let Ka

± be the sum of the eigenspaces for eigenvalues less than a.
Then since D2 is fiberwise elliptic, Ka

± consists of C00 sections of F± ® ξ over Z.
The exact sequence corresponding to (1.31) is now

->0. (1.32)

Set

λa = (det Kβ

+)* ® det Ka_. (1.33)

X+ are smooth finite dimensional subbundles of H™ over the open set Ua =
(aφSpQcD2). λa is then a smooth line bundle over Ua. We identify λ and λa over (7α

as before. For a, b with a < b not in the spectrum of D2, let K{"yb) be the union of the
eigenspaces corresponding to eigenvalues μ with a< μ<b. K{"'b) are smooth
subbundles of H£ over UanUb. Set

2(α'6) = (det K (ί'δ))* ® det K^ 6 ). (1.34)

Let D^b) be the restriction of D+ to X(ί'b). Z)+ maps K^b) into X(^'6).
Clearly, over UanUb

The identification of λa and λb via λ is given by the mapping

seλa -+ 5 ® det D{£b)eλb. (1.35)

g) Quillen Metrics on λ

As subbundles of # + , the bundles Ka

± over Ua or K{°yb) over Uan Ub inherit the
Hermitian product (1.3) of H±. The bundles λa, λ{a'b) are then naturally endowed
with metrics | |α, | \{a>b).

Over UanUb, Ka

± is orthogonal to K{°>b\ It follows that if seλa,

I s ® det D(£b) \b = I s Π det D(ί'b) |(α'fc).

When identifying λ with λa or Ab, the metrics | \a and | \b are related to each other
by
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To correct this discrepancy, we will proceed as in Quillen [Ql], using a zeta function
regularization of |detD+1.

Definition 1.8. Over Ua, Pa is the orthogonal projection operator from H°° =
//? θ if - on Ka = K\ ® Ka_. Qa is the operator

Since Ka

± are smooth bundles in H£, Pa is a smooth family of regularizing
operators over Ua.

Definition 1.9. For seC, a > 0, ye£/fl, set

ί^) = i T r [ ( [ D ] 2 Γ m (1.37)

or equivalently

£α(s) is exactly the zeta function of the operator D-D+ restricted to the
eigenspaces whose eigenvalues are larger than a. Since Pa is trace class, using (1.28),
we find that as ί | jθ,

£ / ). (1.38)
-n/2

Also since α > 0 , Tr[e~ ί ί ) 2βΛ] decays exponentially and uniformly over compact
subsets of Ua.

Using (1.38), we find that as is well-known (see Seeley [Se]), ζa(s) is holomorphic
for Res > n/2 and meromorphic on C. Moreover ζa is holomorphic at 0 and C"(0) and
dζa

y/ds (0) are smooth in yeUa.
For 0 < α < 6 < + αo,we can also define ζ[a'b){s). Clearly

ζa(s) = ζia>b)(s) + ζb(s). (1.39)

Also we have the trivial relation

| ^ ^ l (140)

μ is now a fixed real number.

Definition 1.10. \\ \\a denotes the metric on λa which is such that if leλa,

(1.41)

We now have the natural extension of Quillen [Q2].

Theorem 1.11. Under the canonical identification of λ with λa over Ua, the metrics
|| ||a patch into a smooth metric || || on λ over B.

Proof. Using (1.35) and (1.39), the result is obvious. •
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Remark 3. In Quillen [Q2], it turns out that Ao is constant. Here the reader may ask
why we introduce the factor μA0 in (1.41). In fact for b > 0, consider the new family
bD +. The new metric on λ is now bΛo || ||. AQ{y) should be thought of as the formal
dimension of//+ r However since Ao varies with y9 this dimension is anomalous.
The introduction of the parameter μ permits us to consider all the scaled metrics
altogether.

h) Construction of Connection Forms

We temporarily assume that 0^a<b^ + oo. Let P(a>b) be the orthogonal
projection operator on K{aM. In particular p(a> + 00> = Qa.

Pfb) is the restriction of P ( f l '6 ) to Kfb\

Definition 1.12. °V(fl'b) is the connection on K{**b) defined by the relation

Oy(α,b) _ p(a,b)^u^ (1.42)

Since Ψ is unitary on H 0 0, °Ψa*] is unitary on K{a*\ For 0 < a < b < + oo, °V(α'fc)

induces a connection on λia'b) which is unitary for | \{a'b\ In the sequel, if 0 < a <
+ oo, over U\ we write °Ψ instead °V(0'α).

We first prove a technical result.

Proposition 1.13. Vu Pia>b) interchanges K{£b) and Kfa)®K(b> + CX)\ Also

)l (1.43)

Proof. Since (P(a'b))2 = P(a "\ we get

The first part of the proposition is proved. Since D commutes with p(a>b\ the first line
of (1.43) is obvious.

Also

* 1 ^] = -tTv[exp(-tD2)¥uDDPiab)l

ί D 2 ) ^ " P ( β * ) ] . (1.45)

By the first part of the proposition, the last term in the right-hand side of (1.45) is 0.
The proposition is proved. •

Since Pa is a smooth family of regularizing operators, using Theorem 1.7, we have
the expansions as ίjjO,

nil

-nil

£ Bjt*'1+ 0(l9y). (1.46)
-nil
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Still Ίr[exp(-tD2)VuDDQa~] is real and Tr s [exp(-ίD 2 )^"DDβ f l ] is purely
imaginary.

The analogue of (1.30) is now

We now define a family of one forms on Ua.

Definition 1.14. For £>0, y% δa

t are the C0 0 differential forms over Ua,

-f OO + 00

ft= \ Ti[e~sD2¥uDDQa]ds, δa

t = J Ίrs[e~sD2ΨDDQa~]ds. (1.47)
( I

Similarly for 0 < a < b < + oo, t ̂  0, yf'b\ δf b) are the C°° differential forms over
UanUb,

y(a,b)=

t

'>]ds. (1.48)

Theorem 1.15. F^r ΛWJ; ί > 0,

(1.49)

/Is ί | j θ , we have the expansions,

y< = Σ d / l ; - + d ^ o Log(ί) + f0 + 0(ί, y),
-»/2 J

<̂ = Σ β j - + β o Log(t) + δ°0 + 0(t, y), (1.50)
-n/2 7

w/iere }»o. ^o a r e C™ ί-forms on U", which are respectively real and purely imaginary,
and O(t,y) is uniform on the compact subsets ofU". Also the following identities hold:

dζ"(O) = dA0, <ί ̂ C ( 0 ) l =-fo~ r(l)dA0,

f0 + Γ(l)dA0 = -(

δ"0 + Γ'(ί)B0 = (sTrs

δa

0) + r(l)(dA0-Bon=-(SΎtl(D.D+)-%D+)-1VD + Qamθ). (1.51)

dA0 (respectively — Bo) is the residue at s = 0 of

Tr[(D 2 )- s £)- 1 ^ u Dρ α ] (respectively Tr s[(£>2Γ sD-1^uD<2α]). (1.52)

For 0<a<b< + oo, on UanUb,

θ O0 ) -
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Proof. Using Proposition 1.13, we obtain easily the first part of (1.49) (with our sign
conventions!).

Also for t > 0,

iΓ o Ί
ya

t=\\ Ίv[_e-sD2VuDDQa-\+ £ dA^'1 Ids
<L -»/2 J

+ oo - 1 A A - 1 A A

+ J TΓCe-^V-DDβ^ώ- £ ^ + Σ ^ ί J ' + ̂ 0Log(ί). (1.54)
1 -n/2 J j=-n/2 j

Using (1.45), we find that as ίJ,J,O, the first integral in (1.54) has a limit. We thus
obtain (1.50).

Also for Re(s) large enough,

dζa(s) = - - j - 7° ts Tr 0 ~ tD2VuDDQa]dt
Γ(s) o

-w/2

X^+why (L55)

The first equation of (1.51) now follows from (1.46) and (1.55). When comparing
(1.54) and (1.55) we obtain the second equation of (1.51).

By Atiyah-Patodi-Singer [APS1, Proposition 2.9], we know that

dζa(s) =-sΎr [{D2ys- 1VuDDQr] = sTr [(D 2 )" S D" ι¥uDQal (1.56)

We thus obtain the third equation of (1.51).
The fourth equality in (1.51) can be proved by proceeding as in (1.54), (1.55). The

end of (1.51) is trivial. Using (1.55), we find that dA0 is the residue at s = 0 of dζa{s)/s.
The result on Bo can be proved by still proceeding as in (1.55).

The first two equations of (1.53) are trivial using (1.47). Also by the obvious
analogue of (1.49) for y[a'b) which is valid at t = 0, we have

)l (1.57)

With our sign conventions, we clearly have

)

The theorem is proved. •

Remark 4. (1.52) shows that

s

(1.59)
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where φa, φa are holomorphic at s — 0, and that moreover

/ 0 + Γ{\)dA0 = - φa(0X δa

0 + Γ(l)B0 = ψa(0). (1.60)

Also observe that if the family D is replaced by bD with b > 0, dA0, Bo do not vary,
but ya

0, δ
a

0 are changed into ya

0 + 2 cL40 Log b, <5Q + 2B0 Logb. In view of (1:51), this
again appears as a scaling discrepancy. This problem will be considered in more
detail in [BF2].

i) Additivity Property of Quillen's Superconnections

Let Da be the restriction of D to Ka. Over ί/α, the Z 2 graded bundle Ka = K\ © K°. is
endowed with the superconnection °Vα + yJtDa. We now relate this superconnec-
tion to the superconnection Vu + J

Theorem 1.16. On Ua, the following identity holds:

[Trs exp - (Vu + VίD) 2] ( 2 ) = Tr s [exp - (° Ψ

Proof. H™ splits into

H^ = Ka

±®Kf + ̂ \ (1.62)

Let Ϋ be the connection on H°° which preserves the splitting Ϋ = °Vfl 0 °V(α'+ co). Set

Ma = Vu-Ϋ. (1.63)

Mα is a one form with values in End H™. Recall that by Proposition 1.13, ψPa

±

interchanges Ka

± and K(^ + 00). We claim that with respect to the splitting (1.62), we
have

o -Vupa

U o )• (L64)

In fact if h is a section of Ka

±,

ψh = ¥u(Pah) = (^"Pα)/ί + PaVuh. (1.65)

With respect to the splitting (1.62), for any YeTB, Ma(Y) is odd, and so

Tr sM
f lέΓ ί Z ) 2 = 0. (1.66)

By proceeding as in (1.24), we have

^ ]. (1.67)

Since Ma is of degree 1 in the Grassmann variables, we get from (1.66),

^ T r s [exp - (Ϋ- + lMa + V^) 2 ] J = 0. (1.68)

(1.61) is proved. •
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j) A Unitary Connection on λ

We are now ready to define a unitary connection on λ.

Definition 1.17. xVfl denotes the connection on λa over Ua given by

i ψ = OΨ + l ( y S _ ^ + i ( Γ > ( 1 ) _ μ)(dAo _ Boy ( L 6 9 )

We now prove the fundamental result of this section.

Theorem 1.18. Identifying λ with λa over Ua, the connections x Ψ patch together into a
connection 1V on λ, which is unitary for the metric || ||. The curvature of1 V is given by
a{o2).

Proof Recall that °Vα is unitary on (λa,\ \a). To check that ιVa is unitary on
(A, || | |), we can disregard δa

0 and Bo which are purely imaginary. Using the second
line of (1.51), it is clear that ιΨ is unitary with respect to || ||.

Take 0 < α < f? < + oo. Let / be a smooth section of λa over UanUb. Clearly

°Vfe(/ ® det D^b)) = °Ψ I ® det D^b) + / ® °V(α'6) det D^b\ (1.70)

Using the last equality in (1.53), we get

°V\l® detD{ί>b)) = (°Va + %γ%>b) - δ^b)))l®dQtD^b\ (1.71)

Using the first two equalities in (1.53), we find that

1 Vb(/ ® det D{ί>b)) = 0 Vα /) ® det D^b\ (1.72)

Using (1.72), we find that the connections xVα patch together.

We now use equality (1.61). Clearly since Ka is finite dimensional,

lim [Tr sexp - (°Vα 4- yjtϋ)2~]{2) = [Tr sexp~(°VΛ) 2] ( 2 )= -Tr s [°V f l ] 2 . (1.73)

An easy extension of Theorem 1.6, shows that for 0 < t < T < + oo,

Tr s exp - (°V(fl'+ 00) + jtD^ + °°))2 - Tr s exp - (°V(α> + 00) -f

= -^]ττs[Qxp(-sD2)VuDDQa^ds. (1.74)

Since a is > 0,as T\ + oo Trs[exp-(°V( f l' + 00) + 7TZ)(f l' + 0O))2] decays exponenti-
ally. We find that

By differentiating the second line of (1.50), we find that as ί | | 0 ,

dδa

t = Σ dBjζ + dB0 Log t + Λ5J + 0(ί, y). (1.76)
-»/2 J

Using (1.14), (1.73), (1.75), (1.76) and identifying the coefficients in the expansions
of both sides of (1.61), we get
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α ( o 2 ) = - T r s [ o V β ] 2 - ^ a o (1-77)

Now - T r s [ ° V ] 2 is exactly the curvature of A" for the connection 0 V. Also by (1.51),

df0 = 0. Using (1.77), and the fact that dB0 = 0, we find that the curvature of ^ is

«(o2) D

k) Holomorphic Properties of *V

In [Q2], Quillen constructed a unitary holomorphic connection on the determinant
bundle of a family of d operators over a Riemann surface.

We now will prove that under the assumptions of [Q2], our connection
coincides with Quillen's connection by proving that *V is holomorphic. As in [Q2]
we will work in a product situation.

To simplify the notations, we now assume that B = C and that M = Z x C. H™ is
now a constant bundle over C. We assume that D+ depends holomorphically on
yeC, and ¥u

d/dy, V
u

dl?9 are the operators d/dy, d/dy.
Let J be a finite dimensional subspace of H™Ot _ which is transversal to Im

D+ t J,0[H+ fyJ. (det/); 1 J)*®det J is holomorphic on a neighborhood of y0. λ
inherits the corresponding holomorphic structure. D _ y is antiholomorphic in y. The
eigenspaces Ka are not holomorphic bundles. However λa, which is canonically
isomorphic to λ inherits the corresponding holomorphic structure.

Take y0 e Ua. Set J = Xfl_ tyo. V is a small neighborhood of y0 in Ua such that Pα_ is
one to one from J into KΛ_ >y when yeV. Then P\ is one to one from D + 1J into Ka+.
In fact if xeD^J and P%x = 0, then

and so D+x = 0, i.e. x e K e r D + . Then x = P + x = 0. Since Pa+ is one to one, if
me(detD+ίJ)*, i^.me(detX+)* is well-defined.

Proposition 1.19. Over V, the mapping

is the canonical isomorphism of(detD+1 J)*®det J and λa via λ.

Proof. We take s, s, s\ sf as in f). We can here assume that s'edet(KerD_). Clearly

P"+{s AS) = SA Pa

+s, Pa_(s' A D + s) = s' A D+ {P\s). (1.79)

Since P% is one to one from D ; 1 J into Ka+, s A Pa

+s^0. So

FUs A s)*®FL{$ A D+s) = {s A J^+s)*®? Λ D+{Pa

+s). (1.80)

Using the canonical identifications with λ given in f), the proposition follows. •
The second key step is the following:

Proposition 1.20. The connection °Vfl on λa is holomorphic.

Proof Clearly d/dy D+ =0. We now must prove that if h is a holomorphic section of
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D+iJ®J over V, then

°Va

d/δy(Pa

+®Pa-)(h) = 0. (1.81)

Clearly

a

+ ®Pa-)(h) = j-Tr^Γp^P'UP'V)- 1

+ Trχα_Γp^P<L(P«_Γ1l \(P*+ ® FL)(h). (1.82)

In (1.82), (P")" 1 denotes the inverse of Pa restricted to D+*J or J.
Since P f l_D+ = D + P f l

+, we find ((d/dy)PiL)D + = D + (d/dy)Pa

+, and so on K°+,

Let PKQTD+ be the orthogonal projection operator on KerD ± . Using (1.83) and
the fact that1/)* is one to one from [ K e r D + j 1 into [ K e r D . ] 1 , we find that the
difference of traces appearing in (1.82) is given by

- T r t o D Γ p f a D A i * + ( / ^ (1.83)
+L δy J L fy j

Now (P+)" 1 is the identity on KerD ± . Also by Proposition 1.13, δ/δy Pa sends
Ka

+ in its orthogonal, and so

~ ~ (1.84)

Equation (1.83) is 0. The proposition is proved. Q
We finally obtain

Theorem 1.21. The connection XV is the unique holomorphic connection on λ
preserving || ||.

Proof. Since d/dy D+ = 0, using (1.51), we find

<5αo) + Γ'{\)(dA0 - Bo)] { £ ) = 0.

Similarly, by (1.59) one finds easily that

Since °Vfl is holomorphic on λa, XV is also holomorphic. The theorem is
proved. •

Remark 5. On complex manifolds, the Dirac operator is given by D = 3 + 5*, and so
in general D+ cannot be embedded in a holomorphic family.

However in the case considered by Quillen [Q2] where the fibers have complex
dimension 1, D+ = d, and so D+ can depend holomorphically on a parameter.
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