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Abstract. The behaviour of the outgoing light rays in the gravitational collapse
of an inhomogeneous spherically symmetric dust cloud is analyzed. It is shown
that, for an open subset of initial density distributions, the first singular event,
which occurs at the center of symmetry, is the vertex of an infinity of future null
geodesic cones which intersect future null infinity. The frequency of the
corresponding light rays is infinitely redshifted.

Introduction

Tolman [1] in 1934 found a class of solutions of Einstein's equations which
represent inhomogeneous spherically symmetric dust clouds. In 1939 Oppenheimer
and Snyder [2] studied, as an idealized model of gravitational collapse, the special
case of Tolman's class of solutions which corresponds to a homogeneous spherically
symmetric dust cloud. They analyzed the behavior of the outgoing light rays and
were thus led to the introduction of the black hole idea. The Oppenheimer and
Snyder study, although treating only a very special case, was highly important for
providing the intuition which guided the approach to more general problems. In
fact, the concept of a trapped surface played a central role in the Penrose-Hawking
singularity theorems [3]. Then, a conjecture was introduced, derived again from the
Oppenheimer-Snyder example, namely that no singularities which are visible from
infinity can develop from regular initial data [3]. This is the weaker form of what is
now called "the cosmic censorship conjecture." There is a number of important
results, among them the area theorem of black holes [3], which assume the truth of
this conjecture. Finally, Penrose [4] introduced a stronger form of the cosmic
censorship conjecture which states that any singularities that arise from regular
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initial data are not even locally visible. This stronger conjecture is verified in the
Oppenheimer-Snyder example. When precisely formulated [4], it is equivalent to
global hyperbolicity of the spacetime manifold.

Although much has been learned from the example of the homogeneous
spherically symmetric dust cloud, the general inhomogeneous Tolman class of
solutions has not been given the attention it deserves, despite the fact that it is the
only known infinite dimensional family of asymptotically flat solutions of Einstein's
equations. The difficulties of such an investigation lie in solving the differential
equation for the light rays.

In this paper I treat the general inhomogeneous Tolman class and I give a
thorough analysis of the behavior of the outgoing light rays. The results are rather
surprising, leading to a different picture of gravitational collapse.

Section 1

We take as our starting point the Tolman solution [1] which gives the evolution of a
spherically symmetric dust cloud (that is to say a perfect fluid with equation of state
p = 0) which starts from rest. The description is given in co-moving coordinates τ
and R, where R, which takes values in the nonnegative real numbers, labels the
spherical shells of dust, and τ is the proper time along the lines R = const, that is,
along the world lines of the dust. Let A(τ,R) be the area of the 2-sphere τ = const,
R = const. One defines the radius r(τ,R) by setting A = 4πr2. As it is possible to make
an arbitrary relabeling of the spherical dust shells by R\-+f(R), we fix the labeling by
requiring that on the initial surface τ = 0, R coincides with the radius:

r(0, R) = R. (1.1)

We denote by p(R) the initial mass density and by m(R) the initial mass distribution:

R

m(R) = 4π$p(S)S2dS. (1.2)
o

Let a(R) denote the mean density within the sphere of radius R on the initial surface:

,™ 3m(jR)

"v ' 4πR3'

The radius r(R,τ) is given by the parametric equations:

\ 1/2

(1-3)

- fo+siniy), (1.4)
\32πaJ

_R
T~~2

The value η = 0 of the parameter corresponds to the initial surface τ = 0 while the
value η = π corresponds to the final singular surface, as we discuss below. On the
final singular surface we have r = 0. We are considering the evolution of the dust
cloud in the future of the initial surface (so we take η,τ^. 0). Let us denote partial
differentiation with respect to τ by a dot and partial differentiation with respect to jR



Violation of Cosmic Censorship 173

by a prime. We have (from (1.4))

(2m 2mV / 2

<;=-(--T) (1-5)

(From this equation together with (1.1) we verify that we are considering a dust cloud
which is initially at rest.) The evolution of the mass density ε(τ, jR) is given by:

m'

If we define the mass w(τ, R^ which at time τ is included within the dust shell
r(τ,Rι)

R — R± by m(τ, R^ = 4π j εr2dr(τ, R), we see that it is conserved:
o

Rι Rι

m(τ, RJ = 4π J εr2r'dR = 4π f p(R)R2dR = m(Rί). (1.7)
o o

Equations (1.4)-(1.6) are formally identical to their analogues in the Newtonian
theory but their interpretation here is quite different because the spacetime has the
metric

dS2 = - dτ2 + e2ωdR2 + r2dΣ2, (1.8)

where dΣ2 is the canonical metric of the 2-sphere and

» 9>
We shall assume that 2m/R < 1, which will be seen below to be equivalent to the
assumption that the initial hypersurface contains no trapped surfaces. We also
assume that the mass density on the initial surface is smooth, that is, p is such that if
extended to the negative j^-axis as an even function is a C00 function on the entire
real line. Since we wish to consider only finite dust clouds, we assume in addition
that p is of compact support. Let R0 be the radius of the support of p. For R > R0 the
solution will be the unique spherically symmetric vacuum solution of Einstein's
equations, namely, the Schwarzschild solution. The Schwarzschild coordinates are
f (τ, R) and r(τ, R), where r is the radius defined above and ί is defined by requiring 1)
that the curves t = const are orthogonal to the curves r = const, and 2) that
lim t(τ,R) = τ. In the vacuum region R > R0 we find

R-+OO

R Y / 2 η
__1 + tan-i
2mn J 2

-1
2m0

R Λ1'2 ι , , . , , „ / * Λ1 / 2

R3 V / 2

(η + sin 77), (1-10)
8m0
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where m0 is the total mass of the cloud,

RO

m0 = J 4πR2p(R)dR, m(R) = m0 for R ̂  R0. (1.11)
o

The Schwarzschild time coordinate t exists in the vacuum region only for
tan (?//2) < (#/2m0 — 1)1/2 which in view of (1.4) is equivalent to r>2m 0 . The
transformation of coordinates given by (1.10) and (1.4) reduces the metric in the
vacuum region to the standard Schwartzschild form :

u

/ /

The surface η = π or

in the Tolman solution is an essential singularity; not only do the mass density and
curvature invariants blow up there, but the metric itself admits no continuous
extension.

The only other set where the solution is not regular is the set where r' = 0 and
η<π. This is the set of points where the spherical shells of dust cross each other.
These shell crossing singularities are inessential [5] although the mass density and
curvature invariants blow up there, the metric is in fact continuous. This is seen if we
replace the coordinates (τ,R) by the coordinates (τ,r). In these coordinates the
Christofel symbols belong to L°° locally in the region 0 ̂  η < π. The Riemann
curvature tensor and the energy momentum tensor are well defined distribution in
this region, and therefore we have a weak solution of Einstein's equations in the
entire region.

From Eqs. (1.4) we obtain:

(1.14)
v '

.
4 (1 +cosη) a

We see from the above equation that on a world line R = const > 0 we have a shell
crossing point if and only if a'(R) > 0; there is no shell crossing on the central world
line R = 0. We wish to avoid considering the shell crossing singularities so that we
can concentrate on the structure of the essential singularity. We therefore assume the
initial mass density p is a monotonically non-increasing function oϊR:ρ'(R) ^ 0 for
all R. This implies that the same is true for the initial mean density a and we have no
shell crossing.

Section 2

The curves r = const have a normal rμ with components r, r' and we have:

g>»rμrv = - r2 + e~2ωr'2 = 1 - — . (2.1)

It follows that the curves r = const are timelike, null or spacelike according to
whether r > 2m, = 2m or < 2m.
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An outgoing light ray satisfies the differential equation

:eω«'«>. (2.2)

Along an outgoing light ray we have:

J J r» / <"\ \ 1 / 2 / f\ Λ \ 1/2αr . fdR . , / 2m \ ' /2m 2m\'

It follows that dr/dτ > 0, =0, < 0 according to whether r > 2m, = 2m, < 2m. Thus
the surface defined by:

(2.4)

or equivalently,

3 /2

—-
32πa(R)J

cos

is the locus of turning points of the outgoing light rays, namely, the set of events
where the outgoing light rays stop diverging and start to converge. This is the
apparent horizon.

We see from Eq. (2.5) that the condition that 2m(R)/R < 1 is equivalent to the
condition that the apparent horizon lies to the future of the initial hypersurface and
thus the initial hypersurface contains no trapped surfaces. We also see that the
apparent horizon lies to the past of the singular surface except at the center R = 0
where there is a second order contact point:

where α = p(0) is the central density and β = — p"(0)/2.
Implicitly differentiating (2.4) we obtain:

(2.6)

r'dR

therefore the tangent to the apparent horizon curve on the (τ, R) plane is given by :

™.
and we have:

1--
j>*.

From the above two equations we conclude that the apparent horizon is null and

4m'
dτ2-e2<°dR2 = - (m'-r>). (2.8)
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future directed in the vacuum region R^R0, while it is either spacelike or past
directed for 0 < R < RQ.

Any light ray which intersects the apparent horizon goes to the singularity: A
light ray either goes to the singularity before reaching the surface of the cloud, or it
reaches the surface of the cloud later than the apparent horizon. From this point the
light ray will be in Schwarzschild geometry and since it is now later than the event
horizon r = 2m0 of the Schwarzschild solution, it will reach the singularity within a
finite affine parameter interval.

In the vacuum region the apparent horizon coincides with the event horizon of
the Schwarzschild solution r = 2m0. It follows that the outgoing light ray which
coincides with the curve r = 2m0 in the vacuum region is the generator of the
boundary of the region of the spacetime which can communicate with infinity, that
is, the generator of the event horizon. Since the event horizon coincides with the
apparent horizon in the vacuum region, any light ray later than the event horizon
intersects the apparent horizon inside the cloud.

No light ray can emmanate from the singular surface except from the singular
point at the center. Indeed, if a light ray emmantes from the singular surface at
some #!>(), then by continuity there must exist an ε>0 such that for Rί<R<R1+ε
the light ray is later than the apparent horizon and earlier than the singular surface
(since the apparent horizon is everywhere but at the center earlier than the singular
surface). Therefore by Eq. (2.3) dr/dR<Q, while r(Rl) = 0 and r(#)>0, a con-
tradiction. Thus no point of the singular surface except possibly the singular point at
the center is visible to an observer. However, since the possibility of a light ray
emmanating from the singular point at the center is not excluded, the strong cosmic
censorship conjecture is left open. By the above argument such a light ray must lie to
the past of the apparent horizon for 0 < R < ε if ε is sufficiently small.

A light ray which goes to infinity must be earlier than the apparent horizon at
R = RQ (the surface of the cloud). Since for 0 < R < R0, the apparent horizon is
either spacelike or past directed, such a light ray must also be earlier than the
apparent horizon for all 0 < R < R0. However, because the apparent horizon
touches the singular surface at the center, it is possible that the light ray tends to the
apparent horizon and therefore also to the singular surface for R -> 0. The singular
point at the center would then be visible from infinity. We see therefore that, due to
the peculiar nature of the singular point at the center, arguments based on
comparison between a light ray and the apparent horizon leave open even the weak
form of the cosmic censorship conjecture.

We shall now show:

Proposition 1. If ρ"(0) = Q9 then strong cosmic censorship holds.

Proof. We shall show that in this case there exists an Rί > 0 such that for 0 ̂  R ̂
Rί:τa(R)^τ0. As we remarked above, for a light ray τ(R) emmanating from the
singular point at the center there must exist an R2 > 0 such that τ(^) < τfl(.R) for
0 < R < R2. So here for 0 < R < min {R19 R2} we would have τ(R) < τ0 = τ(0), which
is impossible for an outgoing light ray. This would therefore prove the nonexistence
of light rays emmanating from the singular point at the center and hence the strong
cosmic censorship.
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Since p"(0) = 0, there exists a positive constant k such that

(2.9)

In view of the fact that for 0 < x < 1 it holds:

cos" 1(2x - 1) +71 - (2x - I)2 ̂  π - |x3/2, (2.10)

Eq. (2.5) implies:

3 V/ 2 Γ 4/2m\ 3 / 2

Therefore

I/2 Γ 1 1 ^ / L / 9 τ r \ 1 / 2

(2.12)
\ j z / u"w; \u(v)) ' y \ j / j

But

So we have:
1/2 3 1/2

while from (2.9) for R g (a(0)/2k)1/4 we have α(J?) ̂  £α(0). Thus if we take

(Z15)

for 0 ̂  Λ ^ R!, it holds τa(R) ^ τ0.
While by the above proposition strong cosmic censorship holds in the case

p"(0) = 0, we shall show in the following sections that in the generic case
p"(0) < 0 strong cosmic censorship is in fact false and that for an open subset of initial
densities weak cosmic censorship is false as well.

Section 3

Let us be given a nonnegative non-increasing (even) C°° function p^R) of compact
support such that p'ί(O) <0. Let:

and let RQ be the radius of support of p^R). We set:

= xR{. (3.2)
ι

Then p0(x) is a nonnegative non-increasing (even) C°° function of compact support
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and

Po(0)=l,

PS(0) = (-^-pί(0)=-2, (3.3)
αι

and / = RQ/R{ is the radius of support of p0(x). We then define a 2-parameter family
of nonnegative non-increasing (even) C°° functions p(R) of compact support in the
following way: Given α, β > 0 we set:

p(R) = αp0(x):x = R/Ri9 R1 = (α//?)1'2. (3.4)

We have

p(0) = α,

P"(0) = lΪ2Po(0)=-2β> (3.5)κι

and R0 = IR1 is the radius of support of p(R). Thus each p^R) generates a 2-
parameter family p(R;α,/J), and this family has a standard member p0(x) which
corresponds to « = /? = !. The ratio /^/Jf^ = / is common to all members of the
family.

The mean density a(R) may be expanded in the form

i
a(R) = j 3v2p(Rv)dv. (3.6)

o

In view of (3.4),

α(Λ) = αα0(xX (3.7)
where

α0(x)=j3v2

P o(xv)rfv (3.8)
0

is the mean density of the standard. We have

α^(x)=}3v3pό(*v)dv. (3.9)
o

The fact that p'Ό = 0, while PQ(O) = — 2, implies that for sufficiently small x{ we have
p'(x) < 0 for 0 < x < *!• This together with the fact that p'0(x) ^ 0 for all x implies by
(3.9) that a'0(x) < 0 for all x > 0. We also have

(3.10)
i

From the fact that α0(0) - 1 and αό(0) = 0, while by (3.10)

it follows that

(3.11)
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and

where b(0) = c(0) = 1 and b(x), c(x) > 0 for all x (since for all x > 0 we have a'0(x) < 0
and a0(x) < 00(0) = 1). The ratio

/α = flo(/) = £ (3.13)

of the initial mean density of the dust cloud as a whole to the initial central density is
common to all members of the 2-parameter family of dust clouds. Let us define

ε= min b(x). (3.14)

According to the foregoing we have ε > 0 and also

1-ί
(3 15)

The expression

Ra'(R) xa'0(x) 6 x2φc)
=

α0(x) 5(l-fx2ί>(x))'

which enters Eq. (1.14), is common to all members of the family. We also have

2m(R) 8π
'VY π (Ύ\ C\ \Ί\— ~ +^ "W — γΛ, u0vyv;, \J.L/)

K j

where y is the dimensionless constant

? = 8π^ (3.18)

Let us define

η= max x2α0(x). (3.19)

The requirement 2m(R)/R < 1 is then equivalent to:

γ < y0 = l/η. (3.20)

We now define

(τ0 being given by (2.6).) From (1.4), (3.4), (3.7) and (3.18) we obtain:

η + sin w
C = (~p-π, (3.22)

and

dR = 2^d^ (123)

Expressed in terms of the dimensionless quantities ζ and x the differential equation



180 D. Christodoulou

(2.2) for the outgoing light rays will be seen to depend only on the standard density
p0(x), and on the parameters α, β only through their dimensionless combination γ.

Let

δ = π-η. (3.24)

From (3.22) and (3.12) we obtain:

δ-sinδ = g, (3.25)

where

g = π[l - (1 - f x2fe(*))1/2] - (1 - f *2fo(x))1/2C (3.26)

Let φ be the function

φ(δ) = δ-smδ. (3.27)

φ is a monotone mapping of [0, π] onto itself. We define the function χ by

χ(y) = 0"V) (3-28)

Then χ is a monotone mapping of [0,π1/3] onto [0,π]. The inverse function

χ-1(δ) = (δ-smδ)1'3 (3.29)

has uniformly continuous derivatives of all orders in [0,π] and (χ"1)'^)^
const > 0. Hence χ is a diffeomorphism of [0,π1/3] onto [0,π]. Since

χ(0) = 0 and χ'(0) = 61/3, (3.30)

we have

χ(y) = 6^yφ(y\ (3.31)

where ι/feC°°[0,π1/3] and φ > 0, \l/(0) = 1. From (3.25), (3.27), (3.28) and (3.31) we
obtain:

δ = Φ ~1 to) - X(gl/*) = 61'V W3). (3-32)

We can then express

1 - cos δ = pW01/3))i62/y/V V/3),

)) 7T73-ϊ7L-ϊ73;? (3-33)1-cosδ

where p and q are the functions

l-cos<5

2(1 — cos
(3-34)

We have /?, qeC™ [0, π] and p, g ̂  0, p(0) = ̂ (0) - 1.
In view of (3.23) and (3.16), (3.17), (3.25) and (3.33), the differential equation for
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the outgoing light rays [cf. (2.2), (1.9), (1.14) and (3.24)]

dτ / 2mV1/2Π,ι « lsin,5(π -δ
4 (1-co,*)

when expressed in terms of the dimensionless quantities ζ and x, becomes :

=6"V"(1 -yx'βo

Our aim is to find a form of the differential equation for the outgoing light rays in
which the singular point at the center x = ζ = 0 appears as a regular singular point.
In order to do this we first introduce in the role of ζ the quantity θ defined by setting

C = |Λ (3-37)

Then if we also define the quantity h by setting

0 = S*2fc> (3 38)

Eq. (3.36) becomes

— = ( — I y1/2 pψ2h2/3 + ~τ^~ 1 / 3 (* — }—~τϊ ~τ~>
ax \π J x [_ 3ψ \ π J α0(x) J 3 x

(3.39)

and from (3.26) we have:

_ Cl-(l-f*2fc(*))1/2] _ χl/3α _ ιχ2b(χ])1/2θ ,3 40)11 — 5 ^ Λ I I — <; Λ ί / ι Λ ι ι U. \ J.T U_J_V2 \ o v // \ /

lo *

Setting now

x^t/ 3 . (3.41)

and using in the role of y the dimensionless constant λ defined by

.1/3 ^ _Λ5\ 1 / 3

", Λ < ΛO — ( J

we bring the differential equation for the outgoing light rays to the desired form :

ϊ . l / M A (3.43)

2/3 ~1 / 2

(3.44)
i (T / π

/(M,ΘU) = -|| i - l ϊ j

Here/^w, θ) is a function which is common to all members of the 2-parameter family
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of dust clouds and is given by:

where

where P and Q are the functions defined by:

\ (3.46)

and from (3.38), (3.40) we have

g(u,θ) = uβh(u,θ), (3.47)

h(u, θ) = L v Γ* - "(1 ~ f ι*6%3)1/2#. (3.48)
fX

For we[0,/1/3] the function h is C°° and it is also positive for

0<σ(ιι),

= ̂ 3). 1 . 1 ,3 49)

M Hi +(1 - jW 6 ί>(w 3 ) ) 1 / 2 ] (1 - f M 6 f c ( M 3 ) ) 1 / 2 '

We have

σ(w) ̂  ε/M, (3.50)

where ε is defined by (3.14). The curve θ = σ(u) that is h = 0 corresponds to the
singular surface δ = 0 minus the singular point at the center. The functions /z2/3,
h~1/3 and also ^1/3 are then C00 functions of M, θ for 0 ̂  M ̂  /1/3, θ < σ(w). Since we are
considering outgoing light rays, we restrict ourselves to θ ̂  0 which corresponds to
τ ^ τ0. With this restriction we have

^π(l-ξίl2) (3.51)

We conclude that the functions f^u, θ) is C°° and nonnegative in the strip 0 ̂  u ̂
/1 / 3, 0^θ<σ(u). Since fc(0,0)=l, g(0,θ) = 0, P(0) = Q(0)=1 and c(0) =
α0(0)= 1, we have:

/i (0,0) = 7 (3.52)
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It follows that/(w,0;λ) is C°° in the strip 0^wg/ 1 / 3 , Og#<σ(w), and we have

/(w,θ;λ)£--. (3.53)

Section 4

Theorem 1. For every 0 < A < / L 0 , ί/zere exisίs an <22e]0,/1/3] and a solution
$eC°°[0,fl2] to the differential Eq. (3.43), This solution is nonnegative, satisfies
0(0) == A, and it is the only solution of the equation which is continuous at u = 0.

Proof. Consider the linear differential equation obtained from (3.43) by replacing θ
in/(w, θ; λ) by a given continuous function B such that 0 ̂  θ(u) < σ(u):

= λf(u, θ(u) λ). (4.1)

There is only one solution of this equation which is continuous at u = 0, namely the
one which satisfies 0(0) = λ. This solution is given by:

i
Θ(M) = λ[l + w J s7/(sw, 0(sM); A)ds]. (4.2)

o

We shall study the nonlinear map Tλ defined by θ = Tλ(θ). We first choose an
β0e]0,/1/3] such that

a0 < ε/λ. (4.3)

We then choose a μ such that

λ < μ < ε/aΌ. (4.4)

It then follows from (3.50) that for all we[0,α0] we have

σ(u) > μ,

and therefore /(M, 0; A) is a C°° function in the strip 0 ̂  u ̂  α0, 0 ̂  θ ̂  μ.
Let

,Λ)= sup sup f(u,θ;λ). (4.5)

and let θ be a given continuous function such that 0 :g θ(u) ^ μ for 0 ̂  u ̂  α0. Then
for we[0,<20] we obtain from (4.2):

(4.6)

if Γ > 0,

if Γ ̂  0. So if we choose

( 8 in \\
(4.7)
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if Γ > 0,

a^aQ

if Γ ̂  0, we have Tλ(θ)(u) :g μ for we[0, αj. In addition, we have from (3.53):

-— ds 1 = 0.

Consider now the set Vμ in C°[0,02] consisting of all 0eC°[0,<22] such that

0 ̂  θ(u) ^ μ for all we[0, <z2].

Fμ is a closed subset of C°[0, α2], and it follows from the above that the map Tλ sends
Vμ into itself for all a2^aί. Let

Λ /
(4.8)'jL9 A) — SUp SUp

Then if Θl9 Θ2eVμ, we obtain from (4.2)

II Tλ(θ2Ϊ - Tλ(θl) I I ^ 8α2λΔ I I #2 ~ θl I I > (4 9)

where || || denotes the supremum norm in C°[0, α2]. Thus if we choose α2 ^ α^ and
also

α,<~ (4-10)

the map Tλ is contractive in Fμ. Hence Tλ has a unique fixed point θeVμ:

i
θ(u)= Tλ(θ)(u) = λ[l +ulsΊf(su,θ(su)',λ)ds]. (4.11)

o

It follows from (4.11) that θ(0) = λ, also that θeCί[Q,α2] and

J^ J ^_ = A [/(M, 0 A) - 7 ί 5 7/(5W, Θ(5M) λ)ds]. (4.12)
βW

Consequently, θ is a solution of the differential Eq. (3.43). Also, θeC"[0,α2]
implies /eCn[0,Λ2], which by (4.12) implies #eC" + 1[0,α2]. Therefore θe

Since the point u = a2, θ = Θ(a2) is a regular point of the differential Eq. (3.43), the
solution uniquely extends as a C°° solution to an interval [0, ί>[where either:
1) b = oo, or 2) b is finite and θ(ύ) -> σ(u) for u -> 6. The solution given by the above
theorem represents an outgoing light ray n0 which emmanates from the singular
point at the center and which either (case 2) intersects the apparent horizon inside
the surface of the cloud x = /, in which case it reaches the singular hypersurface, or
(case 1) it arrives at the surface of the cloud earlier than the apparent horizon and
therefore goes to future null infinity.

Consider now any event (R19 τ j which lies to the future oΐn0. The outgoing light
ray through this event must also lie to the future of n0, and since no outgoing light
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ray emmanates from the singular surface except from the singular point at the center
(see Sect. 1), the light ray must tend to the singular point at the center for R ~> 0. We
therefore obtain

Proposition 2. Through any event to the future ofn0 there passes an outgoing light ray
which emmanates from the singular point at the center.

There is therefore an infinity of outgoing light rays emmanating from the
singular point at the center. It is possible to show that all these light rays except n0

have a second order contact point at the center with the singular surface.

Section 5

Theorem 2. n0 is the earliest of all light rays which emmanatefrom the singular point at
the center.

Proof. We shall show that there exist x0 and η0 positive such that for 0 < η rg η0 the
curve n0 — η defined by ζ(x) = ζno(x) — η is spacelike for 0 g x < x0. The following
argument would then prove the theorem : Given any event in the past of w0, the out-
going light ray d(x) through that event must be at x = x0 earlier than n0:ζno(x0 —
d(x0) — Ά\ > O We need only consider the case η1 g η0. At each 0 :g x rg x0, the
spacelike curve n0 — ηί which passes through the same event (x0, Cι(^o)) must ̂ e not

earlier than the outgoing light ray d(x), therefore in particular Cι(0) ̂  ~Ά\ and the
light ray emmanates from a regular point on the central world line x = 0.

A future directed curve ζ(x) is spacelike iff

^
\dR Jlγ1'2 dx

For the curve π0 — η we have:

1 dζ 1 dζ,as. — >
2yll2dx 2y112 dx

Therefore the curve n0 — η is spacelike at x iff:

It follows that it is enough to show that we can find x0 and η0 positive such that for
0<η^η and 0 :g x < x0 ,

dζ

for all C such that ζno(x) -η^ζ^ ζno(x). We have (see (1.9)):

de^_ f'

^"ΓΓZ^wV71'
R i

(5.1)
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while from (1.5), (1.4) and (1.14) we obtain:

'2m 2m\~ll2ίm' mr' m' m

r R ) \r r2 R R7

~^_J ΛT1/2W * i
m[( 1 \ lsmδ(π-φ(δ))Raf-

' /ι 1/1 ^o ^3 „ r P ̂ J1-cosδ) ) 4 ^(1-cosδ)3 α

Using the dimensionless time and radial coordinates ζ and x and the standard
density and mean density ρ0(x) and a0(x) (see Sect. 3) we obtain from (5.1) and (5.2)
the expression:

deω _ 1_ 1

~d<Γ~ ~(l-yx2a0

(^(1 -cosδ))1'2 (1 -1(1 -cos<5))1/2

•{^((J.xJ-WΊ^x)}, (5.3)

where we have introduced the functions:

It follows from expression (5.3) that we have deω/dζ < 0 iff W2> Wί. Since the
function

sin δ ( 1

1— cosδ \2(1 ~~ cosδ)

is a monotonically non-increasing function of δ for <5e[0, π], both W2(δ, x) and
W^δ^x) are monotonically non-increasing functions of δ at each x. On the other
hand, δ is a monotonically decreasing function of ζ at each x. Hence for all ζ such
that ζno(x) -η^ζ^ ζno(x), we have:

while
W2(δ9x)^W2(δno_η(x),x).

Let us define the function

4(1-cosδ)2 ' v '

is a nonnegative C°° function of δ for δe[0,π] and ^(0) = 1. By (3.32) we have:

sinδ 4^(δ)_ 2qί(δ)

(1 — cos δ)2 δ3 3
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and using (3.38) we obtain:

(5.6)

Considering the fact that δno(x), gno(x) and hno(x) are all continuous functions of x and
hno(x) > 0, we conclude from (5.6) that W^x) is a continuous function of x and that

Therefore, for any εί > 0 there exists an x1 > 0 such that for 0 rg x < xί it holds:

Wί(x)<^+εί. (5.7)

Since (see Sect. 3):

Φ(δ) = π(l-(aΌ(x))1/2)-(a0(x))l'2ζ,

for all ζ such that CWo(x) — η^ζ^ ζno(
x) we have:

Now <^(<5no(x)) = gno(x) is a continuous function of x and #Wo(0) = 0. Therefore, for
every ε2 > 0, there exists an x2 > 0 such that for 0 ̂  x < x2, we have ^Πo(x) < ε2, and
thus also

φ(δ)<ε2+η. (5.8)

Let us define the function

q2 is a positive C°° function of δ for 5e[0,π] and q2(Q) = 1. Let:

c1 Ξ max ^!(<3). (5.9)

Then for 0 ̂  x < x2 it holds by (5.8):

1 - 1(1 - cos δ) ̂  1 - i62/3

Cl(φ((S))2/3

. (5.10)

On the other hand, p0(x) is also a continuous function ofx and p0(0) = 1. Therefore
for every ε3 > 0, there exists an x3 > 0 such that for 0 ̂  x < x3:p0(x) > 1 — ε3. We
conclude that for 0 ̂  x < min {x2,x3}, we have:

Setting x0 = min |x1? x2, x3}, we obtain that for 0 ̂  x < x0 we have W2 > W1 if

_ _ . _ _ - _ .
12 ^δl = 4 4^3 16

Thus, we first choose ε3 such that
_

12 ~" 6'
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that is :

ε3<|. (5.11)

Then we choose ε2 and η0 such that

_3_.£2/3 . / Ί — P WP -4-M W 3^-i IP
16 ° Cl V 1 ε3J Vε2 ^W < 6 ~ 4^3'

that is:

3/2 / 2 \ 3/2

Finally, we choose ^ such that:

β! ^ |[(f - ε3) - i62/3

Cl(l - ε3)(ε2 +^0)
2/3]. (5.13)

Then if 0 < η ̂  η0, for all (x, ζ) such that 0 ̂  x < x0 and ζno(x) — η^ζ^ CWo(^)» we
have VF2 > W7! and hence

ac α
By the above theorem, the light ray n0 is the generator of the boundary of the

region of the spacetime which is uniquely predictable by the given data on the initial
hypersurface, that is, the generator of the Cauchy horizon.

Section 6

Lemma 1. In any given 2 -parameter family of initial density distributions there exists
aλ1>0 such that for allO<λ^λ1: ζno(l λ) < ζa(l, λ\ that is, n0 arrives at the surface of
the cloud earlier than the apparent horizon.

Proof. We shall first show that given some μ such that

0<μ<ε// 1 / 3 , (6.1)

we can find λl9 0 < λ1 < μ, such that for all 0 < λ ̂  λl9 we can set

in the proof of Theorem 1. First, if μ satisfies (6.1) we can set a0 = 11/3 for any λ
satisfying 0 < λ < μ. Now if γ rg l/2η9 that is, if

r, (6.2)
Y π j \LΎ\)-'-~

we have:

C / τ r \ 2 / 3 Ί-ι/2 Γ ι Ί-ι/2
1 - ί ̂  J A Vα0(tι3) J ^ I 1 - ̂ X("3) J ^ 21/2. (6.3)

It follows that

f ( u , θ ; λ ) £ f 2 ( u , θ ) , (6.4)
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where

1/2 (6.5)

is a function which is common to all members of the 2-parameter family and is also a
C00 function of (w, θ) in the strip 0 ̂  u ̂  /1/3, 0 ̂  θ < σ(u).

Let us define

Γ2(μ)= sup sup /2(ιι,θ). (6.6)
O ^ u ^ i 1 3 O^θ^μ

Γ2(μ) is independent of λ and is finite for μ satisfying (6.1). Since

Γ2(μ), (6.7)

it follows from (4.7) that we can set aί = /1/3 if

(6.8)

Consider now the function /3(w, θ) defined by:

/3(M)^[Λ(M)-7j. (6.9)

/3 is common to all members of the 2-parameter family and is also a C°° function of
(u, θ) in the strip 0 <; u ̂  /1/3, 0 ̂  θ < σ(4 We have:

Let us define

M)A3(μ)= sup sup (6.11)

z!3(μ) is independent of λ and is finite for μ satisfying (6.1). In virtue of (6.3) it holds

zl(μ,A)^21/2Zl3(μ). (6.12)

Therefore, by (4.10) we can set a2 = /1/3 if

-T. (6.13)

In conclusion, if we choose λί satisfying the inequalities (6.2), (6.8) and
(6.13), then for all 0 < λ rg λ1 we can set a0 = a1 = a2 = I113. It then follows from
Theorem 1 that the solution θ(u) which represents the light ray n0 belongs to
^PV1/3]? hence θ(ύ) ^ μ for every WE[0,/1/3], and therefore in particular #(/1/3) ̂  μ,
that is:

(6.14)
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We shall now show that we can choose μ such that for all λ not greater than the
corresponding λ±(μ\ we have £no(/; Λ) < ζa(l; λ). This would complete the proof of the
lemma.

The apparent horizon is given by ζ = ζa(x\ where (see (3.22))

and δa(x) is defined by (see (3.17))

Let fce]0,π/2[ be the solution of the equation

φ(k) = A: - sink = -(1 - ξ1/2\ (6.17)

where ξ is defined by (3.13). Since by (6.16) it holds

if we impose the condition

y = ̂ (1 — cos/:),
2η

that is,

A g l — 1 1/2(1 — cosfc)1/2, (6.18)

we have:

Therefore δa^k and

We then obtain from (6.15):

It follows from (6.14) and (6.19) that if we choose μ such that

7/3' (6 2°)

wehaveCM o(0<C a(/). D

Note. Aj(μ) is subject to the inequality (6.18) in addition to the inequalities of the first
part of the proof.
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Lemma 2. In any given 2-parameter family of initial density distributions there exists
a λ2< λQ9 Λ2 -»0/or ξ-+l, such that for all λ2^λ<λQ all outgoing light rays which
emmanatefrom the singular point at the center intersect the apparent horizon in the
interior of the cloud.

Proof. Let x0 be the point at which the function x2α0(x) attains its maximum value η
in the interval 0 ̂  x g /. We have 0 < x0 ̂  /. By (6.15),

ζa(X°) = π[(a0(x0))1/2~lΓ~^(.

Let /qe]0, π[ be the solution of the equation

φ(kί) = π[l - (α0(x0))1/2] (6.22)

Since ξ ̂  a0(x0) < 1 we have k1 -»0 for ξ-^l. Let y2 and λ2 be defined by:

5 \ ι / 3
(6.23)

y2, A2 ->0 for ξ-+ 1. For all A2 rg A < /10 we then have:

|(1 -cosδa(x0)) = γη^$(l -cosfcj. (6.24)

Therefore ^(XQ)^^! and

Hence, by (6.21):

Cβ(x0U) = 0. (6.26)

Now all outgoing light rays £(χ) such that ζ(x) -> 0 for x -> 0 have ζ(x0) > 0. It follows
that all such light rays intersect the apparent horizon at some x1e]0,x0[. Q

Section 7

Lemma 3. In any given 2- parameter family of initial density distributions, ζno(x, λ) is a
monotonically increasing function of λ at each x.

Proof. We shall show that θλ(u) is a monotonically increasing function of λ at
each u. Let λ^ > λ2, and let [0,fc[ be the interval of existence of θλί(u). We shall
show that for all we[0,fo[ we have θλl(u) > Θλ2(u). Let M be the union of all sub-
intervals [0,fe'[ such that θλl(u) > Θλ2(u) for all we[0,fc'[. Since θλι(0) =
λ1 > Θλ2(ty = λ2, and both 0λ j and ΘA 2 are continuous at u = 0, we have OeM and
therefore M is not empty. We shall demonstrate below that [0, ^[cM and
b1 < b implies b^M from which follows M = [0, b[, and hence the lemma.

Let us define
2/3 "1/2
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j(w, λ) is a monotonically increasing function of λ for all u > 0. θλ(u) satisfies the
differential equation (see (3.43), (3.44))

Let [0, b^ c M, b1 < b, and let us take ul9 u0 such that 0 < u1 <u0^b1. Then since
(7.2) gives

«o 7/9 (,Λ "o i
(Ml) = ΘΛ(UO) + J — y-idu - J - j(u; A)Λ(u, 0,(u))d«, (7.3)

we obtain:

- J l(«, θil(«)) - (7.4)

We express the integrant of the second integral on the right in (7.4) in the form

Now λίj(u;λl) — λ2j(u',λ2) > 0 for all u > 0. Let us define

A(u] = sup (7.5)

A(u) is a continuous function of u for ι/e[0, fr[ and is positive for positive u. For all
,^] we have

U 1\ ' A 1 v / / J I V ' ^2^ '•'' ^ '' A j v / ^2^ ' I ^ ' ^ A j V / ^2^ ^^"

Setting then

z(u) = θλι(u)-θλ2(ul (7.6)

we obtain from (7.4):

z(ιι1)<z(fi0) + J ώ + j A
Ml W M I U

This integral inequality implies

"° _
z(M0)>z(M1)exp(- \A(ύ)du\

where we have defined

(7.7)

(7 ϊ

(7.9)
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Setting in (7.8) u0 = bί we obtain θλι(bl) — 0A2(^ι) > 0, and since both #A ι and Θλ2 are
continuous at u = bί we have b1eM. Π

From (6.15) and (6.16) it is obvious that, in any given 2- parameter family of
density distributions, ζa(x'9λ) is a monotonically decreasing function of λ at each x.
Lemmas 1, 2 and 3 result in:

Theorem 3. In any given 2-parameter family of initial density distributions
there exists a λc, Q<λc<λ0, λc-*Q for ξ-+l, such that 1) for all 0<λ<λc, n0

goes to future null infinity, 2) forλ = λc9 n0 coincides with the event horizon, and 3) for
all λc< λ< λ0 we have a regular event horizon.

Proof. By Lemma 3, ζnβιλ) is a continuous increasing function of λ, while
ζa(l;λ) is a continuous decreasing function of λ. On the other hand by Lemma 1,
there exists λ^ > 0 such that for all 0 < A ̂  λ} :ζnβ;λ) < ζa(l; λ), while by
Lemma 2 there exists λ2 < λ0, λ2 -»0 for ξ -> 1, such that for all λ2 ^ λ < λ0:ζnβ;
λ) > ζa(l',λ). Therefore there exists λc, λί <λc< λ2, such that:

CJUc) = Cβ(/;λc), (7.10)
and for all 0 < λ < λc we have :

while for all λc<λ<λ0 we have :

ζnβ;λ)>ζa(l;λ). (7.12)

Equation (7.10) implies that n0 coincides with the event horizon, (7.11) implies that
n0 goes to future null infinity and (7.12) implies that the event horizon is in the past of
nQ and is therefore regular by Theorem 2.

Note. The fact that λc -+ 0 for ξ-+l means that the region of naked singularities
tends to zero for a sequence of standard initial density distributions tending to
homogeneity.

Section 8

Consider a light ray which is emitted from the central world line .R = 0 and which is
received by an observer following the world line R=Rl at proper time τί :

τ = τ(R; rj, τ(0; τ j = τ0, τ(Rl τ j = T J .

The light ray was emitted from the central world line at proper timeτ0. Since the
light ray satisfies the differential equation

dτ/dR=eω(τ>R\

if we define

,
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then g satisfies the differential equation

dg _ ίdeω

dR \ dτ

together with the condition g(R1) = 1. Therefore

g(R) = exp Γ - 7 ¥" W«; τ^ S ) d S [ (8.2)
L R Oτ J

Let us denote the frequency of emission of the light from the central world line by ωe

and the frequency of its reception by the observer following the world line R = Ri by
ωr. We have:

» dτ Γ Rl d(>ω Ί
^ = -2 = g(0) = exp - f —WR τάRWR . (8.3)
*e

 dτι I o 8τ J

Thus cor/ωe is a function of τ1. Let τ1(w0) be the proper time at which the observer
following the world line R = R1 receives the light ray n0. For τl < τ±(n^ the light ray
arriving at R = Rί at τ = τ1 lies to the past of n0. From the proof of Theorem 2 we
know that deω/dτ < 0 in a band 0 ̂  R < K*, τ^R) - ε ̂  τ <> τno(R). On the other
hand \deω/dτ\ is bounded in the complement of the band in the past of n0, since this is
nowhere near the singular surface. It follows that the integral in the exponential in
(8.3) is uniformly bounded from above for τ1 < I^ΠQ) and therefore ωr/ωe ^ const
> 0 for τ1 < T^HO). On the other hand, all the light rays arriving at R = Rl at τ = τί

> T^ΠQ) come from the singular point on the central world line (Proposition 2). It
follows that ωr/ωe = dτ0/dτ1 = 0 for τ1 > T^WQ).

Consider now an observer following a world line r = r0 in the vacuum region
outside the cloud and receiving light rays emitted from the center of the cloud. In the
vacuum region the equation of the light rays is

ω

(8.4)
0 - 0

where ί0 is the Schwarzschild coordinate time at which the light ray is received at r0.
Let τl denote the value of τ at which the light ray intersects the line .R = β0, that is,
the surface of the cloud. As long as rί = r(τ l5 R0) > 2m0, ί0 is an analytic function of
τ1 and using (1.4), (1.10) and (8.4) we find:

AO Λ 2m0 \- 'Γ/ 2m 0 V/ 2 /2m0 2m0 V/H

d^~( VJ Lv «ΓJ \^"^J I (8 5)

Also, the relation between the Schwarzschild coordinate time ί0 and the proper time
T of the observer following the world line r = r0 is

/2

dt0. (8.6)

Consider now a dust cloud satisfying the condition of case 1) in Theorem 3. The
fact that in this case n0 goes to future null infinity implies that there exists a constant
k<ί such that 2m0/r1 g k for all T< Γ(w0), the proper time at which n0 is received at



Violation of Cosmic Censorship 195

r = r0. Thus, by (8.5) and (8.6):

0 fora11 Γ<Γ(M)

Denoting by τ0 the proper time of emission of the light rays from the central world
line, the ratio of the frequency of reception of the light by the observer following the
world line r = r0 to its frequency of emission at the center is equal to:

dτ0 dτ0 dτί~ '

and dτ0/dτ1 is given by (8.3), setting R1 = R0. We conclude:

Theorem 4. Consider a dust cloud satisfying the condition of the case 7 of Theorem 3
and consider an observer following a world line r = r0 in the vacuum region who receives
light rays emitted from the central world line R = 0 of the dust cloud. If ωe is the
frequency of emission of a light ray at the center and ωr the frequency of its reception by
the observer, then the ratio o)r/ωe is a discontinuous function of the proper time T of the
observer', this function is smooth and greater than a positive constant for T< T(nQ) and
is zero for T> T(π0), where T(n0) is the proper time at which the light ray n0 is received
by the observer.

Note Added. After this work was completed I was informed that singularities similar to those analyzed in
this paper have been found in computer studies by Douglas M. Eardley and Larry Smarr, "Time
functions in numerical relativity: Marginally bound dust collapse," Phys. Rev. D19, 2239 (1979).

References

1. Tolman, R. C: Effect of inhomogeneity on cosmological models. Proc. Nat. Acad. Sci. U.S. 20, 169-
176 (1934)

2. Oppenheimer, J. R., Snyder, H. : On continued gravitational contraction. Phys. Rev. 56, 455-459
(1939)

3. Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time. Cambridge: Cambridge
University Press 1973.

4. Penrose, R. : Singularities and time asymmetry. In: General Relativity: An Einstein Centenary Survey,
Hawking, S. W., Israel, W. (eds.). Cambridge University Press 1979, 581-638

5. Papapetrou, A., Hamoui, A.: Surfaces coustiques degeneres dans la solution de Tolman. La
Singular! te physique en Relativite Geenrale. Ann. Inst. Henri Poincare 6, 343-364 (1967)

Communicated by S. -T. Yau
Received June 17, 1983; in revised form September 29, 1983






