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Ultraviolet Stability of Three-Dimensional Lattice Pure
Gauge Field Theories*
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Abstract. We prove the ultraviolet stability for three-dimensional lattice gauge
field theories. We consider only the Wilson lattice approximation for pure
Yang-Mills field theories. The proof is based on results of the previous papers on
renormalization group method for lattice gauge theories.

Introduction

In this paper we give the first, simplest application of the results of [2]-[7]. In these
we have developed the renormalization group approach to gauge field theories, in
the form proposed by K. Wilson in [24,25]. We prove here ultraviolet stability of
lattice approximations to three-dimensional pure Yang-Mills field theories. We
give a simple proof, following the method of [8]-[10] on three-dimensional Higgs
model, i.e. a proof using some special features of superrenormalizable models, but we
use also Wilson's ideas on the role of scaling transformations. More exactly in lattice
gauge theories we use improvement of regularity properties of typical gauge fields
instead of non-existing scalings. In fact we use these ideas in the proof of finiteness of
the resulting effective theory, and this aspect of the proof is non-perturbative,
although we use the superrenormalizability and perturbative expansions to produce
this effective theory. This makes the proof especially simple and short. It is based on
almost all results of the papers [2]-[7], and we assume that the reader is familiar
with these, especially with notations and definitions. Reading [1] is recommended
for those who want to get enough information to read the present paper
independently of the others.

An awkward and difficult aspect of the paper is a formulation of results. At the
beginning we start with a general and simple formulation, and then we make it more
precise when we develop our method. Thus let us explain at first in very general terms
what we understand by the ultraviolet stability. This notion is strictly connected
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with the renormalization group approach. We start with the action density

(1)

where U is a gauge field configuration on the torus T,gl = g2s*~d = g2ε(d = 3\A(U)
is the Wilson action, and £ is a constant including normalization terms and vacuum
energy renormalization counterterms. This constant can be defined perturbatively
by a finite order expansion of the integral §dU (gauge fixing term) exp[ — (l/#o)
A(Ό}~\ with respect to g, but we prefer to give an inductive definition during the
proof. To the density p0 we apply successively the renormalization transformations
T described in [1,4]. This yields a sequence of densities pk defined inductively by

Pk+ί = Tpk. (2)

The density pk(U) is a function of configurations U defined on the lattice T(fc). It is
convenient to assume that all the lattices T(k} are unit lattices, but if we rescale the
initial lattice T to the ε-scale, i.e. we consider the model on the lattice Tε, then the
density pk is defined on LVlattice T(£lε. We terminate constructions of the densities
pk when we reach the unit lattice, or more exactly when US^SQ, where ε0 is a
positive constant depending on the coupling constant g only. Let us denote by K the
index satisfying this equality, i.e. Lκε = ε0. Obviously K depends on ε and ε0.

The ultraviolet stability means that the actions pκ have bounds independent of
the lattice spacing ε. In our case field configurations have values in the compact Lie
group G, hence bounds are in uniform norms, and can be written in a simplest way as

^ pκ(U) g e°^τ'\ Tε\ = £ ε3, (3)
xeΓε

with a constant 0(1) depending on g and ε0 only. The function χ(U) is a characteristic
function of the domain

l/(5p)-l <8 l, pc7Y>, (4)

where ε1 is a sufficiently small positive constant, which will be chosen later. The
constant 0(1) goes to oo as 0->0. To get a better bound we have to write explicitly
the expression divergent with g. It is also convenient to generalize bounds to the
whole renormalization group flow, that is to the whole sequence pk9 k = 0, 1, . . . ,X.
Thus the ultraviolet stability for the flow means the sequence of bounds

) --^A"(Uk(U))- 0(1)| Γf|
L 9k J

χ(C/)exp ^Ai(Uk(U)) - 0(1)| Γf| gp t (t/)gexp 0(1)| Tf , (5)

where Uk(U) is the minimal configuration constructed in [7] and determined by the
configuration U on T'*', and satisfying (4),

A"(Uk(U)) = £ ίΓ^l
"•=T,

gk = g(W\ 1 7f > | = £ 1 = £ η3 = (L*eΓ
3| TJ,
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and the constant 0(1) is independent of ε, /c, gk in a bounded set.
Now we can formulate the main result of this paper.

Theorem 1. The lattice approximations of the three-dimensional pure Yang-Mills
theory with a semi-simple compact group Lie G are ultraviolet stable in the sense that
the sequence of densities ρk, constructed by the inductive definition (2), with p0 given by
(1), satisfies the bounds (5).

The above theorem can be generalized to a much wider class of compact Lie
groups, as it will be clear from the proof. We have restricted ourselves to semi-simple
groups because then the proof is particularly simple.

The bounds (5) imply bounds for partition functions, i.e. for the integrals
§dUpk(U), hence by normalization identities

Z\ (6)

they imply uniform in ε bounds for the partition function Zε.
In the proof of the above theorem we concentrate mainly on the proof of the

upper bound, we make only few remarks about the easier lower bound. The proof is
divided into four sections. In the first we describe the procedure in the first
renormalization transformation. The second section gives a description of a precise
bound for the general density pk. In the third section we give an inductive proof of
this bound. The last, fourth section contains a discussion of the results.

Let us mention finally that the proof is very sketchy and we do not discuss many
technical details. It is so because we intend to improve several aspects of the proof,
and here we develop only main ideas.

Since the publication of the first papers in this series, i.e. since the Boulder
conference, the new papers [16, 17, 18] have appeared.

A. A Discussion of the First Renormalization Transformation

In this section we analyse operations necessary to calculate Tp0. With each positive
term in the action A(U) we connect a restriction on field variables 17, which is a
restriction on the corresponding plaquette variable. We introduce the decompo-
sition of unity

l\<£l}}, (7)
P peP pePc

where the sum is over sets P of plaquettes of the lattice T. We choose the number εx in
the same way as in the papers on the Higgs model, i.e. we take εx = 00P(0o)> where
P(0) = &o(l + log^~ 1)po, pQ > 2 and b0 is a sufficiently large absolute constant. Next
we proceed as in [9], that is to each term of the decomposition we assign a subset
Ω1 c T1 defined as a union of big blocks, i.e. blocks of the size M l 5 of the unit lattice
T19 such that their distances to P are >ΛM1. We take R = R1(l +log#0~

1)r° =
JR^^o). By this definition p <= Ω\ , in fact dist(P, Ω^ > RM1, and plaquette variables
of field configurations are small in a neighbourhood of Ω±. We can take a
neighbourhood Ω0 such that Ω0\Ω1 is a union of big blocks with distances to Ω{

smaller or equal to R^M^. Now we perform a partial resummation over all P
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determining the same domain Ω1, and we write the decomposition (7) as

1= Σ ίflίXfl,, (8)
admissible Ω\

where χΩl involves the characteristic functions in (7) connected with plaquettes
peΩl , i.e. plaquettes with at least one comer belonging to Ω1 . The meaning oϊζΩc is
clear.

The underintegral expression in Tp0 is invariant with respect to gauge
transformations u fixed to 1 at points of the new lattice T(1), i.e. u(y) = 1 for j;eΓ(1).
We remove this freedom in the domain Ω1 by a simple Faddeev-Popov procedure,
using the identity

Π ί Π du(x)δAx(y)(U«)=l, (9)
yeΩ(ί) xεB(y),x*y

WtΉ Π
xeB(y),x

We obtain the following equality

Ωι

~ (10)

where

<W)(^)= Π <W^)
y^γ

Let us consider a term in the sum on the right-hand side above. For each plaquette
peP, where P is one of the sets occurring in the definition of ζΩc , we have

20§'

(U)
and by the definition of g0 = gε1/2 the number on the right-hand side is smaller than
any positive power of ε. This small factor controls the part of the integral over a
neighbourhood of the plaquette p, for example a neighbourhood of the radius RM ̂ ,
as in [9]. Thus the subintegral over Ω\ is controlled by the small factors connected
with ζΩc, and we have to consider the subintegral over Ωl. This subintegral we
calculate by the saddle point method. At first we have to find critical points of the
action A(U) on the region of integration. If a configuration U belongs to this region,
then it satisfies the regularity conditions U(dp) — 11 < g0p(g0) on the domain Ω0,
and by Proposition 1 from [4] the configuration V — U satisfies the conditions
I V(dp') - 11 < 2L2#oP(0o)on Ω(Q}' We fix a configuration U = K0 on Ω\ and we look
for critical points of the functional

U-+A(U) forU:U=V0 on Ω\, U=V onβ^, (12)

U satisfies axial gauge conditions on Ω1.
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For g0 sufficiently small 2L2g0p(g0) <al9 where a1 is the constant in Theorem 1
[7], hence there exists the exactly one critical configuration U1 in a space of regular
configurations satisfying the conditions in (12). Such a space contains the region of
integration, so there is at most one critical point in the region. We make a change of
variables in the integral over Ω^ taking U = U'U1. The new variables U' are called
fluctuation fields, and the minimal configuration Uί is called a background field.

The configuration U1 satisfies the regularity conditions \ U 1 ( d p ) — l \
< 2£300p(00) on Ω1, hence U1, U'Ul satisfy the assumptions of Lemma 1 [6] with
α0 = 2L2#300p(00), 0^=0, and the lemma yields the bound \V —1|
< 8 32L2£300/?(#0) for g0 sufficiently small. We enlarge the region of integration to
all configurations V = eiA 'satisfying \A'\ < 16 32L2 B3g0p(g0) on Ωί. Thus we get the
inequality

Ωι

X

Ota Π
b'cΩCί Γ i Ί

fdl/ /rβ l5((t/ /l/ι)(t/ι)" 1)^x(β 1)( t 7 /)χ /exp -^A(U'UJ-E I (13)
L do J

where

Xι= l\^({\V(dp'}-\\<2L2g,p(gQ}}\

l({\A(b}\<\6'¥L2B^p(gQ)}\

and where we have put Uf = 1, Ul = V0 on Ω\.
Now we write the integrals over U' in terms of the variables A. For the

expressions in ^-functions defining the renormalization transformation we have

(14)

where the second equality follows from the definition (89) (or (63)) in [4], and the
gauge fixing conditions. Properties of the function Q(A) = Q(U l , A') were described
in Proposition 3 [4]. It is an analytic function of A with the decomposition

(15)

where β = β((7 J is the linear averaging operator defined by (124) [4], and C(A) is an
analytic function with an expansion beginning with a second order polynomial. The
^-function in (13) can be written as

7)(c)(L/1(c))-1)- Π -δ(Q(A',c))9 (16)

where the (5-functions on the right are defined on the vector space g, and
concentrated at the origin of this space. The constant σ0 will be discussed later. To
write the integrals (13) as Gaussian integrals with small and local interactions we
have to change variables in order to linearize the functions Q(A, c). It is possible to
do it separately for each function Q(A\ c), so the whole transformation will have
good locality properties. Thus we are looking for a function D(A, b, c) satisfying the
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equation

Q(A - D(A, c\ c) = (QA)(c) - QD(A, c) + C(A - D(A9 c\ c) = (QA)(c\ (17)

or

Let us denote by b0(c) the bond bεB(c) and contained in c (let us recall that B(c) is the
set of bonds connecting the blocks jB(c_), J3(c+), i.e. the set of bonds b such that
b _ e B(c -\b + eB(c + )). We assume that D(A, b,c) = Q for all b φ bQ(c). This assures the
locality properties. We have analyzed the equations of the type (17) several times
already, see Sect. E in [6], Sect. C in [7]. There exists a unique solution D of this
equation for A sufficiently small, and it is an analytic function of A with a Taylor
expansion beginning with second order terms. Denoting the terms by D(2\A], we
have QD(2)(A, c) = C(2)(A9 c\ and inspecting the formula (124) [4] for Q we see easily
that D(2)(A,b0(c)9c) can be expressed as a linear operator on g acting on C(2\A,c).
More generally we can get a system of recursive equations for terms in the expansion
of D. The function D(A,c\ similarly as Q(A',c)9 depends on A restricted to
£(c_)u£(c + ). It is this locality property which simplifies analysis of interaction
terms in the integrals.

To write the integrals (13) in terms of the variables A we express the Haar measure
dU' as dU' = σ(A')dA' = σ0 σ/σ0 (A')dA', σ0 = σ(0), where dA is the Lebesque
measure on g, and σ(A') is a density which can be calculated explicitly for all classical
groups. For example for SU(2) we have σ(A)=l/2π2 (sm\A\/\A\)2, where \A\ =

3 3

Σ (Aa)2, and an element A of the Lie algebra is represented as A = ]Γ σaA
a, σa

α = l Λ = l

are the three Pauli matrices (generators of the Lie algebra). Generally σ(A) is an
analytic, positive, even function of A in a neighbourhood of Oeg, invariant with
respect to the adjoint representation of the group G, i.e. with respect to the all
orthogonal transformations R(U)9 UeG. Thus we have

ΣxΛdVotΩ\ Π
Ωl b'^Ω\

x (dA \Ωl detf / -
\ δA

x e x p -^ΊA(G\pi(A-D(A))Ul)-E + logσ0\Ω:ί , (18)

where χ - ΠbeΩl χ({\A(b)\ < g0p
2(go)}l g0 sufficiently small, and |βf | denotes the

number of bonds belonging to Ωγ minus the number of bonds in Ω(^ and minus the
number of bonds in the axial gauge fixing set. The function in the exponential,
considered on the space of configurations A restricted by the (5-functions and the
characteristic functions χ, has a minimum at A = 0. This implies that a linear term in
its expansion vanishes. This expansion, with a special emphasis on linear and
quadratic terms, was described in [7], Eq. (26). The linear term is determined by the
function J = D^ Im ί/ l 5 and the quadratic term is determined by an operator of the
form D^lDUί + (a small perturbation), where Dυ denotes a covariant derivative. We
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have

Ay + VQ(A\ (19)

where VQ(A) is defined by the last equality. It is an analytic function of A with an
expansion beginning with third order terms, and it is a sum over plaquette variables
of functions which are almost local in A and U1. Let us exponentiate the
determinant and the function σ/σ0 in (18). The determinant can be written as

expTrlog(/-^βμ)VexpΓ Σ t r l°gf1 ~ a ,,f , ^B(A9b0(c\c)\], (20)

in the exponential the sum is over almost local functions. Similarly for the function

) 9 b ) ) \ .
J

log— }(A(b}-D(A,c(b),b)) |. (21)
σoj

Let us denote the terms in the exponentials in (20), (21) by v(A).
Finally we make the transformation A-^g0A in (18). Taking into account this

transformation and the formulas (19)-(21), we obtain

ΣxJ^ok Π δ(v,(bf)v-\b'}}ζΩc
Ωi ,, ^

do

Π

v(g0A)--ΊV(g0A) (22)

where χ = ΠbeΩί χ ( { \ A ( b ) \ < p 2 ( g 0 ) } ) 9 and d(g) denotes a dimension of the Lie
algebra 9.

The last integral above has the form Jμχexp V9 where dμ is a Gaussian measure
with a covariance having an exponential decay property (and many other properties,
see Sect. E in [5]), and V is a sum of terms with good localization properties. This
integral can be expressed naturally by an exponentiated cluster expansion, but we
use here the major simplification coming from the fact that the model is
superrenormalizable and the scaled coupling constant gQ is proportional to a
positive power of ε, g0 = gε1/2. Using the ideas and methods of [11,12,8,9] we
expand v-(g$A} — l/glV(gQA) up to the sixth order (or higher) in gθ9 and we estimate
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the remainder by O(gΊ

0p
18(g0))\Ω1 ^0(εz + κ°)\Tl\9 KO > 0. Next, the integral is

calculated by the cumulant expansion formula (3.24) [8], again up to the sixth order
in g0. A result of the calculation can be represented by lower order connected
vacuum graphs with vertices determined by the expansions of the function t>(00^)
— l/gQV(g0A). The vertices are represented by sums over almost local expressions,
i.e. expressions involving field variables A localized to a union of several
neighbouring blocks. They have at most eight legs, and the graphs have at most six
vertices.

We analyze these perturbative expressions in a way similar to the analysis in [10].
We localize vertices in big blocks by a decomposition of unity, and we expand the
propagators C(0)(Ω1, Uj) into the generalized random walk expansion described in
[5], Theorem 3.15, Theorem 3.10 and the preceding theorems. This gives a sum of
expressions having the following structure. Each expression corresponds to a graph
with vertices localized in cubes {Πj A line of the graph connecting vertices Π,-, Dj
is replaced by a random walk ω = ((α0,AΓ

0), (al,Xi\...,(ocn,Xn)) satisfying
ΠiΠ^o Φ φ, Xm_lr\Xm Φφ,m=\,...,n, Xmr\ Γ}j^φ. A term in the expression,
corresponding to the walk ω, satisfies the bound (3.108) [5], i.e. can be bounded by

0(l)0(MΓ(1/2)) |ω|Mr(1/2)|ω|exp(-i(50J(ω, Q,, Π/)), (23)

where d(ω, Π/ 5 D;) is the length of a shortest tree graph passing through Π;, Dj,
{Xm}. Let us recall that the sets Xm are connected unions of several big blocks. The
localizations { Πj and the walks ω replacing lines of the graph define a localization
X of the considered expression. This localization is simply a union of all these sets. It
is easy to see that, because of the bound (23), the expressions corresponding to big
localization sets X are very small, especially if X is not contained in a cube of the size
RM{ , then the exponential factor in (23) yields the factor exp( — R\ which is smaller
than arbitrary power of ε. We estimate all such expressions using this bound and we
get 0(εκ)\ T1 1. Summing the expressions with the same localization X we get finally
the inequality

v(g0A)--ϊ V(gQA)
L do J

(24)

where the sum is over localizations X which have diameter smaller than
Localizations X are connected unions of big blocks. Following [19] we define a
linear size £f(X) of a localization X as the length of a shortest tree graph connecting
the centers of big blocks in X, and other points, if the big blocks are scaled to unit
cubes, i.e. the distance between centers of neighbouring blocks is taken to be equal to
1. With this definition we have

\0Ί(9o,X,υ,)\^0(go)e-«*™9 (25)

where K can be arbitrarily large if Mj is sufficiently large. Besides the bounds (25) the
expressions 3P\ have three very important properties. The first is gauge invariance
with respect to all gauge transformations of the configuration U1 , i.e. the following



Stability of Three-Dimensional Gauge Theory 263

equalities hold

&Ί<jgQ,X9Uϊ) = &'ί(g0,X9Ul), (26)

for all gauge transformations &. The second is a localization property with respect to
Ui . The expression <P\(gQ,X, UJ depends on U^ restricted to the set X5 (let us recall
that X5 = uΠ c X Π5). The third property is the analyticity with respect to Ul . These
properties follow from the results of previous papers; let us make a comment only on
the gauge invariance (26). It follows from the invariance of the expressions in (1 3), if
we make the simultaneous transformations U1 -> [/'{ , A' -> R(a)A'9 we have to notice
only that all the expansions and expressions introduced later preserve this property.
The measure dA is invariant with respect to the orthogonal transformations
A -> R(u)A, hence the desired invariance (26) follows.

Now we are ready to perform the most important operation, a renormalization of
the interaction terms &\. Let us consider a term ^(g^.X, ί/J. The localization
domain X is contained in a cube Π of the size RM1 . We may assume that X5 c Π
also, and a center of Π belongs to X. We apply the constructions and results of Sect.
F[7]. According to these there exists a gauge transformation in a neighbourhood of
Πi, where Πi is a cube of the size ^RM^ and with the same center as Π, such that
the gauge transformed Uί is represented as exp i^(B) in the neighbourhood of Πi •
The function 3ίf(B) is represented as ^f(B) = HB + A1 , where HB corresponds to a
linearized theory, and A1 is a non-linear perturbation determined by Eq. (158) [7].
Let us explain now the configuration B, which plays an important role in our
considerations. Let y denote the center of Π The configuration B restricted to Π i is
defined on Πιυ = Gi π T(1) and for a bond c of this set is given by

β(c) = |logF(Γ,> f_ucuΓ f + t J,). (27)

The characteristic functions χ1 defined in (13) give the restrictions | V(dp') — 1| <

2L2#oP(0o)> hence

\B(c)\ < 4L2 |c_ - y\goP(g0) < SL^^M^^o), (28)

and for g0 sufficiently small the number on the right-hand side above is small. This
bound, with a different absolute constant, extends to the whole configuration B, and
this assures that the theorems of [7] are applicable in the present situation. The
bound (28) implies a similar bound for 3£(B\ with the additional constant B3 on the
right-hand side.

By the gauge invariance (26), we have

Pι(9^X>υl) = »\(g^X&vitf(B)\ (29)

and we expand the function with respect to jjf(B). Because of the bound (28) it is
enough to expand up to the sixth order, hence

(30)
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The gauge invariance (26) implies the invariance with respect to the global
transformations R(U), C/eG, hence the equality

We have to notice only that (26) holds for all regular gauge field configurations, not
only for the minimal configurations Uί . The derivative in the above formula is an
element of the Lie algebra g, and by the assumption that g is semi-simple, the only
element invariant is 0, and we conclude

(00,X,1) = 0. (32)

It is the only place we use the semi-simplicity, but the above conclusion is a
fundamental point in our method. In the renormalization group language it is the
statement that there are no relevant variables in the effective action.

Let us consider the terms in the sum over n in (30). The function J^f(B) = H B + A±
is determined by the solution Al of Eq. (158) [7], and this solution is an analytic
function of HB, or B. We expand it up to the sixth order at most, and we estimate
remainders by the last term in (30). Finally we estimate terms with B localized in Π i
by the last term in (30) with the constant proportional to an arbitrary power of g0. It
is possible because the uniform exponential decay of all propagators provides the
exponential factor exp( — 1/2 δQ distpί, Πi)) ̂  exp( — R^gQ^in this case. Thus we
obtain expressions which are polynomials in B of at least the second order, and at
most the sixth order, localized in Π i For each variable B(c) there is a sequence of
propagators connecting the bond c with the set X. They provide the exponential
factor exp( — (50dist(c, X)). This together with the exponential factor on the right-
hand side of (25) give the factor exp(-/c1M ]Γ

1k- —y\), with κ1 = l/lκ. We use the
remaining Q\p(-κl^(X)) to control a sum over all X contributing to a given
monomial in variables B.

Thus we obtain the following very simple representation

o^^^ + o^3^0)!^!, (33)
X X Y

where Y = (y,clί... ,c,,), y represents a big block, i.e. yeΩ1 nΛ^Z3, c; are bonds in
Ω\»,\cl.--y\<RMί,

^(00, 7, I/J = (^(00, n B,(Cί), . . . ,B,(cn)}, n ̂  2,

c+ιy, (34)

The above representation is very convenient to work with, because the expressions
^ι(#o> Y> Ui) behave like irrelevant variables as they are at least second power in
loop variables B±.

Let us consider now the first sum on the right-hand side of (33). Of course it is a
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part of the vacuum energy renormalization counterterm. To obtain the whole
counterterm we have to add a sum of the corresponding terms with localizations X
satisfying Xr\Ω\Φ φ. This sum can be bounded by 0(g^)\Ω\ . We may define the
counterterm either in the form of the unrestricted sum, or we may perform
operations inverse to those done up to now and to replace the sum by the usual
perturbative expression on the whole lattice T1? with the background field U1

replaced by 1. We have to supplement also the constants in (22), involving log σ0 and
log 0o, to the whole lattice. Finally we normalize logZ(0)(Ωί9 U J subtracting and
adding the term logZ(0) (Ωί9 1), which we have to supplement to the whole lattice
using the bound

l
log (35)

The term log Z(0)(ί21? C/J — logZ(0)(/2l5 1) can be decomposed in a similar way as
the integral in (24), and we get an expression Σy&^Y, UJ which is identical to the
expression on the right-hand side of (33), only the coefficients do not depend on gQ.
This expansion we analyse in the general case later.

Gathering together the inequalities and transformations we obtain finally

(36)

where g1 = g(Lε)1/2, E1=E- £(0), and

This inequality is the basis of our inductive assumption in the next section. In the
proof we will use also many transformations and estimates discussed above, so we
will not need to repeat them.

Let us make a remark about a lower bound. We introduce restrictions on fields in
a slightly different way. The characteristic function χx denotes restrictions on V of
the form | U^dp) — 1 1 < L~2gQp(gl\ where Ul = U^V) is the minimal configuration
determined by V. The restrictions on A are introduced as in (18), and we perform the
same operations on the whole lattice as on the sets Ωί . They give the inequality

. (37)

B. An Inductive Assumption on the Form of Approximate Effective Actions

In this section we formulate inequalities satisfied by all the actions pk,k=l,2,...,K.
To write them we have to introduce some new definitions and notations. At first let
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us explain a geometric setting. In the first step we have defined the small fields
regions Ωl . In the next step we introduce a decomposition of unity (7), but on the
domain Ω(*] only and with εx = #ιp(0ι). Each term in the decomposition determines
a small fields region Ω2 in almost the same way as in the first step, the only difference
is that we take blocks with distances to PuΩ\ greater than KM1 ? where
R = KiKfi f i ) . Thus we obtain a sequence of domains

Ωl^Ω2^.. ^Ωk, ΩjcTη9 (38)

satisfying the conditions

(ϋηΓ * dist (βj, Ωj+ ,) > R(gj)M1 , R(9j) = R^gj), (39)

ΩJ is a union of big blocks of the size M^JJη.

We define the sets ΛJ9 <B as in [5], i.e. Aj = Ω(/\Ω(f+ x , and we denote Zj = Ω(/}

+\
c T^η. Gauge field configurations Vj are defined on ZJ? 7 = 0, l , . . . , f c — 1, and
functions ζΛj are defined in the same way as ζΩ^ on configurations Vj restricted to Λj.
Finally characteristic functions χ, are generalizations of the characteristic function
χ1 and are defined by

Xj = Π ti ( I VtfP) - 1 1 < 2L2βj- ιP(9i- 1)}), J = 1, . - - A (40)

where we have denoted Ffc = K
Our inductive assumption has the following form

xexp-~A"(Uk)+ X

(41)
j = o j = o

Here the sets Z} are rescaled to the unit scale. The configuration Uk is determined by
the variational problem considered in [7], i.e. it is a minimum of the functional

U:Oj=Vj on ΛJt j = 0, l , . . . ,/c,
where we have put Λ0 = Ω\ and Vk=V.

A definition of Ek is clear from (36), and will be discussed later also. The expressions
&j(Yj,Uk) are defined similarly to (35): yj = (j',c1,...,cB), where y represents big
blocks of LJV/-lattice, contained in Ωk, i.e. j/ei2iJ')nM1L

J'iyZ3, and c, are bonds in Ωφ,

j), Bk(c ,),..., Bk(cn)y, n^2,

(43)

j)\ g 0(1) Π exp( - K^M.UηΓ1 |c,._ -
ί= 1
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The configuration Uk satisfies the following regularity condition on Ωk:\Uk(dp)
— 1 1 < 2L2B^gk_lp(gk^i)η2. This implies the condition \U{(dp')—l\
<4L2B3gk_1p(gk_1)(Ljη)2 for p'cΩtf, and from (43) we get

\<Pj(Yj9 t/k)| ̂  0(1) Π exp(- K^M.LJηΓ1 K- - y\)
i= 1

x (tiη) ~ 1 1 Cί, _ - y 1 8L2B30, _ t pfo _ t) (JΛ/)2. (44)

By the assumption n^2, summation over all Yj with y fixed yields for gk-^
sufficiently small

(45)

Summation over y gives the factor (M1L
jη)~3\Λk\, and finally summation over

j = 1, . . . ,/c gives the following bound for the sum of interaction terms in (41),

Σ Σ\^j(γPUk)\^0(l)Mlg2^p2(gk^)\Λk\. (46)
j = ι rj

Thus the sum is not only convergent, but also small. Of course the condition n ̂  2
plays a crucial role in the above bounds. We will use them in several other important
points.

Analogously to (37) we assume the lower bound

~A\Uk)+ £ Σ&KYJ> Uk) ~ ̂  -*Σ 0((L'ε)3 + κ°)|Tyηl (47)
9k j=ίYj j=o J

where the characteristic function χk corresponds to the restrictions on V given by the
conditions Uk(dp) - 1 1 < gkp(gk)η2, P^Tη.

Let us make an additional comment concerning the bound (46). It is implied by
the bound (44) for the functions ^j(Yj9 Uk). Each renormalization transformation
increases the index of the minimal configuration by 1, hence the right-hand side of
the bound (44) decreases by the factor L~2n. Because n ̂  2, so L~2n ̂  L~4 and the
functions ̂ 7 ( Y/, Uk) behave like irrelevant variables in the dimensions 3, although in
bounds only, not in exact scaling properties. For the Wilson formulation of lattice
gauge theories, with group valued gauge field configurations, we do not have scaling
transformations. In the four-dimensional case the functions ^/Y}, Uk) with n = 2
behave like marginal variables, and an additional renormalization, a coupling
constant renormalization, is needed.

C. Renormalization Transformation Preserves The Form of the Inductive Inequality

We apply the renormalization transformation T to the density pfc, and we use the
inductive inequality (41). Thus the density ρk+1 is bounded by a sum of terms
obtained by application of the renormalization transformation T to terms on the
right-hand side of (41). Now we do the same operations as in the first step. We
introduce the decomposition of unity (7) for the field V on the domain Λk9 with
ε1=gkp(gk). Let us denote the field variables V by Vk, and the new fields by V. We
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define the set Ω(

k

]

+ί as a union of big blocks of the lattice T(f\ with distances to
P^jΩ(

k

]c greater than R(gk)M1. We change the definition of Λk, taking Ak

= Ω(f\Ω(fll9 and we define Λk+ί=Ω(tfΐ\ hence Ω(fl1=B(Λk+1). The partial
resummation over admissible P gives the function ζΛk defined on fields Vk restricted
to Λk, and the small fields characteristic function on a neighbourhood of B(Λk+1)
allows us to introduce the functions χ fc+ 1 given by (41), with V instead ofVk+ί. We
decompose the integral over Vk into two parts. The first is simply the integral
restricted to Zk = B(Λk+i)

c, hence it defines the first expression

(48)

in the inductive formula for fc + 1. The second gives the integral

(49)

which we have to calculate. The symbol χ denotes characteristics functions in the
decomposition of unity, restricted to B(Λk + 1), i.e. determining the small fields
restrictions. The integral (49) is calculated by the saddle point method. We take the
minimal configuration V (

k

] of the functional Aη(Uk), which satisfies the conditions

KJP fZ k - Vk f Z k , ~vψ = V on Λk+ ! . If we substitute it in Uk in place of Vk \Λk, we get
the configuration Uk+l. We introduce the gauge fixing terms δAx(B(Λ + )} ( Vk) using (9),
and we make the translation Vk = V'kV

(

k\ The restrictions on Vk and V (

k

} imply that
the configuration Vk— 1 is small, more exactly \V'k— 1| < l6 32L2B^gkp(gk). The
integration is expressed now in terms of the variables V'k = eiA'. We enlarge the
region of integration to all configurations V'k satisfying \A'\ <32 32L2B3gkp(gk\ and
we denote by χ' the characteristic function of this region.

For the expressions in ^-functions in (49) we have the formula analogous
to (14),

(50)

the only difference is that the configuration l^ is replaced by V(£\ which has the
same properties as Όl. Next we do the same operations as in the first step, and we
obtain the inequality

/ δ \ σ
(The integral (49)) ̂ χk + 1$dAlB(Λk+ι}detI / -^B(A) j x —(A - D(A))δ(QA)δA£A)χ

x e x p Γ - ^ A « ( U k ( e x p i ( A - D ( A ) ) V ( k ) ) ) + . . +logσ0\B(Λk+l)*\ I (51)
L 9k J

where χ = ΠbeB(Λk+ι) χ ( { \ A ( b ) \ < g k p 2 ( g k ) } ) , gk sufficiently small, |B(Λk+1)*| has the
same meaning as |βf| in the first step. Now we expand the action in A. Using the
results of Sect. G [7] we write

ί/fc(exp i(A - B(A))VF) = exp iηjP(A - D(A))Uk + 1

(modulo a gauge transformation),

where 3?(B) is determined by Eqs. (174), (175) [7]. Next using the gauge invariance of
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the action, the expansion (26), Eq. (1 74), and the formulas (74), (78)-(8 1) of [7], we get

- D(A)) + ̂ ,}} + V(H,(A - D(A))

, J> + { - <H153(4), J>

jrι)}. (53)

We have used also orthogonality relations following from the definitions of
operations and configurations used above. For the quadratic form above we have

±(H1A,ΔlHlA>-(H1&
2\A),J>=±(A,ΔkA>, (54)

where Δk was defined by (3.156) in [5], and investigated in Sect. E of that paper.
Denoting the expression in curly brackets {•••} in (53) by V(A), using the definition
(3.155) [5], the equalities (20), (21), the definition oΐv(A), and doing the transform-
ation A -» gkA in the integral, we obtain

I ^ Z / c + iexp -~2
L 9k

(The integral (49)) gχ t + 1 expI ^A"(Uk + 1)- Ek + logσ0 B(Δk + 1)*
9k

v(gkA}~~V(gkA)

+ (the constants in (41)) . (55)

Now we repeat again the operations of the first step. We expand the functions in
the last exponential above up to the sixth order in gk, and we estimate the remainder.
Let us discuss at first the expression v(gkA) — l/gkV(gkA). The expansion ofv(gkA) is
exactly the same as in the first step. To expand l/gk V(gkA\ we use the properties and
expansions of the functions V, ffl , J f 15 discussed in [7]. The remainders for both
expressions are estimated by 0(gΊp18(gk))\B(Λk+ί)\^0((Lkε)3 + κ°)\T(^\. Lower
order terms are given by local polynomials for v(gkA\ and by non-local polynomials
for l/g2k\\gkA). They correspond to tree graphs with vertices defined by terms in the
expansions of local functions VQ(A'\ C(A') (A' is a gauge field configuration on the η-
lattice), and lines defined by propagators //, H l 5 (5. External legs correspond to
H^A. An expression corresponding to such a graph has the form

> J "^3, (56)
ί> 1,...,bmeβ(Λ k + 1)

and
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(let us recall that ^({ftj) denotes the length of a shortest graph on the unit lattice,
connecting points of bt and possibly other points).

Let us consider now expansions of the terms ̂  . We use the bounds (44) which
hold not only for Uk, but for an arbitrary configuration having the same properties
and bounds as Uk. We expand a term of this type in (55) with respect to Jtif up to the
sixth order; the remainder can be estimated by the right-hand side of (44), with an
additional power oϊgkp(gk) missing, so that the overall factor is (gkp(gk))Ί. Estimating
next in a similar way as in (45), (46) we get 0((Lks)3 + κ°)\B(Λk+ί)\. For lower order
terms we expand the function into powers of gkA, and we estimate terms with an
overall power greater than six as above. Lower order terms have again the form of
non-local polynomials (56), but now a coefficient υ connected with the expansion of

Yj, Uk) has the estimate

. (57)

We sum up all the coefficients at the same monomial in A. We get a coefficient which,
by bound similar to (45), (46), can be estimated as in (56) (with O(g^)).

Thus these expansions and resummations give a non-local polynomial i^(A\
whose terms are described by (56). The integral on the right-hand side of (55) is
estimated by

k

Σ Σ^j(γj> uk+ι) + (the constants in (41))
=ι YJ

x J dμjH (A)χ exp \_^(A] + 0((Lkε)3 + *°) | Tf | ]. (58)

The integral above is calculated by the cumulant expansion up to the sixth order in
gk9 the error being of the order O((Lkε)3 + κ°)| T(k)\. Lower order terms are represented
by graphs with vertices determined by the terms in (56), and with lines corresponding
to the propagator C(k\

We analyse the perturbative expressions in the same way as in the first step. We
expand all the propagators into the generalized random walk expansions. We get a
sum of terms, each having a localization domain X. Terms with localization
domains X having non-empty intersections with Ωc

k + 1 are estimated by 0(gk)\Zk\.
Terms with domains X, which are not contained in a cube of the size R(gk)M1 , are
estimated by 0((Iϊε)3 + κ°)\T(P\. The remaining terms give the sum

over localizations X a Ωk+ 15 which are connected unions of big blocks, and which
are contained in cubes of the size R(gk)M1. The terms ̂ k + ί satisfy the bound (25)
(with the indices 1,0 replaced by k + 1, fc), and are gauge invariant functions oϊUk + l,
in fact of an arbitrary gauge field configuration having regularity properties similar
to the properties of Uk+ί. We use results of Sect. F [7], and we construct the
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representation Uk + ί =Qxpiη^f(B) (modulo a gauge transformation) in a neigh-
bourhood of Π i . The configuration B restricted to Πf + υ = D i π T(k + υ is given by
the formula (27). We expand the function ^r

k + 1(gk,X9expiηJ^(B)) with respect to
^f(B) at first, up to the sixth order, so we have the formula (30) (for ̂ -scale). The same
conclusion (32) holds for the first order functional derivative of 0>k + 1 (gk, X, exp iηjjf)
at Jtif = 0. Next we expand ffl (B) with respect to B, again up to the sixth order.
Finally we estimate all terms with B localized in ΠΊ using the exponential decay of
propagators. Summing up terms with the same monomial in B yields the following
analog of (33),

' ' , (60)
k + l

where the expressions above are as in (43), only j and k there are replaced by k + 1.
Complementing the constants in (55) to the full lattice T(k\ and gathering

together all the transformations and estimates, we obtain the inductive inequality
(41) for k replaced by k + 1, but with the additional term

i), Uk+l) - logZw(β(Λ + 1), 1). (61)

The constant Ek + ί is defined as Ek + 1 = Ek — E(k\ where

£<"> = logσ0 Γ?>*| + d(Q)\oggk\ r?>*| + logZ^Tf, 1) + £<n+1(0k,X, 1). (62)

To complete the proof of the inductive assumption (41) we have to expand the
term (61) analogously to (60). It can be localized in a similar way, although a bit more
complicated, as the perturbative expressions. We write it as the logarithm of the
Gaussian integral determined by the quadratic form < A, ΔkA > and the (S-functions
δ(QA)δAx(A). We eliminate the ^-functions and we write the integral in terms of the
independent variables Ά introduced at the beginning of Sect. E [5]. They are
connected with A by the simple linear operator C described there, A = CA, and we
obtain the Gaussian integral determined by the positive quadratic form
(A, C*ΔkCAy. The elimination yields also a sum of local terms determined by the
coefficient at the variable A(bQ(c)) in (QA)(c). More exactly the coefficient is a linear
operator S(V(

k\bΌ(c)) acting on the Lie algebra 9, see the formula (124) [4] for a
precise definition, and we obtain the sum of terms —log det S(V(

k\ b0(c)). They are
simple, local, gauge invariant functions of V (

k

} = Uk + ί9 and are analyzed in the same
way as the perturbative expressions.

We consider the Gaussian integral now. Its logarithm is equal to a sum of an
absolute constant, cancelled by the same constant from the second term in (61), and
the expression

= - - f dz log z Tr (z/ -
4τπc

where the contour C is a union of the circle |z| = y 1 ? and the two intervals [2y1?0]
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with opposite orientations. The number γί is an upper bound of the positive,
bounded operator C*AkC. Hence the integral above can be written as a sum of two
integrals, and we have

> ί-Σ A J dz
M = υ |z| = 2 y ι

2yι oo / J \ M

o n=ι 2n

The last sum above can be analyzed now in many ways, for example we may use the
formula (3.156) [5] for the operator Ak and expand it into generalized random walks.
This gives an expansion for the sum above into gauge invariant, localized
expressions, with proper exponential decay properties. These are analyzed further in
the same way as the perturbative terms. The operator under the integral has a
representation similar to (C*ΔkC)~l. More exactly the operator C(C*AkC
+ x/)~1C* is represented by the integral (3.183) [5] with the additional term
— l/2x | |χ(QA -f Dμ(QA))\\2 under the exponential function, where χ is the charac-
teristic function of the set of bonds corresponding to variables A. This term
determines a non-negative, bounded and almost local operator. The integral yields
the representation analogous to (3.185)

(CMkC + x/)~1 = (I + £>μ)ρG3(x)β*(/ + μ*ί>*) fβ(/Wι),

where G3(x) is defined as G2, but with this additional operator. The operator G3(x)
has the same properties as G2, especially it can be represented by a generalized
random walk expansion. By the above formula this gives an expansion of the last
integral in (63) into a sum of gauge invariant, localized terms. They are again
analyzed in the way described before. Now let us notice that gathering together the
first terms in the expansions (30) we obtain the expansion of (63) for the external field
Uk + 1 = 1. This is cancelled by the second term in (61), and we obtain the desired
expansion.

Thus we have estimated pk + ^ by an expression which is almost equal to the right-
hand side of the inductive assumption (41) for k + 1. To get the exact inequality we
estimate a sum of all terms ^/^/, Uk + ί ) with localizations Ύj not contained in Ωk + ̂

by 0(l)\Λh\, or by O(l)|Z fc |.
The lower bound is proved in the same way, with all simplifications coming from

the fact that Ωk + 1 = Tη.
Thus we have proved.

Theorem 2. The sequence of densities ρk defined by the inductive equations (2), with p0

given by (l\ satisfies the inequalities (4l\ (47).

D. Concluding Remarks

We have to show that the inequalities (41), (47) imply Theorem 1, i.e. the inequalities
(5). Let us consider the upper bound (41). We estimate the interaction terms using the
bounds (44)-(46) by O^Mlgl-^g^^A^ ^ O(l)\T(P\. The constant Ek is given
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by the sum

Ek =
 K^E(j\ (64)

j = k

where E(j} is defined by (62). From (25), which holds for arbitrary , we get easily
\^ 0(1)| TV* I , hence

\Ek\ £ 0(1)| Tψ\ = 0(l)L-3«-v\ 7f > | ^ 0(1)| Γf > | . (65)
k=k j=k

We obtain a bound of the form (41) with the expression

-^A^U^ + ̂ O^ogg^^Zjl + OWlT^l (66)9k j = o

in the exponential. To prove the inequality (5) we have to produce all small factors
connected with large fields regions P in the functions ζΛj. Let us take a plaquette
/?' c Λ; and such that | Vj(dp') - 1 1 ̂  ̂ p(̂ ). We have

U £ = l / . onΛ 7, (67)

and the configuration Uk satisfies the following regularity condition on Bj(Λj).

\Uk(dp)-l\<0(l)gjP(qj)L-2j. (68)

Applying the inequalities (50), (53) [4], we have

frdp') - 1 1 < Σ L~ 3J Σ I Vk(dp) - 1 1 + 0(1)(̂ 7.))
2, (69)

xeBJ(x0) pc(p')χ

where p' = <x0,y0,z0, w0 >,(/?% denotes the plaquette p' transported parallelly to
the point x, i.e. the lower left corner coincides with the point x. Squaring both sides of
the above inequality and using (67) yields

\Vj(dp')-l\2< % L'J Σ l
xeBJ(xo) p^(p')x

^ 2 Σ U[\ - Re tr C/t(δp)] + 0(l)(gjp(gj))3, (70)
pc/4'

where 4' = BJ(x0)uBJ(y0)uBJ(z0)(jBJ(w0). This inequality can be written finally as

*(gj) ^ ip2%) (71)

for ̂  sufficiently small. Thus the part of the action l/gkA
η(Uk) localized to the sum of

four y'-blocks Δ' connected with the plaquette p' can be bounded from below by
l/4p2(^ ), and the corresponding part of the exponential gives the small factor
exp(— l/4p2(#,.)). We get these small factors for all plaquettes in all large fields set
P. Results related to stability bound (70) have been obtained by P. Federbush in
[17,18]. The analysis of Sect. 3.C [9], which is model independent, show that these
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small factors are enough to control all sums in (41), together with the second term in
(65). This gives the upper bound in (5). The lower bound is simpler, it is enough to use
(44)-(46) and (66). Thus we have completed the proof of Theorem 1.
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