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Abstract. We show that any self-dual SU(2) monopole may be constructed
either by Ward’s twistor method, or Nahm’s use of the ADHM construction.
The common factor in both approaches is an algebraic curve whose Jacobian is
used to linearize the non-linear ordinary differential equations which arise in
Nahm’s method. We derive the non-singularity condition for the monopole in
terms of this curve and apply the result to prove the regularity of axially
symmetric solutions.

1. Introduction

We shall be concerned in this paper with constructing solutions to the Bogomolny
equations D@ =*F. Here F is the curvature of an SU (2) connection on R3, & (the
Higgs field) is a section of the adjoint bundle, and we are seeking solutions for
which |®|=1—kr '+ 0(r~?) as r—oo. These are particular solutions to the
static, finite energy Yang-Mills-Higgs equations and we shall often refer to them
simply as “monopoles”.

There exist already two different approaches to constructing monopoles. One
is due to R. S. Ward, using the twistor formalism to reduce the problem to one of
holomorphic vector bundles on the algebraic surface TIP,, the tangent bundle of
the projective line. Ward’s method, extended by Corrigan and Goddard [6] and
the author [8], shows that the monopole is determined by an algebraic curve in
TP,. Moreover, as shown in [8], every monopole may be obtained in this way.
The main problem of this approach is finding the conditions to impose on the
curve in order to ensure that the monopole is non-singular.

The alternative approach, due to Nahm [10], incorporates the non-singularity
condition directly and has other formal advantages over the twistor viewpoint.
Nahm’s method is a bold adaptation of the ADHM construction of instantons
[3], replacing matrices by differential operators and the quadratic constraint on
the matrices by a non-linear ordinary differential equation:
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for matrices T),T,,T,. The main problem concerning this construction is to
actually solve the equations. There remains also the question of whether this
approach yields all monopoles.

In this paper we shall present a synthesis of the two methods which enables us
to answer the questions raised above. In fact we shall show that Nahm’s equations
can be solved by considering a linear flow on the Jacobian of an algebraic curve —
the same curve that occurs in Ward’s construction. To be precise, we prove the
equivalence of the following:

A. A solution to the Bogomolny equations D®==F on R* with boundary
conditions as r— 0o,

k
Al |@|=1- - +0(r™2),

ae| . -
A2. W—O(V 2),

A3. |DP|=0(r"?).

B. A compact algebraic curve SC TP, in the linear system |O(2k)| satisfying the
conditions:

B1. S has no multiple components.

B2. S is real with respect to a standard real structure on TIP,.

B3. L? is trivial on S and L(k— 1) is real.

B4. HO(S, L7(k—2))=0 for z€(0,2).

Here L* is the holomorphic line bundle on TP, defined by exp(zw), where
we HY(TP,,0) is the standard SL(2, C)-invariant element.

C. A solution to the differential equation

d,
dz

1
=§Z£ijk[’rj, E]a 26(072)5
Jjk

for k x k matrices T(z) (i=1,2,3) satisfying the conditions:

Cl T¥=-1,

C2. T()=—T2~2),

C3. T; has simple poles at z=0 and z=2 but is otherwise analytic,

C4. at each pole the residues of (T, T,, T;) define an irreducible representation
of SU(2).

Section 2 is devoted to the proof of C = A, and consists of a detailed
presentation of Nahm’s work [10]. The implication A = B is mainly dealt with
in the author’s paper [8]. We review the results briefly in Sect. 3, but also prove
condition B3, a vanishing theorem for the algebraic curve. This turns out to be the
condition on the curve for nonsingularity of the monopole and the result and
method are similar to the crucial vanishing theorem H'(IP,, E(—2))=0 for
instantons [7]. In Sects. 4, 5, and 6 we show how B == C and in Sect. 7 check that
the circle of ideas is complete by showing that the monopole one recovers by
pursuing A = B = C = A is gauge equivalent to the original one.

The proof of B = C, relating non-linear differential equations with algebraic
curves is analogous to the now familiar method of solving the KdV equation and
related equations. There is also a hierarchy of equations of which Nahm’s is the
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first, whose solutions are obtained by taking linear flows in different directions of
the Jacobian. We consider these briefly together with other general comments, in
Sect. 8, where we also verify the non-singularity of Prasad and Rossi’s axially
symmetric monopoles.

2. Nahm’s Construction

In [10] Nahm succeeded in producing solutions to the Bogomolny equations
D®==xF by a striking adaptation of the monad (or ADHM) construction of
instantons. We shall review his construction in this section.

First, recall that a solution to the Bogomolny equations in R® is equivalent to a
solution of the self-duality equations in R*, which is in addition invariant under
the action of the additive group R of translations in the x,-direction. To see this,
let E be a vector bundle with connection ¥ on IR*® and @ a section of the adjoint
bundle. Let p:IR*—>IR* be the projection. Then, V' =p*V—®dx, defines an R
-invariant connection on the pulled-back bundle E'=p*E which has curvature
F'=p*F—D® Adx,. Clearly F' is self-dual with respect to the orientation

dxgndx, Adx, Adx, iff DP=xF.

Conversely, suppose E' is an R-invariant vector bundle on IR*, with invariant
connection V. Restricting to R® we obtain a bundle E, and the group action
defines an isomorphism o:p*E—E’ by

p*e)(o.x) = X0 " (€,) > 2.1

where x,€RR, xeIR?, and x,-e denotes the action of R on E'.

Since V' is R-invariant, we obtain o~ 'V'a=p*V — ®dx, for some connection V'
on E and section @ of the adjoint bundle. As the self-duality equations are
invariant under the gauge transformation o, it follows by the argument above that
(V, @) satisfy the Bogomolny equations.

Now the ADHM construction [2, 3] produces self-dual SU (2) connections on
IR* by considering a (k+1) X k quaternionic matrix of the form A(x)=Cx+D,
where C, D are constant matrices and xeH is a quaternionic variable. This is to be
viewed more invariantly as a map A(x): W—V, where V is a (k+ 1)-dimensional
quaternionic vector space with a hermitian inner product compatible with the
quaternionic structure, and W is a k-dimensional real vector space. If 4(x) is of
maximal rank for all x, then the kernel of 4*(x) is a 1-dimensional quaternionic
subspace E_ of V. As x varies in H=R*, E_describes a vector bundle E over R,
and the orthogonal projection in V defines a connection on E, from the trivial flat
connection on R*x V. The curvature of this connection may be expressed as
F=PCdxg~ *dxC*P, where 9> = A*A and P is the orthogonal projection onto E in
V. If g2 is real, this will involve components of the quaternionic 2-form

dx A dx =(dxq+idx, +jdx, +kdx;) A (dx,—idx, —jdx, —kdx,),

which are all self-dual. Hence the constraint on 4 necessary to produce self-duality
of the connection is that 4*A4 should be real for all xeIH.
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Nahm’s approach is to seek analogous vector spaces W,V and a linear map
A(x)=Cx+ D such that:

(1) A(x+x0)=Ulxy)~ ' A(x)U(x,), where x,— U(x,) is a representation of R in
the group of quaternionic unitary transformations of V. This ensures that the
connection produced by the ADHM construction will be R-invariant. Indeed,
Ul(x,) is essentially the gauge transformation « in (2.1).

(2) 4*4 is real.

(3) 4*4 is invertible.

(4) The kernel of 4* has quaternionic dimension 1.

The major difference between the problem of monopoles and that of instantons
is that the spaces W and V are infinite-dimensional and A(x) is a differential
operator.

More precisely, let H®=.%2[0,2] and define a real structure on H° (an anti-
linear map ¢ such that 62 =1) by a(f)(z) = f(2— z). We then set V=H°QC*®C?,
and take C* to have a real structure ¢’ and C? to be the quaternions. Thus V has a
quaternionic structure and the usual #? inner product gives it a compatible
hermitian structure.

For the real space W we take

W={feH'®@C"f(0)=£(2)=0},

where H' is the Sobolev space of functions on [0, 2] whose derivatives are in #2.
By the Sobolev embedding theorem such functions are actually continuous, and so
have well-defined values at each point. Thus W is well-defined and, with respect to
o and ¢, is real.

Now let e,, e,, e; denote the operation of left multiplication on the quaternions
C? by i,j, k. Since they are constant in z, and commute with right multiplication on
C? by quaternions they define quaternionic transformations of V. For the map
A(x): W—V we take (with Nahm), a differential operator of the form

3 df 3
Alx)f= (x0+;xjej)f+ia +i;Tj(z)ejf, (22

where Tj(z) is a kX k matrix depending analytically on z€(0,2) and with simple
poles at the endpoints. Because of the choice of Sobolev spaces Wand V, both T(z)

d ) . .
and - are bounded operators, so 4(x) itself is bounded. It is clearly of the form
yA

. d .
Cx+D with C=1, D=id— +iy Tie;, so we must show first, in order to apply the
Z

ADHM construction that D is a quaternionic operator from WQC? to V. Now if J
denotes the quaternionic structure on C*®C?, the quaternionic structure 7 on the
functions in ¥ or W®QC? satisfies tf(z)=J(f(2— z)). Hence,

L )=i L Uf2-2)=—Ji L (02)

A d
_ch_l;(z_z)_ﬂdzf’
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and
Y T(2e(tf) =i Y. T2 Jf (2 2)
=-Jiy T(2)e,/(2—2)
=1(iy, T(2)e;f) if T(2—z)=-— 7}(2).

So let us suppose that
T()=—T2~2), (2.3)

then A(x) is quaternionic linear.
Next consider the invariance condition (1). We have

Alx+x0)f =Ax) f+x0f
— eixo(z— 1)A(x)e—ixo(z— l)f,
and
t(eixo(z— l)f) — pi¥olz~ I)Tf,

hence U(x,)=e™" " is quaternionic and clearly unitary, so condition (1) is

satisfied.
Secondly consider the reality condition (2). We require that 4*4:W— W* be

real. Now this operator may be written

d d
A*A= (>'c+i£ +iZT* )<x+zd +12Tek)

2

d d
=— dT (2ixy— Y (T + T*)e)
—Z—ek+(x+lZT* )(x+i). Tre,).

d . .
From the e term we require T;+ T;* =0 for reality, and from the zero order term
¥4

we obtain
dr,
;Eeizjz;; TT,e e -

Hence T,= — T;* and must satisfy Nahm’s equations

dT, ]
= [Tz’ T3]

dz

aT,

—d—— =[T;, T,] 2.4
aT;

d_ _[Tl’ T ] .
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If these equations are satisfied and T,= — T;*, then we may write
A*A=—£+2ix i+||x|!2—ZT2 (2.5)
dz* %dz i '

Suppose there exists fe W such that A*Af=0. Then since f vanishes at the
endpoints of [0, 2], we have from (2.5)

0=(A*Af, f5 = <f-§+<nu+ZWﬂﬁo 26)

However, the right hand side is positive unless f is identically zero, hence we have
condition (3) that 4*4 is invertible.

For the final condition on 4, that dim ker4*=1, we must consider the
behaviour of T(z) at the boundary of [0,2]. Suppose that each T; has a simple pole
at z=0, then we may write

T(E) =2 +b(a),

where b(z) is analytic in a neighbourhood of z=0. Thus

dT;  a; , db,

dz 2 dz’
and from Nahm’s equations (2.4) we have
—a;=%), eplay ai].
ik
Thus
(x,e, +x,5e,+x5e5)=> —2(x,a, +x,a,+Xx;a5)

defines a k-dimensional representation of the Lie algebra of imaginary quaternions
and hence a representation of SU (2). We suppose, following Nahm, that this is the
unique irreducible representation S~ ! on homogeneous polynomials in (z,, z,) of
degree (k— 1), and similarly at the other pole z=2.

Now in a neighbourhood of z=0, we may write

iZT}e}.:éZaj@ej—l—b(z)
v———ZQ )®e;+b(z),

where b(z) is analytic and g is the representation homomorphism of Lie algebras. If
we consider the Casimir operator C(S)=ZQ(ej)2 of a representation S, then
j

C(S* '@SH=C(S*~ 1)®1+2ZQ )®e;+1®C(SY),
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since the ordinary multiplication of quaternions on IH=~(C? is the representation
S'. Thus the residue T=—i/2) o(e)®e; of iy Tie; at z=0 may be expressed in
terms of Casimir operators. Now the Casimir operator on the irreducible
representation S* is the scalar —k(k+2). Furthermore the tensor product
S¥"1®S! is isomorphic to S*@S*~ 2, decomposing into irreducibles. Hence,

T= ﬁ(—(k— 1)k + 1) =3+ kik+2)
= %(k—— 1) on S*,
T= é—i(—(k— D(k+1)—3+(k—2)k)
=—%(k+1) on §¥72, (2.7

Let us now consider the operator

~ d [ 1
A—le+<Z +(z—2))T
It is clear that Af=0 has a space of solutions of dimension dim $*=(k+ 1) of the
form c(z2=22)"% "2 and a dimS* ?=(k—1) dimensional space of the form
C( 2Z)(k+ 1)/7
Thus, as an operator on the Sobolev spaces we are considering, dim,, ker A
=(k—1) (if k=1), and similarly dim kerA*—(k+1) Thus 4 W®C2—>V is a
Fredholm operator with index (k—1)—(k+1)=—2.
At z=0 and z=2, the residues of T define an irreducible representation of
SU(2) on €* By Schur’s lemma [and since T,*(z)= — T(z)], there exists Pe U(k)
unique modulo scalars such that Reg 7}=Re§P“ 'TP. Let Q be a skew-adjoint

matrix such that exp2Q =P. Then 4=e¢"*¢4e*2+ K, where K is a matrix valued
function which is analytic in a neighbourhood of [0, 2]. Its regularity implies that
it is a compact operator on the Sobolev spaces, and hence by the invariance of
index, index 4=index A= —2. However, since 4*4 is invertible, ker4=0, so
dim ker4*=2. Since 4 and hence 4* is quaternionic, it follows that our final
condmon (4), that dim, ker 4* =1, is satisfied. Thus, we have proved

Theorem (2.8) (Nahm). Let T(z) (1<i<3) be kxk matrix-valued functions of
z€(0, 2) which satisfy

1
= 5 jZl:csijk[T}, ’1;]
(2) T, is analytic for ze(0,2) with simple poles at z=0 and 2,
(3) the representation of SU (2) defined by the residues of T, at their poles is
irreducible, _
(4) T2)=—T2-2),

13

(5) TH2) =~ T(z)
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Then the ADHM construction applied to the quaternionic operator
od
A(x)=(x0+2xjej)+zE +iy Te;

gives a non-singular solution to the SU (2) Bogomolny equations on R3,

We shall now investigate the boundary behaviour as »— oo of Nahm’s solution
and show that it satisfies the conditions A1-A3 of Sect. 1.

We have already used the approximation 4 to 4. We now put in the x
dependence and define 4,(x)=e"24e*®+(x,+ ) x,e,). Now, although 4, is not
quaternionic, it will provide a good approximation for the asymptotic behaviour
of 4 as r— co. Indeed, it is related to 4 by A(x)=4,(x)+ A4, where A is smooth in a
neighbourhood of [0,2] and independent of x. In particular, index 4,=index4
=—2. We also have, from (2.6), <4*4ff>=r*|f|*> (r*=|x||?). Hence, for
sufficiently large r, we also have a positive constant ¢? such that

(A3A6f, > =LA~ A)f, (A=A f >z | fII*.
Hence A4, is positive for large r and dimgker 4§ =2. We shall use these two
solutions to approximate ker A*.
Let G, be the Green’s function for 4, so that 4,G,=1—P,, G,4,=1I, where
P, is the orthogonal projection onto ker A§.
Then, since <{4of,dof>Zc’r?| ] we have [If]|>—|Pof[*2zc*r?|Gof]>.
1
Hence |Gyl = — and
cr |
1GsI=—. (2.9)
cr
Now since G§A4§=1—P,, if 4*f =0, then we have
f=Pof =G5(4* =A%) f = = GFA*f,

and so, for some constant K,
K
I}f—Pofllé;—HfH. (2.10)

We can thus approximate, to order r~!, solutions of A4*f=0 by solutions of
4% f=0.

Next choose a direction in IR* given by a unit quaternion u. Since we shall be
interested in connections only in a neighbourhood of R?, we suppose u+ + 1, and
hence u generates a circle group in SU (2). The representation space S*~!®S! then
splits into 1-dimensional weight spaces with weights

kk—2,k—4,.. —(k-2),—k for S,
and
k—2k—4,...,—(k—=2) for S*~2.

Consider the action 1®u of u on §*"!®S!. This commutes with the action of
the representation (ie., u®u) and since the spaces of weight +k occur with



Construction of Monopoles 153

multiplicity one, they are preserved. Now if u is an imaginary quaternion (i.e.,
rueR3), then (1®u)*= —1, and hence (1®u)v, = +iv,, where v, are vectors in
the +k weight spaces.

Let g, =g(z)e "%, then if x=ru

of.dg i 1 1 .
Akg, =e Q(IE; - E(k_ 1){ + m}gi—r;g)vi
from (2.7). Thus g, =(z2—2z)" Y2e*@"D72¢  defines an #? solution of
4% f=0.
Now from (2.10) it follows that a basis for the solutions of 4* f =0 can be found
of the form

fi=g:/lgsl+007h), (2.11)

where g, =(z2—2z)F " 1/2e*rE" D70y

The estimates we require concern the Higgs field . Now from the discussion at
the beginning of Sect.2, @ is defined in terms of an IR-invariant self-dual
connection by the formula

¢(S) = 5/5xoslxo= 0>
where s is a section of E’ invariant under IR. In Nahm’s framework, a solution of
A*f=0 of the form f=e™" Yg(x, , x,,x,;,2) is such an invariant section of
=ker4*, and since the self-dual connection V' is obtained by orthogonal
projection of the ordinary flat derivative, we obtain
of .
P(f)==P5—  =Pill-2)g),
xO x0=0
where P is the orthogonal projection onto the kernel of 4*. Now, because of (2.10)
and (2.11) we can determine @ to order r~ ! by considering the operator A% and the
solutions g .
In this case, if we use g, and g_ to form a basis for the vector bundle, then the
Higgs field is given by

i(l=2)g,,9.) <il=2)g,,9_)
lg.I? gl llg_I
i(l=2)g_,g9,> <il—2)g_,9_)
gl llg_I lg_1?

However,

2

”gi”2=§(22—22)k e-2r(z l)dZ
0

and so |lg, ||— o0 as r— 0. Also

i(l—2)g,,g_>= E (1-2)(2z—2z»)* " 'dz=0.
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Hence the off-diagonal terms in @ vanish. Furthermore,

2

[il—2z)(2z— 22k te* 27Dz
lim 2 = Fi.
r—o (2Z_ZZ)k—1ei2r(z—l)dZ

O =y

Hence, in this gauge,

di—>( 0) as r—o. (2.12)
0 i

Thus ||@||—1 and the eigenspace corresponding to Fi for large r is isomorphic to
the homogeneous bundle R*\0 x (€, where the circle group S' acts on € with
weight + k. The line bundles defined by the eigenspaces of @ on a large sphere thus
have Chern class +k, so by definition the monopole has charge k.

Consider next the curvature of V'. This is given by

F=PdxGG*dXP. (2.13)

Hence from (2.9) we obtain |[F[2<3/c*r*, and so |[D®| =||F| =0(r"?) verifying
condition A3.
Now from the Bianchi identity D*D® =0, hence
d*d|®||*=— | D®|*=—||F|>.

Thus, from Green’s theorem and the estimates
Idl@[*|*=2|(D®, ®)|*>=0("*),
I®)—1,
we find

oy L IFI)
I91°09=1= 1 | o

(2.14)

We now approximate F by F. If we set G= G+ B, then
(4y+A)(Gy+B)=I-P,
hence 4,B=P,—P— AG,. Thus from (2.9) and (2.10) there is a constant « such

that ||4,B| <ar™'. Hence, |B| =|G,4,B| Sa/cr? ie. ||G—G,|=0(r"?), and so
from (2.9) [|GG*— G,G{| =O0(r~?). Thus from (2.13) we obtain

[F—F,|=0("?), (2.15)
and hence
[F|>—=|Fol*=0(""). (2.16)

Now F, is the curvature of a homogeneous connection on a direct sum of line
bundles over R3\0, and so || F,[>=pr~* for some constant . Hence from (2.16)
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|F|?=pBr~*+0(r~°), and from (2.14) we may therefore write
1 -
iI¢IIZ(X)=1—4— [ IEI*+0072). (2.17)
r R3

Now by Stokes’ theorem
[ |IF|*=lim | «(D®,®)
R3 R Sr

=lim | (F,®)
R= o Sr
=lim | (Fy,®)
R— Sr
from (2.15). But as r— oo, the line bundles of which F is the curvature approach
the eigenspaces of @, so this last integral may be expressed in terms of Chern
classes, and we obtain from (2.17)

2k
[22=1-=+0673),

which is the condition Al. It is straightforward to take into account the angular
dependence of || F|| in the estimates, and we obtain all three conditions A1, A2, A3.

In fact Taubes (unpublished) has shown, using the methods of [9], that the
conditions A1-A3 are consequences of the equations D®==«F and the single
condition ||@|—1.

We have thus seen that Nahni’s construction produces a monopole with the
required asymptotic conditions, passing from the realm of ordinary differential
equations to that of partial differential equations. In the next section we pass from
partial differential equations to algebraic geometry, using twistor methods.

3. The Spectral Curve

Nahm’s construction started by interpreting the Bogomolny equations as
x,-translation invariant solutions of the self-duality equations in IR*. It is well-
known that a self-dual SU (2) connection on IR* corresponds using the Penrose
twistor theory to a holomorphic rank 2 vector bundle on the complex 3-manifold
IP,\IP,, which is trivial on every real line and quaternionic with respect to the real
structure on P, induced by a quaternionic structure on C* (see [2, 4, 5]). The
action of translation in the x,-direction induces a free holomorphic action of the
additive group € of complex numbers on P,\IP,, whose quotient is an algebraic
surface. It may be identified with the total space of the tangent bundle TIP, to the
projective line.

Thus, a solution of the SU(2) Bogomolny equations on R* corresponds to a
holomorphic rank 2 vector bundle E on TP, which is quaternionic and trivial on
every real section of n:TIP, - P, these being the projections of real lines in IP,.

This correspondence is dealt with directly, without passing to R*, in [8], to
which we refer for details of the following. The complex surface TIP; may be
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thought of as the space of oriented straight lines in IR?, and then the bundle E is
defined by:

E,={seI(y,, E)\(F,—i®)s=0}.

Here U is the unit tangent vector along the oriented geodesic y, corresponding to a
point ze TIP,.

If (V, @) satisfy conditions A1-A3, then there are two distinguished holomor-
phic line bundles L* and L~ in E defined by:

L¥={seE|s(t)~0 as t—>+ 0} .

The spectral curve S is defined by S={ze TIP,|L =L_ } and is a compact algebraic
curve.

We denote by L the holomorphic line bundle on TIP, corresponding to the
trivial U(1) solution of the Bogomolny equations @ =i, and by O(k) the pull-back
from P, of the unique line bundle of degree k. We cover IP, by two standard affine

a ...
open sets U, U, and let { be a coordinate on U,. Then e trivializes the tangent
bundle over U, and we take local coordinates (7,{) on n~*(U,) defined by
(1, C)-—md%. With respect to the open covering Ui =7n"!(U,) of TP,, the line bundle

L is defined by the transition function e”* on Uy,nU,.

It is shown in [8] that L* =~ I(—k) and L~ =~ L*(— k). Hence, since L* =L~ on
S, we have the fundamental constraint L=L* on S.

The natural real structure on TIP, is defined by (z, O=(—n/2%-C"") and
corresponds to the operation of altering the orientation on each straight line in R®,
The quaternionic structure ¢:E,—E_ maps L to L_ and so on S the bundle
L(—k) has a quaternionic structure. Hence L(k—1)=L(—k)®O0(2k—1) is real.

Since § is defined by the condition L =L, this corresponds to the vanishing
of the map L™ CE—~E/L* =(L*)* But L™ =~L*(—k)and L* = L(—k), so S is the
divisor of a section ye H(TIP,, 0(2k)) and since it is compact, is defined by an
equation

y=n"+a,On* '+ ... +a,0)=0,

where a/(() is a polynomial of degree 2i in { (see [8]). The curve S may of course be
singular or reducible.

To summarize, we have the following properties of S:

S is a compact algebraic curve in the linear system |O(2k)| on TIP, such that S
is real and L? is trivial on S.

In this section we shall first describe the space H*(C, 0) for any curve C in the
system |O(2k)|, use it to show that S has no multiple components, and then prove
the important vanishing condition B4 of Sect. 1. For brevity we put T=TP,.

Recall that there is a canonical section n%e HO(T, 0(2)) which we shall denote

simply by #. We shall prove the following:
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Proposition (3.1). Let S be a curve in the linear system |0(2k)|. Then every element
ce HY(S, 0) may be written uniquely in the form

k—1

c= Y n'n*c,

i=1

where c,e H'(IP,, O(—2i)) and n:S—1P, is the projection.

Proof. We first compactify T to a compact non-singular algebraic surface T by
replacing a line bundle by a bundle of projective lines. We take

T=P(0(2)®0)=PO(1)®0(—1)),

since T=TIP, =0(2).
LetH, denote the line bundle 7*0(1) on Tand H, the tautological bundle over
(0(1)@0( 1)). Recall that any projective bundle lP( V) has a tautological bundle
H whose dual is defined by:

H*={(x, y)e P(V) X V|n(x)=n(y) and yex}.

The canonical bundle K of holomorphic 2-forms on T is then expressed, in
additive notation, by

K=-2H,—2H (3.2)

The section ne H(T, 0(2)) extends to a section r/eH (TH + H,), vanishing only
on the zero section Z, and there is a section éeHO(TH — H,) vanishing only on
the section at infinity. Thus ¢ trivializes H,—H, on TC T, and hence in a
neighbourhood of S.

We shall consider first the restriction map

H\T,(k—1)(H,— H,)) = H'(S,(k—1)(H,— H,)),

and show that this is an isomorphism. Since H,— H, is trivial on S we shall then
have a description of H'(S,0). 3
To do this, first note that the curve S is defined in T as the divisor of

=i +a @ e+ ... +a,leHYT k(H, +H,)).
Thus we consider the exact sequence of sheaves
0-04#—H,—(2k—1)H,)-»04#(k—1)(H,— H,))—04—0.
From the exact cohomology sequence, gg will be an isomorphism if
HYT, —H,—(2k—1)H,)=0 for p=1,2. (3.3)

Now on T= P(O(2)@0), the curvature of the natural connection on the tautologi-
cal bundle is non-negative and positive in the fibre directions. In our notation this
bundle is H, + H,. Since H, is positive on the base,

(Hy+H,)+eH, >0 for &>0.
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Hence,

(2k—1)H,+H,=(2k—2)H,+(H,+H,)>0
for k>1, and so by Kodaira’s vanishing theorem,

HXT, —H,—(2k—1)H,)=0 for p=0,1.

On the other hand, we have the Riemann-Roch theorem for a line bundle with
Chern class [:

hO—h' + 2 =317 +4c, 1+ 5(c +c,).

Since T'is rational, ¢?+c,=12. Now taking L= —H,—(2k—1)H, and using (3.2)
and the intersection numbers: H, -H,=1, H; =0, H3=0, we see that h> =(2k— 1)
—(2k—1)+1=0. Hence (3.3) holds and g is an isomorphism.
Consider next the map

&HT,(1—1)(H,— H))~H\T,I(H,— H,)).

Since & vanishes on the rational curve at infinity C, and 7 trivializes H, + H, in a
neighbourhood of C, we have the exact sequence of sheaves:

0-04(—1)(H,—H ))—»O ((H,—H,)—5>0(-2)-

Since H%(P,, 0(—21))=0 for >0, we see that ¢ is injective. Also, if we consider
c,e H'(P,, O(—21)), then

Qc(ﬁln*cz) = (3.4)

This is because C is a section of «: T—+IP
Now, consider an element ae H 1(T (k~ 1)(H,— H,)) of the form

éklt

“M

If this vanishes, then from (3.4), ¢, _, =0. However, since £ is injective, this implies
k—2 A .
Z f]zék—z—ln*ci:()‘

Repeating the argument we see that ¢;=0 for all i. Hence the elements of the form
AiE=1-igxc for c,e H' (]Pl,O( 2i)) and 1<i<k—1 are all linearly independent
and span a subspace of H\(T,(k—1)(H,— H,)) of dimension

k—1

Z dimHY(P,, O(—2i))= Z QRi—1)=(k—1)%. (3.5)
Thus, since g is an isomorphism, this is a (k— 1)>-dimensional subspace of H'(S, 0).
However, from the exact sequence
0-’07“(— k(H1 + HZ))—)OT_)OS_)O
we see, using the Riemann-Roch theorem for T, that

dim HO(S, 0)— dim H(S, 0) =1 — (k— 1)2.
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Since S is connected, dimH(S,0)=1, so dimH!(S, 0), the arithmetic genus, is

(k—1)2.
Hence from (3.5) every element ce H(S, O) is uniquely expressible as
k—1 )
= Y. ninve,.
1

and Proposition (3.1) is proved.
If we now specialize to the case of the spectral curve of a monopole, we may
deduce the following property:

Proposition (3.6). Let S be the spectral curve of a monopole. Then S has no multiple
components.

Proof. Let C be a reduced curve which occurs as a component of S with
multiplicity greater than one. Then from the definition of S, L™ =L~ on the first
formal neighbourhood of CCT. Hence L? is trivial on the first order neigh-
bourhood. The curve C is the divisor of a section y of O(2]) for some [ <k (we may
take C to be real). Now consider the exact sequence of sheaves for the first formal
neighbourhood 0(2L),

0-042L—2)—0V(2L)—»02L)—0.

If g is the trivialization of 2L on S, and it extends to the first order, then the
obstruction d(a)e H'(C,0(—2l)) in the exact cohomology sequence vanishes. In
particular, if we take a family of sections y(t)e H%(T, O(2])) with (1) =1, then the
obstruction to extending a in this direction vanishes, since it is the element

<5(a),%(t£(l)> eH'(C,0).

Take the family w(t)=v(tn, (), then n—tn defines a biholomorphic equivalence
between the divisor C, of y(t) and C. The line bundle 2L on C, is then given as a
bundle on C by the transition function ",

Hence the obstruction to extending the trivialization in this direction is the
element in H*(C, O) represented by the cocycle 25/(.

Now (7! represents a non-trivial element of H'(P,,O0(—2)), thus by
Proposition (3.1), the cocycle 2r/{ represents a non-trivial element in H!(C, O).

Hence d(a)+0 and the Proposition is proved.

This is one condition on the spectral curve which is not included in [8]. We
shall next prove a more fundamental condition which will turn out to be
equivalent to the non-singularity of the monopole determined by S. It is a
vanishing theorem analogous to the vanishing theorem for bundles on IP, which
was so important in the ADHM construction of instantons [2, 7, 12].

We denote by L? the line bundle over T corresponding to the solution @ = zi of
the U(1) Bogomolny equations. Its transition function with respect to the covering
Uy U, is e~

Theorem (3.7). Let S be the spectral curve of a monopole of charge k. Then,
HOS, LA (k—2)=0 if ze(0,2).
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Proof. First let us recall how the spectral curve determines the bundle E over T,
according to [8], Sect. 7.
The bundle L? is trivial on S, so the coboundary map

6:H®(S, L*)—HY(T, L*(—2k))

defines an extension of line bundles 0— L(—k)—E*—L*(k)—0 by &(a), where
ae H(S,L?) is a trivialization. Since S is connected, a is unique up to a scalar
multiple, so the bundle E* is uniquely defined.

The real structure defines an antiholomorphic map o : L*(— 2k)— L~ *(— 2k) on
T and so o¢d(a) defines another extension

0—L*(—k)>E~ > L(k)—0.

The bundles E*,E~ are both isomorphic, the isomorphism defining the quater-
jonic structure on E=E* ~E~. The two extensions then correspond to the two
distinguished subbundles L* and L~.

The coboundary map is at the source of the proof. The basic idea is to consider
the composite map:

HO(S, LA(k—2)) > H\(T, L*(— k—2)) = HY(T, L* " *E(-2)),

where i is induced by the inclusion L(—k)—E. If se H(S, L*(k—2)), then id(s)
represents, using the twistor interpretation of massless fields, a solution ¢ of a
differential equation of Laplacian type on IR3, We show that ¢ decays at infinity
fast enough to ensure that it vanishes identically. It will then follow that s must
itself vanish.

In order to obtain estimates, we need a good analytical control of the
transforms involved, and so we pass from Cech cohomology to Dolbeault
cohomology in order to represent sheaf cohomology classes.

Let ae H%(S, L?) be the trivialization and {¥} a sufficiently small covering of a
neighbourhood of S by open balls. Since S is compact, this can be taken to lie in a
compact subset of T.

A Cech representative for d(a) consists of extending the covering to T and
taking the cocycle (a,—a;)/y on V,nV,, where q, is some holomorphic extension of
a to V. We take the cocycle zero on any other intersections. A Dolbeault
representative may be obtained by taking a partition of unity {¢,} subordinate to
the covering and defining 9j=52¢i(ai—aj)/tp. Then, on VNV,

Bj'_ 0= 5(2 dla,— aj)/w) = 5((“1( - aj)/w) =0.
Hence 0 is a well-defined d-closed (0, 1) form with values in L?(—2k). In fact,
0=0(). d.a)/w=0afw, (3.8)

where o is a C* section of L? of compact support.
With this explicit representative, we can define the holomorphic structure on
the extension E*. We take E* = L(— k)@ L*(k) with a new J-operator given by

d(x, y)=(dx + 0y, dy). (3.9
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Similarly the holomorphic structure on E~ is defined by
a(x',y)=(0x"+ 0%y, 8y, (3.10)
where 6*e Q% Y(L~?(—2k)) is the form conjugate to 6 using the real structure.
Thus, from (3.8),
0% = Joc* /p* = Oa* [, (3.11)

since we H%(T, O(2k)) is real.
Now E* and E~ are holomorphically equivalent via an isomorphism which
preserves the natural symplectic form on each:

RN

y) \c DJ\y)’

where Ael(TL™?), DeI(T,L?, BeI(T,0(—2k), and CeI(T,0(k)) and
AD—BC=1.

Now to be holomorphic the matrix above must intertwine the two J-operators.
Hence,

0x' 4+ 0%y = 3(Ax + By) + 0*(Cx + Dy)
= A(0x+6y)+ Bdy, (3.12)

and

0y’ =0(Cx+Dy)
=C(dx+0y)+Ddy. (3.13)

Now from (3.13) dC =0, so C is a holomorphic section of O(2k). In fact, by the very
definition of the spectral curve, C=1. Also from (3.13) we have 0D=C0
=oo/yw=200. Hence D—a is a holomorphic section of L2 But if L? has a
holomorphic section on T, then it must be trivial and define the trivial solution
@ =0 to the Bogomolny equations. Since for L% &=2i we must therefore have
D=o.

Now from (3.12), 4 4+ 6*C =0. Hence from (3.11) A4 + da* =0, and again since
L~ ? has no holomorphic sections, 4= —a*.

The final entry B is determined by the condition AD—BC=1, hence the
quaternionic structure on E, i.e. the isomorphism E* ~E~ is defined by

(—oc* —(1+ococ*)/tp) (3.14)
v " . .

Now, returning to the theorem, take a section se HO(S, L*(k—2)) and form the
element id(s)e H(T, L*~ ' E(— 2)). We can represent id(s), by a procedure analogous
to the above, by a Dolbeault form

(0a/p,00€ Q™ (L7~ ' E*(~2),

where o is a section of L*(k— 2), compactly supported around S.
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But, from (3.14)
A B) ooy _(—a*ga/tp)
¢c pj\o ) \ & )

and [as a section of L~ *E~(—2)] we have

-5

A B\(da/y\ <(0 5(0(*6)/1,0)
=0 — . .
e o0 =7(0)- (5 (1)
In other words, the cohomology class id(s)e H(T, L7~ 1E(—2)) is represented by
two forms,

0% =00/pe QO LF"'LT(=2) and 6 =—d(a*o)/peQ® L L™ (-2),

Hence,

where, moreover, if y=0(0, )
0" —6- =3y, (3.16)

where 07,60 and y are all supported in the same compact neighbourhood of S.

Recall now that if E is a vector bundle on R* with a self-dual connection and E
is the corresponding holomorphic bundle on IP,\IP,, then there is an isomorphism
[2,7,12]

HY(P,\P,, E(—2))={¢e(R* E)|V*V¢=0}.

It is straightforward to deduce that, for a self-dual connection which is invariant
under x,-translation, there is a corresponding isomorphism

H\(T, E(—2) = {¢e [ (R3 E)|(V*V+ &*&)p =0} . (3.17)

In our case we are considering the bundle L*~ !E which corresponds to the U(2)
solution of the Bogomolny equations obtained by taking the original connection
on E, but with a modified Higgs field &' =& + (z— 1)i. Note that the eigenvalues of
i®" at infinity are —z and (2— z) so that if ze(0, 2) they have opposite sign.

We must now examine the isomorphism (3.17) in more detail in order to
estimate the growth of ¢.

The value of the section ¢ at a point xeIR? is obtained by restricting to the
corresponding section P, CT.

Now by Serre duality

H' (P, L* 'E(=2)~H(P,, L' E)*
=FE¥>F .
We want to estimate the norm of ¢(x) and this we do by considering all

holomorphic sections of L' “*E on P_ and evaluating the class id(s) corresponding
to ¢ on them.
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Now from [8], a section f of L' ~*E corresponds to a section f of E on the unit
sphere bundle $>xIR® which satisfies the equation (V,—i®)f=0 along the
geodesic flow.

Similarly a representative form 6e Q% (L~ LE(—2)) for id(s) corresponds to a
form 6 on S*>xIR3 which satisfies an analogous equation along the flow. The
evaluation <9, f} is then invariant under the flow and defines the evaluation
0, f>e Q% (T, 0(—2)). Therefore, to evaluate ¢ at a point xeR3, we take a basis
{e,,e,} for E,, pull back to S xIR* to obtain holomorphic sections {f,, f,} of
L'7?E on P_ and evaluate the integral to obtain

(¢, e, =<id(s), f;p = I O(x, u), fx,0)y

where ue S>~ P_ runs over the unit tangent vectors at xeIR>.

Now from (3.16) we have two representatives 0 and 0~ for id(s), where
0*e Q%Y L7~ *L*(—2)). But in [8], L™ is defined as the space of solutions to
(V,—i®)s=0 along a line which decay like t*¢™* as t—oo. We similarly obtain
estimates

0% (y+tuu)~te®=2" as -+,
0~ (y+tu,u)~tle™*" as t——o0,

using the Higgs field @'.
Let us parametrize T by

{(u,x)eS?xR3 |u| =1 and u-x=0}.

That is, define a straight line by its direction and shortest distance to the origin.
Then since 6 and 6~ have support contained in some disc bundle of radius R,
we have for z€(0, 2) estimates of the form
10* v+ ] <Ke™®, 120,
10~ (y+tu,u)| <Ke M, <0,
if y-u=0.
Equivalently, putting x=y+ tu,
0% (x,u)| <Ke™**% if x-u=0
A - . (3.18)
107 (x, w)| <Ke™#*l if x-u<0.

Now if [[x[|?— (x-u)*> > R?, the straight line through x in the direction u is always a
distance greater than R from the origin. Hence from (3.18), if ||x|| >R we have

107 (x,u)| <Kexp(—e|/|Ix|2—R?), if x-u=0,
||é_(x,u)||<Kexp(—8]/W—_R2), if x-u<O.
We define open sets V* in §? by
VE={ueS]+x-u>0and (x-u)>>||x|>—R?}.

(3.19)

If | x| is sufficiently large, then V* are disjoint neighbourhoods of +x/||x||e S?
and #* and 6~ have support in V¥ UV~
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Hence, integrating gives us
<io(s), fo = J <07, J+
=[O >+
P

’f;>

[ <0
-

J <O~ fo+ [ <onfo.

V- V-

However, from (3.16), y is supported in ¥* UV ™, and so the last term vanishes by
Stokes’ theorem. Therefore from (3.19) we obtain

[<id(s), fipl, <4nK exp(—e)/ x>~ R*)I £l

and so as ||x[— o0, [¢(x)| decays exponentially. Since (see [8]) the derivatives of
0* also decay exponentially along each line we also have a similar estimate for
Vol

We now use the standard vanishing theorem argument. From (3.17)
V*V+d*d")p =0, so

0= [ ((V*V+@*d)¢p, p)>

lIxll=R

= | (IIP+12 @)+ | Re(Ve. ).

Ixlf=R llx|I=R

But the boundary term tends to zero as R— oo, by our estimates, hence V'¢p =0 and
as ¢—0 we must have ¢ =0, and so id(s)=0.

To complete the proof we must show that id is injective. From the exact
sequence

004 (LH(—k—2))=Op(LH(k—2))=O4L*(k—2))—0,
the coboundary map & will be injective if H(T, L*(k — 2)) =0 and from the sequence
004 (LA(—k—2))-»0x(L*" YE(— 2))—>0(L7*(k—2))—0,

the map i will be injective if H(T, L*~?(k— 2))=0.

However, if z+0 there can be no holomorphic sections of L?(k—2) on T.
Indeed, such a section pulls back to a holomorphic section of O(k—2) on P,\IP,
under the quotient map IP,\IP, — T. This is because L7 is the bundle on T associated
to the representation w—e*" of €, considering IP,\IP, as a principal C-bundle over
T. Hence L? is trivial on P,\IP,.

Now by Hartog’s theorem any such section on IP,\IP, extends to IP,. However,
the action of € on such sections is algebraic and there are no sections which
transform with the transcendental multiplier e [see also (5.4)].

Thus if z#0 or 2 the map id is injective and so s=0, concluding the theorem.

We have thus established the conditions B1-B4 for the spectral curve S.

The condition L?>=1 together with the antiholomorphic isomorphism L= L*
defined by the real structure means that the element 2[%/{]e H(S,0) is an
imaginary lattice point with respect to H'(S,Z)C H*(S, 0) and hence the straight
line through 0 and [2#/{1e H'(S, O) defines a homomorphism

h:S'—HY(S, 0)/H!(S, Z)=Pic(S).
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Now we may identify the Picard group with the Jacobian Jac(S) of divisor classes
of degree g—1 by L— L(k—2), (recall that deg(k—2)=k(k—2)=(k—1)>—1), and
then the vanishing condition of Theorem (3.7) is that h~}(®)=1, where O is the
theta divisor of line bundles of degree (g — 1) with at least one section. In particular
h is injective, so [2#/{] can not be a multiple of any element in H(S, Z).

4. Solving Nahm’s Equations

Let us suppose now that S is a curve in TIP, satisfying conditions B1-B4, i.e.
(i) S is defined by an equation

n*+an '+ ... +a,=0,

where a;€ H(IP,, O(2i)) are real.
(i)) S has no multiple components and L(k— 1) is real.
(iii) The line bundle L is of order 2 on S.
(iv) H°(S, L*(k—2))=0 for z&(0,2).
We shall show how S defines canonically a solution of Nahm’s equations,
satisfying the conditions C1-C4. First we derive some consequences of (iv).
Consider the exact sequence of sheaves

0—>O04(IH,—k(H, +H,)) 5 (IH,)~> O4(IH,)—0

on the compactification T of T. )
From the exact cohomology sequence and the Riemann-Roch theorem for T
we deduce that

dim HO(S, 0(])) — dim H(S, O(1))
=1PH?—YH, K—4(H,—k(H, + H,))*+%(H,— k(H, + H,))-K
=[+1lk—k>—14+2k

=k(l—k)+2k.
Hence for the flat line bundle L%, by invariance under deformation,
dim HO(S, L)) — dim H(S, L*()) = k(I— k) + 2k . 4.1)
Thus in particular dim H%(S, L*(k—2)) =dim H'(S, L*(k— 2)), and from (iv),
HYS, L (k—2))=0 for ze(0,2). 4.2)

Now let F be a fibre of T which intersects S in k distinct points [its existence is
assured by (ii)] and consider the exact sequence

0-0y(L(1)~ O(L¥(1+ 1))~ O, L1+ 1))-0.
We see immediately that

HO(S, A1)~ HO(S, L(1+ 1))
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is injective and

HY(S, L)~ H'(S, L*(1+ 1))
is surjective. Hence from (iv) and (4.2)

HO(S,LX())=0 for [<k-2,

(4.3)
HY(S,L*())=0 for [=k-2.
Using (4.1) this implies in particular that
dimHO(S, L(k—1))=k. 4.4)

When z=0 (or z=2 since L? is trivial), the line bundle O(l) has more sections:

Proposition (4.5). If [ <2k, then every section s€ H°(S, O(l)) may be written uniquely

in the form
[1/2]

s= ) n'n¥e,
i=0

where c,e HY(IP,, O(I— 2i)) and ne H°(S, O(2)) is the tautological section on T.
Proof. Take first the case when [ is even, [ =2n, say, and consider the exact sequence
0-04(n—k)(H,+H,)=04n(H,+H,)—042n)—0.

Now HT,(n—k)(H, + H,))=0 since (n—k)<0, so we shall have
HYTn(H, +H,) = H(S,02n)), (4.6)
if H(T,(n—k) (H, +H,))=0. But if Z is the zero section, there is an exact sequence
0-04—m(H,;+H,)—0#(1—m)(H,+H,)—>0,2—-2m)—0.
Now if m>1, H(P;, 0(2—2m))=0, so
H'(T, —m(H, +H,)>HT.(1—m)(H, + H)

is injective and, repeating, injects into H YT, —(H . +H,)). However, T is rational
so H ‘(?} 0)=0, and as HO(?} 0)—H%Z,0) is an isomorphism, it follows from the
exact cohomology sequence with m=1, that H(T, — (H, + H,))=0. Consequently
HNT, - m(H , + H,)) vanishes too. ;

Thus we have established (4.6). Restricting from T to T we have

HT,n(H, + H,))=~H°(T, 02n)) = H(S, 02n)),

and by the result of [8] Sect. 7 every section of H(T, 0(2n)) is of the form s=an"
+a,n"" '+ ... +a,, so the proposition is verified.
If I=2n+1 we use a similar argument with the exact sequence

0-O0xH,+(n—k)(H,+H,)~>04H, +n(H, +H,)—>042n+1)-0.
In this case, we need to prove H\(T; — H,)=0. But by Serre duality, using (3.2),
HNT, —H,)=HYT,H,—2H,—2H,)*.

This, however, is zero by Kodaira’s vanishing theorem.
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An important special case of the proposition is where /=2. It follows then, that
if k> 1, the space H°(S,0(2)) is spanned by

d d ,d ,,d
n E’ E, ¢ E’ ¢ E’
where ’7;—{ is the tautological section already introduced and the other three form

a basis for the holomorphic vector fields on IP,.

As a consequence of (4.5) the vector space H°(S, L*(k— 1)) jumps in dimension
from k to 4(k+1)? or 2k(k+2) (where k is odd or even respectively) as z tends to 0
and 2. We can nevertheless define a holomorphic family of vector spaces over C—a
vector bundle ¥ - by taking the direct image sheaf n, M of the line bundle M over
€ x S whose fibre at (z, w)e € x S is L*(k— 1),,. The direct image sheaf is torsion free
on the 1-dimensional space € and hence is locally free. Since H(S, L*(k—2))=0
generically [it vanishes for z€(0,2)], the bundle V is of rank k and its fibre at
ze(0,2) is simply V,=H(S,L*(k—1)). We shall investigate the fibres at the

z

endpoints later on. The principal object we shall consider in this section is the
product map:

HO(S,02)®H(S, L*(k— 1)) - H(S, L*(k+ 1)), 4.7)

and in particular its kernel.

Proposition (4.8). Let K, denote the kernel of m in (4.7). Then the map h:K_ -7V,
defined by

h(n®s,+1®s, +{®s,+*®s;)=s,
is an isomorphism if z€(0,2).
Proof. The sections of O(2) embed T into a quadric cone in PP, :
{(zg» 21525, 23 2o =M, 2, = 1,2, =, 2, =(?}.

Let us denote by H the hyperplane line bundle on IP,, then H|.=0(2).
There is an exact sequence of vector bundles on IP, (the Euler sequence):
0—-QL(H)—>C*—H—0, where Q} is the cotangent bundle, and

C*~H°(IP,, H)~ H(T,0(2)) = H°(S, 0(2))

by (4.5). Thus restricting to S and tensoring with L*(k— 1), we have an exact
sequence

0—QpL*(k+1)—H(S, 0Q2))@ L(k— 1)— L*(k+ 1)—0. 4.9)
The exact cohomology sequence of (4.9) gives
0—HO(S, QLL*(k+ 1))~ H(S, 0Q2) ® H(S, L*(k— 1))
L HYS, LAk + 1)) > HY(S, QLLA(k+ 1)) ...

We shall show that m is surjective and identify its kernel.
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Consider (zq, z,, 2,, z;)€IP;. The tangent plane to the cone touching the line
{=o00 is z; =0. On the complement of this we have trivialization of Q} given by:

w,=d(zy/z,); w,=d(z,/z,); w;=d(z5/z,).
On the complement of the tangent plane along {=0 we have a trivialization
0, =d(zy/z5); @B,=d(z,/z5); D3=d(z,/z5),
and so
@, =d(zo/z, - 2,/25) =0, ("2 +nd,,
®,=d(z,/z,2,/2;) =0, ">+ {d,,
By=—{"tw,.

Hence on T, with respect to the standard covering U,, U,, Q) is defined by the
transition matrix

{2 0 0 \/x, X
o 2 0 |lx]=ls (4.10)
-0t =07 =T \x, X,

In particular, we may consider the map f:Qp— Q17— QL ~0(—2), where Q} is the
cotangent bundle along the fibres of T Since w,=dn and &, are local triv-
ializations of Q}, the kernel of f:Qp—Q% is the extension of O(—2) by O(—4)
given by the transition matrix
{2 0
[Sos o)

which (since [{~*]Je H(IP,,0(—2)) is non-trivial) is the non-trivial extension on
IP,. Hence

kerf=0(—3)®0(—3).
Consider then the exact sequence
0L (k—2)®L*(k—2)—>QpLA(k+1) L, Li(k—1)—0. (4.11)
From (4.3)
H(S, LA(k—2))=H(S, L(k—2))=0,

and
HY(S, L (k—1))=0.

Hence from the exact cohomology sequence of (4.11),
£ HOS, QLLA(k+1))>HO(S, L*(k— 1))

is an isomorphism and H'(S, Q5L (k+1))=0 if ze(0, 2). Consequently m is onto,
with k-dimensional kernel isomorphic to H(S, L*(k— 1)) under the map f.

It is straightforward to see that f is the map & in the Proposition, which is thus
proved. '
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From Proposition (4.8) the sections s,,s,,s; are all determined linearly by s,
Thus there exist well-defined endomorphisms Ag(z), 4,(z), A,(z)€EndV, for
z€(0,2), such that

(n+ A+ (A, +(%4,)s=0. (4.12)

The endomorphisms /~1i almost define the solutions to Nahm’s equations but they
are not yet matrices — we have to trivialize the vector bundle ¥ over C in order to
obtain such a form. We shall define a connection in order to obtain such a
trivialization.

Recall that one approach to connections is the notion of covariant derivative
of a section of a vector bundle. Suppose then that s(z) is a local holomorphic
section of V. We can represent s by a pair of holomorphic functions f,: U-C,
f,:U'—C* (where U=UyNS, U'=U,NS), such that f,=e"(*=Vf on UnU'". If
we now naively d1fferent1ate with respect to z, we obtain

0 0
oo _ e aizl

21 (4.13)

which clearly does not transform as a section of V. However, by virtue of (4.12) we
may write

s=—(Agl T +1A)s— G A, + 4,0,

BN

and then
22+ G A s+ LA,y
== fo— (" Aps+14,9)ly

7 . .
=ik % —(C"1A03+§Als)} (4.14)

unu’

Since 14,5+ (A,s is regular in U and {~'Ays+34,s is regular in U’, we have a
well-defined connection on V over (0, 2), whose covariant derivative is defined by
of

Vs=—22

s 0z

z

+ A A5 +A,9)), . (4.15)

We now take a basis s,, ..., s, of covariant constant sections along (0,2), and we
may then represent the endomorphism A by the matrix A,
Nahm’s equations come from the followmg proposmon

Proposition (4.16). Let Ay=T,+iT,, A, =—2iT,, A,=T,—iT,, then T,,T,, T,
satisfy Nahm’s equations

dr,
dz

=%Z£ijk[7—}a Tl‘c] fOV 26(0’2)-
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Proof. Let us write A=A,+ (A, +(*A, and A, =34, +(A,. Then from (4.12)

(n+A)s=0, (4.17)
and since V was trivialized using covariant constant sections, from (4.15)
@+A+s=0 on U. (4.18)
0z
0s dA A
Hence from (4.17), (11+A)—; + ?l;s=0, and from (4.18), —(n+A)A s+ ‘Z—s=0,
z z

dA .
hence — A4 ns—AA_ s+ ES=O, so by (4.17) again

<[A+,A]+%§)s=0. (4.19)

Now take a fibre F of T for which SNF consists of k distinct points. If F is the
divisor of a section u of O(1) on T, consider the exact sequence

0—04L7(k—2)—— O5L*(k— 1) 05 ,—0.

Since HO(S, L*(k—2))=H!(S, L*(k—2))=0, then from the exact cohomology se-

quence, the restriction map ¢: H(S, Li(k—1))->H°(SNF,0) is an isomorphism,

hence there is a basis of sections s, ...,s, of H(S, L*(k— 1)), such that s,(x =0, if
i%j but s,(x;) %0, where {x,,...,x,} =SNF.

.. . dA

Now Eq. (4.19) is independent of #, hence we have a matrix B=[A4, A]+ T

zZ

such that ) B,;s(x)=0, Vi,I, and so B;,=0, Vi,j. Thus
i

i°]
d4

—=[4,4,]. (4.20)
dz

Since the property of the fibre we chose is generic, Eq. (4.20) is true for all ¢, and
equating coefficients we obtain
dA,
dz

dA dA,
=%[Aoa A1] 5 _d71 =[Aoa Az] 5 dZ~ =%[A1, Az] s

and substituting for 7,, we immediately obtain Nahm’s equations.

Remark. Equation (4.20) is in Lax form. It follows immediately that diTrA"zo,
z

Vn=0, and hence that the spectrum of the matrix A is independent of z. We may
write this as det(y + A({))=0, which is a curve in T, a conserved quantity of Nahm’s
equations.

From Eq. (4.12) it follows that if (,{)€ S, then det(y+ A({))=0.

Since det(n+ A)=x*+b,n* "1 + ... + b, defines a divisor of |0(2k)| just like S,
and S has no multiple components, it follows that S={(y, {)e T|det(n + A({))=0}.
Thus S is the invariant curve of our solution, and it is clear that the general
solution to the equations is obtained by essentially the same procedure as above.
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The next problem is to determine the behaviour of our solution to Nahm’s
equations at z=0.

5. Boundary Conditions

We first identify the fibre V,, at z=0 of the vector bundle V.

Proposition (5.1). Let V,CH’(S, O(k— 1)) be the fibre of V at z=0. Then
Vy=n*H°(P,,0(k—1)).

Proof. We know that ¥, like H(IP,, O(k — 1)), is k-dimensional. The proof consists
of showing that any section of O(k— 1) on S which is pulled back from P, may be
extended locally to a section of L*(k— 1) over € x S. If there is such an extension,
then there exist power series expansions

S(H9C;Z)=50+ZSI+2252+ ey
S, (, z)=sy+zs) + 2%, + ...,

on WxU and Wx U’ respectively, where W is a neighbourhood of 0eC and
U=U,nS, U'=U,NS, from the standard covering of T by two open sets, such
that s={*"1e?""s on UnU'. Thus, equating first the coefficients of z, we have

s1=C"“1%s{)+C"'ls’l, so that the class [5s,/{]e H(S,0(k—1)) comes from a

coboundary and thus vanishes. There are analogous obstructions for higher order
extensions, all lying in the group H(S, O(k— 1)), whose structure we investigate
next.

Lemma (5.2). Every element ce H'(S, O(k— 1)) may be written uniquely in the form

c= Y nn*c
i= K+ 2/2]

where ¢;e H'(IP,, O(k— 1 — 2i)).
Proof. The proof is similar to (3.1). By Kodaira’s vanishing theorem and the
Riemann-Roch theorem, H?(T, — H, —kH,)=0 for all p, hence the restriction map
o HY(T,(k— 1)H,)—H'(S, O(k—1)) (5.3)
is an isomorphism. Next, the map
E:HNT,(k— VH, +(—1)(H,— H,))~»H\T,(k— \)H, +I(H,—H,))

is injective if — 2[4 (k—1)<0, by considering the exact sequence for the curve at
infinity C.
We now consider an element
k-1
a= Yy @t in*e e HY(T,(k—1)H,).

i=[k+2/2]
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If this vanishes, then restricting to C we have ¢,_, =0 [cf. (3.4)]. However, since ¢
is injective, then

zﬁiék—z—in*ci_:o

and repeating we find ¢;=0 for all i. This provides, taking into account (5.3), a
space of sections of O(k—1) on S of dimension

ht= 2m, if k=21,

However, by the Riemann-Roch formula (4.1), h°—h'=k, and from (4.5),
[k—1/2]

W= 3 (k—2i.
i=0 -
It follows that h'=h' and the lemma is proved.
We consider next the higher order obstructions. An extension of a section of
O(k—1) on S to a section of L*(k— 1) to the m'™ order can be defined, relative to the

open sets u and ' by holomorphic functions
s=s,+zs,+z%5,+ ... +2"s,, s,€HU,0),
s'=sy+zs,+ ... +2"s,, s;eH(U,0),
such that
s=0 "1y modz"tt on UNU'.

One particular type of extension is to consider functions s and s which are
functions of zx on U (and zx/¢{? on U’), since the transition function e"* is itself of
this form. We then seek

p=po+znp,+ ... +2"1"p,, p,eH(U, O(k—1—2i)),

P =py+znp+ ... +2"0"p,,, PieH(U,, O(k—1-2i),
where IP, =U,uU, is the standard covering, such that p=¢*"*p’'modz""" on
U,nU,. This, replacing zy by #, is the condition for extending a section of O(k—1)

on the zero section Z of TIP, to a section of L(k—1) on the m™ formal
neighbourhood. We have the following lemma:

Lemma (5.4). Every section of L(m) on ZCTIP, can be extended uniquely to the m™
formal neighbourhood, but no section can be extended to the (m+ 1) neighbourhood.

Proof. A section of L(m) on the m™ neighbourhood of Z consists of sections
p;,€ HY(U,, O(m~ 2i)) and pje H°(U, O(m— 2i)), such that

m+1

Po+np,+ ... +1"p,=e"py +np| + ... +1"p,)mody
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In other words, we seek functions p, on U, and p; on U, such that on U,nU,,

o 0 0 .. 0 Do Po
m-t o2 0 ... 0
1rm—2 m—3 m—4
2t ¢ ) ¢ = " | (5.5)
1 ¢t m
pr} (m——l)‘ ¢ D, Pm
Now
pO cog—mi-l
clc—m+l+1
cm—l
P :
0
is a solution if
m—1
Y ¢/(n—i)!=0 for I+1=<n=m. (5.6)
i=0
However, a determinant of the form
1 1
Z!‘ e a‘
A=| : : , where n=m,
1 1
n! 7 2n—-m)!

is always non-zero. Indeed, clearing the denominators and dividing the i** column
by (i—1)!, 4 vanishes if and only if 4 vanishes, where

G- G
- () G

But a linear relation amongst the rows of 4 implies, by the binomial theorem, that

there exist 4,€IR, such that g(x)= Y A(1+x)' is divisible by x™ "**. But g(x)

= (14 x)"r(x), where degr <m—n, hence x divides (14 x)", which is absurd.

[N
Il
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Thus, up to a constant multiple, there exists a unique solution to (5.6) and
furthermore ¢, and c,, _, are non-zero.

Adopting a slightly different point of view, the column vectors produced above
provide a trivialization of the vector bundle E,, over P, defined by the transition
function which is the matrix in (5.5). We then have an exact sequence

0-E, _,(—=1)>E,~2-0(m)—0 of vector bundles on IP,. Since E,, _, is trivial and
HP(IP,,0(—1))=0, we obtain from the exact cohomology sequence the
isomorphism

H(P,E,) %> H(P,, O(m)). (5.7

Thus any section of O(m) has a unique extension to a section of E,, and hence a
section of L(m) on the m'® formal neighbourhood.

An extension to the (m+ 1)* order is given by pulling back a section of O(m) in
the following exact sequence

0—E,(—2)—E,,, (- 1)=>0(m)—0.

However, since E,,_, is trivial HP,E,  (—1)=0, so there are no such
extensions.

We shall call this extension 5 of se H(IP,, O(m)) to the m™ neighbourhood the
canonical extension. In the language of formal neighbourhoods it defines an
isomorphism H°(P,, L"(m))=~ H°(P,, O(m)), which is, by uniqueness, invariant
under SL(2,C), the group of biholomorphic transformations of TP, which
preserves the zero section Z.

Now if we consider the exact sequences, 0—O(m— 2k)— L¥(m)— L%~ Y(m)—0,
it is clear that the SL (2, €)-module S™=~ H°(IP,, O(m)) occurs with multiplicity 1 in
HO(P,, L®(m)) for k<m. Hence we may recognise the restriction of the canonical
extension to the k™ neighbourhood as the unique SL (2, C)-invariant extension.
The group invariance also shows that from the exact sequence

0— O(—m—2)— L™ D(m)— L™(m)—0,

the coboundary map 8:H°(PP,, L™ (m))— H*(PP,, O(—m— 2)) defines an SL (2, ©)-
invariant homomorphism h from H°(PP,, O(m)) to H'(IP,, O(—m—2)) by

hs=05. (5.8)

By Lemma (5.4) this is non-zero, and since both spaces are irreducible repre-
sentations, 4 must be an isomorphism.

We may now complete the proof of Proposition (5.1).

Let s be a section of O(k— 1) on IP,, and take the canonical extension as defined
by (5.4) of n*se H(S, O(k—1)) to the (k—1)® order as a section of L*(k—1) on
S x €. The obstruction to extending to the k'* order is the element

c=n*n*hse H'(S,0(k—1)). (5.9)

However, on S we have the relation n*+a,n* '+ ... +4,=0, so (5.9) may be
written as

1
c=— Y an*'n*hs, I=k—[k+2/2],

i=1
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or
c=) 0" 'n*h,, (5.10
where h,e H'(P,, O2i— k—1)).

By (5.8) each term #*~'mn*h; is the obstruction to extending the canonical
extension of a section n*s;e H%(S, O(k— 1— 2i)) to the (k— 2i)™ order as a section of
L#(k—1—2i). Equivalently it is the obstruction to extending the canonical
extension of n'n*s,e H(S, O(k— 1)) to the (k— 2i)* order, or of extending z*#'n*s,
from the (k— 1) order to the k'™ order.

Hence, if 5 denotes a canonical extension,

§5—z%8, — 20’5, — ... — 225, (5.11)

extends from the (k— 1) to the k™ order in z.
A further extension will be obstructed by some element ¢'e H(S, O(k— 1)).
However, from (5.2) and (5.8), ¢’ canonically determines sections s/, ..., s; such that

¢ =Y n*"ih(s). (5.12)

Hence, modifying the section to the k™ order by multiples of the 5} terms as in
(5.11) we may remove the obstruction, and continue. Note that, since each term in
(5.12) is the obstruction to extending a section to at most the (k—2)™ order, the
modifications to (5.11) necessary to extend to the (k+1)™ order will all be
multiples of z3. Thus, proceeding as above, each coefficient of z” requires a finite
number of modifications, and we obtain a power series in z which defines a formal
extension.

We may now appeal to the theorem of Wavrik [14] which shows that if a
formal extension exists, then an actual (i.e. convergent) one does also.

Consequently, in the notation of the proposition, n*H(IP,,0(k—1))CV,,.
However, since both are k-dimensional spaces we obtain equality and (5.11) is
proved.

We shall next investigate in a similar fashion the behaviour of the kernel
K, CH°(S,0(Q2)®H®(S, L(k— 1)) of the product map m of (4.7), as z tends to 0.
From (5.9) this is equivalent to considering which sections of the vector bundle
Qi(k+1) over S extend to sections of QpL*(k+1). Since the direct image sheaf
n, QpL7(k+ 1) over € is locally free, and from (4.8) dim K, =k if z& (0, 2), then there
is a well-defined k-dimensional subspace K,CH(S, 0(2))®V0, which extends.
From (5.1) and (4.5), K CHO(TlPl,0(2))®n*H°(IP1,O(k 1)). Now if s, +s, + (s,
+{%s,=0 for sien*Ho(lPl,O(k—l)), it follows from (4.5) that s,=0. Hence,
K, Cr*(H(P,,0(2)®H (P, 0(k—1))). Let X,,X ,X, be a basis for the Lie
algebra of SL (2, €), dual with respect to the Killing form to the basm i C i CZ i
Each X acts as an endomorphism of H(PP,, O(k— 1)).

Proposition (5.13). Every element se K, can be expressed uniquely in the form
s=n*(1®X 5+ {®X 5+ (*®X,3)
for some 3¢ H(IP,, O(k — 1)).
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Proof. If we consider the action of SL (2, €), then H(P,, O(2)) @ H(P,, O(k— 1)) is
the representation space S?®S* "1 =S¥ 1@ S* 1@ S*~ 3. The proposition says that
K, is the unique submodule isomorphic to S¥7*.

We seek local sections sy, sy, 5,, s3€ H(S, L*(k— 1)), such that

nso+s; + s, +(%s;=0.

From Proposition (5.1) s, =zt,, hence nzt,+s, + (s, +(*s, =0.
As in the proof of (5.1) we try first extensions which are functions of #z, which
we may relate to the formal neighbourhoods of the zero section ZC TP,.

Lemma (5.14). Let s be an element of
S¥1CHO(P,, 02)@H (P, O(k—1)).

Then there is a unique extension of s of order (k— 1) to the kernel of m in
HZ,0%"Y2)®H%Z, L*" Y(k-1)),

where L%~ U(k— 1) is the restriction of L(k— 1) to the (k— 1) formal neighbourhood
of ZCTIP,.

Proof. From [8], H(Z,0%~V(2))~H(TP,, 0(2)) if k> 1, and from Lemma (5.4),
H°(Z, L% Y(k—1))=~S*"! as an SL (2, C) module. Hence as SL (2, C) spaces,

HYZ,0% " Y2))@H%Z, L% Y(k—1))=(S°®S?)®S* !
xS lpSHtieskiestT3.  (5.15)

Now restricting 2, to TIP, CIP,, we obtain an exact sequence of vector bundles
0->N*->Qp—>QL—0, where N*~0(—4) is the conormal bundle and Q; the
cotangent bundle of TIP,. Hence on the (k— 1)™ formal neighbourhood, we obtain
asequence 0 H(Z, L%~ V(k—3))>H%Z, QL L* Yk +1))>H(Z,QLL* V(k + 1))
—.... But from Lemma (5.4), H(Z, L%~ Y(k—3))=0, hence H*(Z, QLL*~ Y(k + 1))
is a subspace of H%(Z,23.L*~ Y(k+ 1)). Next restricting to the fibres of TIP,, we
obtain an exact sequence 0—0(—2)—Q1—0(—2)—0, and hence a cohomology
sequence 0—-H%Z, L* V(k—1)-H%Z, QLL* V(k+1)—>H%Z, L* Y(k—1))
—....

Now from (5.4), HYZ,L* Y(k—1)=S*"!, so HYZ, QL% Y(k+1)) is a
submodule of $*"!@S*~!, and in particular has no irreducible components of
type S¥*! or §¥73. Hence in (5.15) the kernel of m is a subspace of S¥"1@S*~ 1.

If 5 is the canonical extension of se H(P, O(k— 1)) to H%(Z, L*~ Y(k— 1)), then
nse H%(Z, L*~ Y(k+1)) is non-zero, hence one of the $¥~! components in (5.15)
maps non-trivially under m. Hence, as an SL (2, €)-module, kerm= S*~*, or is zero.
It cannot, however, be zero as from Lemma (54) we have
HYZ, L% Y(k+1)=S* '@S* 1@S* 3, which contains ¥~ ! only once.

Thus kerm = S*~ 1. If we restrict now to the 0" order neighbourhood, then the
S¥~1 component in (5.15) of the form #®3 vanishes, hence the remaining one,
kerm, maps non-trivially and hence isomorphically on the $*~! component in
HO(P,,0(2))®HC(IP,, O(k— 1)). This then is the required extension.
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We can now find canonical extensions of s,,s,,s; and t,, such that

nzty+5, + {5, +{*,=0modz", (5.16)
0 1 2 3

so long as 1®s, +{®s, +*®s,eS* 1.

To proceed further we make modifications to s; as in (5.11) to extend each to
the k™ order. Since each modification is of the form zyu we simply subtract zyu
from 5; and add u to T, to obtain an extension to k™ order satisfying (5.16).
Proceeding this way, we obtain a formal extension. This defines a formal section of
QLLA(k+1) and so, applying Wavrik’s theorem again, there exists an actual
extension. This proves (5.13).

Let us now take an element 3eH%P,0(k—1)) and extend
s=m*(1®X (3 +{®X,5+(*®X,3), according to Proposition (5.13). To make the
formal extension it was necessary to perform modifications to each X5 but these
were all of degree =2 in z. Thus the first order term of the formal extension is the
same as the canonical extension. To obtain an actual extension from the formal
extension, modifications may be necessary, but we can always find a convergent
extension which agrees with the formal extension up to order n, for any given n.

We shall compute the first order term next. From Lemma (5.4) it is equivalent
to determining the ratio cy/c, for

Po ¢l ™!
. | e
p;(—1 0

which satisfies (5.5). We shall, however, use the alternative description of the
canonical extension as the SL (2, €)-invariant extension.

We require, then, from (5.5) the SL (2, C) invariant splitting of the space of
sections of the bundle over IP, defined by the transition function

Ck_l 0
So1= (Ck—z Ck—3>’

and defining the invariant extension given by the class [{~']e H' (P, O(—2)).

A model for this extension is provided by the 1-jet extension J,(k—1) of
O(k—1),0—~0(k—3)—J,(k—1)—O(k—1)—0. In this case, the invariant splitting is
simply the derivative or 1-jet map:

ji 1HO(P,, O(k—1))—>HO(P,, J ,(k—1)).

The transition function for O(k— 1) is {*~* so the derivative of a section f,={*"1f,
transforms as f;=(k—1){*72f, +{*7'f/, and defines J,(k—1) by -the transition
function

B Ck—l 0
=g g o)
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Thus, for a monomial section {'e H)(P,, O(k— 1)), we have

o=(5)

relative to T,,. Changing the basis for the transition function S,, gives the
canonical extension, in the notation of (5.4), as

1

(p") Y (5.17)
Py ! gt

k—1

d .
Now the basis {X, X ;,X,} of the Lie algebra sl (2, €) dual to {dC CdC NG dC}
1

easily seen to be X,= ECZ dC EC%’ X2=_§d_§’ and the action of

XX, X, on {'e H P, O(k—1)) is
Xy &'=—=30—k+1)**1,
X, - =12l—k+ 1), (5.18)
X, (=31t
Hence if we take p,={(', then from (5.17) and (5.18) we find
Xy po+ X, po+ X, py=0,
Xop +X,p +0X,p =50
Thus, in (5.16), we have

(5.19)

to=—35modz, (5.20)

where s;=X,_,5.
We now evaluate the endomorphlsms A(z)eEndV as z—0. From (4.12),
putting s, = zto, zA,t,=s5,,,. Thus z4, is regular and from (5.20)

lim z4,§) = — 25,, ,(0) = — 2X, 3. (5.21)

13
z—=0

Thus /L has a simple pole at z=0 with residue given by (5.21).
To obtain the matrices A; we must consider the behaviour of the connection on
V as z—0. From (4.15) the covariant derivative is defined by

V,= fo +(,A s+CA, 29, -

Now from (5.21) and (5.18),

+B, (5.22)

where B is holomorphic in a neighbourhood of z=0.
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The matrices A,(z) are defined by taking a trivialization of V along (0,2) by
covariant constant sections s,, 1 <i<k, and setting

Y A2)s, = A(2)s;. (5.23)

From (5.22) the sections ¢,=z*~"/2s; are regular and so from (5.23), the matrix
A(z) has the same pole and residue as the endomorphism A — because the residue
of the connection is a scalar. Hence we finally obtain the required boundary
conditions:

Proposition (5.24). Let S be a curve in TIP, satisfying conditions B1-B4. Then the
matrices T, produced from Proposition (4.16) have simple poles at z=0 and z=2,
whose residues define an irreducible representation of SU (2).
Proof. From (5.21) the residues of A4, A,, A, define the standard representation of
SL(2,€) on H°P, 0(k—1)), which is irreducible. Setting A,=T, +iT,,
A, =-=2iT,, A,=T, —iT, as in (4.16) gives for the residues of T, the representation
restricted to SU (2), which is still irreducible.

Condition B3, that L? is trivial on S, implies that at z=2, the behaviour of 4,(z)
is identical to z=0.

6. Reality Conditions
It remains to check the reality conditions on the matrices T, that is,

Cl. T*z)=—T{2),

C2. T(z)=-T(2—2)
For C1, we must define a hermitian structure on the vector bundle V. Recall that
for ze(0,2), V,=HO(S, L*(k— 1)).

The real structure on S defines an antilinear isomorphism
o :HO(S, L*(k— 1)) H°(S, L~ %(k—1)). As in the proof of (3.7) we shall denote this
conjugation operation by o(s)=s*. Now consider s,te H’(S,L*(k—1)), and
st*e H%(S, 0(2k—2)). From Proposition (4.5) we can write this uniquely as

st*=con* T+t i 4oy, (6.1)

where c,en*HO(IP,, O(2i)).
We define a hermitian inner product on V by

(s, ty=cy. (6.2)

This clearly has the correct anti-linearity. It is not obvious yet that it is positive
definite. N
Now from the definition of A; we have

ns+ Ags+LAs+2A,5=0e H(S, L(k+1)).
Apply the real structure g, and we find
—n0(s)+ C26(A,s) — Lo(A,s) + a(A,5) =0, (6.3)
using the real structure on H°(IP;, 0(2)). On the other hand we have
10 (s)+ A (o) + (A (05) + (> A,(05)=0. (6.4)
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Hence adding (6.3) to (6.4) and using Proposition (4.8) we obtain:

0A,=—A,0,
oA, =—A,0, (6.5)
oA, =A0.

Now consider the inner products </iis, t>. We have ns+ /ios +4 s+ zﬁzs =0,
and hence

nst* + (A s)t* + ((A, s)t* + (XA, s)t* =0, (6.6)
Similarly,
nts* + (Ao t)s* + {(A  1)s* + [(A,1)s* =0,
and applying the real structure to this,
— s+ {H(Agt)*s — LA, 0)*s + (A,1)*s=0. (6.7)
Now adding (6.7) to (6.6) we find
{(AgS)t* + s(A,1)*} + C{(A )t — s(A, )%} + CP{(A,9)t* + (A t)*} =0.  (6.8)

Now from the exact sequence [see (4.5)], 0—0; N O#k(H, + H,))—>042k)—0 we

see, since HY(T, 0)=0, that every section of O(2k) on S can be written in the form
s=co*+eyn* 1+ ... +¢,, and the only linear relation among the sections is the
vanishing of a multiple of .

Hence, since (6.8) involves no power of ¥, and hence no multiple of y, we may
deduce by considering the coefficient of #*~1, that

(Ags, 1y =—{s, A1),
(Ays,ty={s,A,t).

Thus, if we write A,=T, +iT,, A,=2iT,, A,=T,—iT,, then each T, is skew-
adjoint with respect to the hermitian form.
We investigate next the effect of the connection on the hermitian form.

(6.9)

Consider st*=c,(z)y* "'+ ..., and restrict to the open set U,NS. Then
ds, gy dey 4
— 3 —Z =yt . 6.10
dz 0¥ % dz dz (s (6.10)
Now
g [(dt \* i~ ~
— == =+ A+ A 0*
dz (dz) (et & Aot +34,0)

from (4.15), and similarly

ds ~
d—zo =Vs—%$A,5s—(A,s.



Construction of Monopoles 181

Hence, substituting in (6.10),
(V8)t* + (V0% —L(A s)t* — (A, 5)t* — (s0 A g0~ ¥ +Ls0d, 0~ 1
_dey
dz
and from (6.5)

i+,

d
(V5)t* + sV, = S0 =t
dz
Hence, equating coefficients of #*~ 1, we have from the definition (6.2)
d
I+, V=2 -<s. 1), (6.11)

and so the connection preserves the hermitian structure.

Thus, trivializing V with the connection, we obtain a hermitian inner product
for which the matrices T; are skew-adjoint. In particular, the residues at z=0,2 of
the T.'s are skew-adjoint with respect to this inner product. However, since they
define an irreducible representation of SU (2), there is, up to a scalar, a unique non-
trivial hermitian inner product for which they are skew-adjoint, and in particular it
is positive definite. Thus {s,t) is either zero or definite.

Let se H(S, L*(k— 1)) be a section which vanishes at only (k— 1) points of the
fibre n~({,) as in the proof of (4.16). Suppose {s,sy=0, then ss*=c 7" ?
+ ... +¢;_, and for {={, this vanishes for (k—1) values of #. This means that
c,lo)=c,o)= ... =¢,_,({,)=0, and so ss* vanishes for all k points in the fibre.
But then s vanishes on the fibre, which is a contradiction. Hence the inner product
is non-zero and so is definite.

Thus the matrices T)(z) satisfies C1.

The reality condition C2 involves the triviality of L? Let ac H%(S,L?) be a
trivialization, and consider the real constant function ¢=ao(a), and the antilinear
map

o tHO(S, LA(k— 1)) > H°(S, L2~ *(k— 1)),

defined by ¢’ =ao. Then ¢'%(s)=aos(a)s=cs.

Hence after normalization by |c|, ¢’ defines a real structure if ¢>0, and a
quaternionic structure if ¢<0 on the bundle V. However, by hypothesis
o' HO(S, L(k—1))> H(S, L(k— 1)) is real, so V has a real structure. It is easy to see
that this is compatible with the connection, so if we trivialize ¥ with covariant
constant sections which are both real and unitary, then condition C2 follows
directly.

Hence the solution of Nahm’s equations generated by the curve S satisfies all
the required conditions for Nahm’s construction.

7. The Spectral Curve for Nahm’s Construction

We have now shown that a solution to Nahm’s equations determines a monopole,
that a monopole determines an algebraic curve, and that an algebraic curve
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determines a solution to Nahm’s equations. To complete the circle of ideas, we
shall show that if we solve Nahm’s equations as in Sect. 4 from an algebraic curve
S, and then produce a monopole by the procedure of Sect. 2, then its spectral curve
is S itself. :

Recall, then, from Sect. 4 the characterization of S in terms of the matrices T..
The curve § is the divisor of ye H(IP,, O(2k)), where

p=det(n+(T, +iT,) + 2T, +(T, —iT,)(?).
Without loss of generality let us suppose that (,{)=(0,0) is in S, and then
det(T, +iT,)=0 for all z€(0,2). (7.1)
Now the oriented straight line in IR corresponding to (1, ¢)=(0,0) is
x(t)=(0,0,¢). (7.2)

We must show that (0,0) lies on the spectral curve, that is that there is a solution to
(V;+i®)s=0 on this line which decays at both ends. The method we use was
suggested by Nahm.

Note first that Nahm’s equations imply in particular that

;id; —iTy, T, +iT,| =0. (7.3)

. . . d
Hence T, +iT, acts on the full k-dimensional space of solutions to dl=iT3 bA
z

£:(0,2)—*, with no boundary conditions. Since this is a first order equation, at
each point ze (0, 2), the values of a basis of solutions f,(z) are linearly independent.
However det(T, +iT,)=0 for all z&(0, 2), so there is a solution f, such that

(T, +iT,)f,. =0, Vze(0,2). (7.4)
Similarly since (T +iT,)* = — T, +iT,, there is a solution f_ of Zl = —iT, f, such
z
that
(T,—iT,)f_=0. (7.5)

d
Now consider Nahm’s operator (2.2): 4* =)_c+iE —iy Te;. Along the straight

. . d .
line we are considering, 4* = —te, + iﬁ; —iy Te;. If we decompose C*®C? into

eigenspaces of e,, then the null space of 4* is described by the equations

(it-l—idiiz— - T3) fi=UT +iT,)f;,
(7.6)

(—it+i§; +T3)fz=i(—7]+iT2)fl.
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Thus

(fl,f2)=(e_tzf_,0),
(fl’f2)=(03etzf+)>

are two linearly independent solutions to A*f=0. They are also .#? solutions, as
we shall see next.
Since T,(z)=a,/z+ S(z), where S is regular near z=0,

A
dz

(7.7)

=, +iSC. (7.8)

The residue ia, comes from an irreducible representation of SU(2), and so is
diagonalizable with distinct eigenvalues, (essentially the weights of the repre-
sentation) 4, ..., 4,. From the theory of ordinary differential equations there exists
a basis of solutions {f,} to (7.8), such that z~*«f,—e_, as z—0, where e, is a unit
eigenvector corresponding to the eigenvalue /,.

Now in the representation $*~*, the matrix a, +ia, acts on the eigenvectors of
a, by

(a,+ia,)e,=n.e,,, (7.9)

where n, is non-zero unless a=k and the eigenvalues 4; are ordered so that
Ay <Ay < ... <4 Now

T, +iT,=(a, +ia,)/z+ U(z),
where U(z) is regular in a neighbourhood of z=0. Hence from (7.4) (a, +ia,)f,
k

=—zU(2)f, and if f, =} c,f,, then

a=1

Y.ela, +iay)f,=—zU(2) Y. c,f,. (7.10)

Multiplying by z™** and letting z—0, we see that ¢,n,e, =0, hence ¢, =0. Now
multiplying by z~*2 and repeating we find ¢, =0 for 1 Sa<k. Hence z~*f, —ce,,
and as 4, is positive, f, is certainly in .#* near z=0.

By a similar analysis near z=2 we find f, (and analogously f_) are square
integrable.

Thus the solutions (7.7) provide a basis, in Nahm’s version of the ADHM
construction, for the fibre E . of the vector bundle on which we define the solution
of the Bogomolny equations.

Now take an arbitrary section s of E along the line x(t)=(0, 0, ). We may write
this, by the discussion above, as

s=(a,()e”"f_(2), a)()e"f . (2)).

The connection on E is given by orthogonal projection of the ordinary derivative
and the Higgs field by projection of i(1 —z) (see Sect. 2). Thus

(l73—i<I>)s=P((a%+(1—z))s). (7.11)
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Now

g% +(1—-2)s=((a} +(1 —22)a,)e” *f_,(a) +a,)e’f,).

So taking a,(¢)=0, s gives zero in (7.11) if
2 2
(@, +a,) [ e | f_(2)|*dz=2a, [ ze~**|| f_(2)||*dz. (7.12)
0 0

We may rewrite this as

2

a 2
—(% Jem* - szz) +a, [ e 2| f_||2dz=0,
e\ ty )
and so
4 =C€_’/Ie'2‘zllf_ [2dz.
0

Thus

§= (e—t(1+z)f_/}e—2tz”f_ szz’ O)
0

is a solution to (V; —i®)s=0. Moreover,

2 2 -1
IISI|2=6"2‘/Ie'2"Hf_ I1?dz = (f e f_ IIZdZ) ,
0 0

and this [see (2.12)] tends to zero as t— + co. Hence the line we are considering is
indeed a line belonging to the spectral curve.
Thus S is contained in the spectral curve, but they have the same degree and
the spectral curve has no multiple components. Hence § is the spectral curve.
The conclusion we draw from this is that any monopole may be constructed by
Nahm’s method using the spectral curve to generate a solution of Nahm’s
equations.

8. Remarks

1. It has been pointed out several times to the author that Nahm’s equations (2.4)
are essentially Euler’s equations for a spinning top in the case k=2. Equations of
this type have been studied intensively quite recently, and in fact the linearization
by a flow on the Jacobian of a curve, which we described in Sect. 4 is contained in
Theorem (1) of Adler and van Moerbeke [17. The author is indebted to P. Griffiths
for pointing this out. It is perhaps interesting to note that the linearization of
Sect. 4 arises from the monad construction of vector bundles on IP,, which forms
the algebraic geometric foundation of the ADHM construction.
In this paper we were considering the module structure of

M= & HS, L(m)

m=k—1
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over the ring w
R= B HS, 002m)).
m=0

However, we have the coboundary map

8:HO(S, L*(m))~>HY(TP,, L*(m—2k)),
and the inclusion

i:HY(TP,, L*(m—2k)—H'(TP,, L*~*E(m—k)),
and the pull-back map
p*:HY(TIP,, L*~ 'E(m — k)~ H'(IP,\IP,, p*E(m — k))

(recall that L7 is trivial on IP;\IP,).
Composing these we see that M is a subspace of

D H(P\Py,p*ED),
and the ring R is the subring of

é HO(P,\P,, O(m),

which is invariant under the action of € on IP;\IP,, whose quotient is TIP,. This is
the standard monad set-up of Horrocks and Barth [2] restricted to IP;\IP,.

2. There is a hierarchy of equations like Nahm’s equations corresponding to
linear flows in other directions of the Jacobian (again treated in [1]). From our
point of view, any direction in the Jacobian corresponds to an element of H(S, 0),
and from Proposition (3.1) this is of the form

k—1
c= Y n'm*c,
i=1
where c,e HY(IP,, O(— 2i)).

Using the standard open covering of IP,, ¢; is represented by a cocycle
¢;=[p{0)/(], where p(() is a polynomial of degree (2i—2).

Following the procedure of Sect. 4, we define A({)=A4,+(A4, +{*4,, and
-1

k
B()= 1 PO (= A/,

and then express B(()=A4,({)+A_({™?"), where 4 ,({) is the polynomial part of
B({). The arguments of Sect. 4 then show directly that a linear flow on the Jacobian

in the direction of ¢ (i.e. replacing L* by the flat line bundle with transition

k-1
function exp (z > pd) (n/{)i» leads to the matrix equation:
i=1
dA
— +[A4,,A4]=0. 8.1)
dz

Comparing coefficients of {, we obtain a higher order system of equations for T.
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It is important to note that the flows on the space of matrices
(T, T,, T,)e R ®su(n),

defined by (8.1) do not necessarily commute, although clearly the linear flows on
the Jacobian torus do. This is because, as in (4.15), we use A, and A_ to define a
connection on the vector bundle V (over the complement of the theta-divisor in the
Jacobian), defined by V, = H°(S, L(k— 1)) for a flat line bundle L.

The matrix flows (8.1) are obtained by lifting the linear flows on Jac(S)
horizontally relative to the connection. However, the connection is easily seen to
have curvature which is an obstruction to the commutativity of horizontal vector
fields. This connection does, however, appear to depend on the choice of covering
of IP, and it may be that a more intelligent choice would lead to more invariant
equations giving the higher order flows.

3. S. Katz has pointed out that Nahm’s equations are closely connected with
the equations studied by W. Schmid concerning the variation in Hodge structure
of a degenerating family of algebraic varieties [13]. The only difference is one of
real structure — Schmid’s equations arise from a curve S in TIP, which is real
relative to the real structure (n,{)—(#,{). The linearization of these equations
appears not to have been studied in this context.

4. Perhaps the most useful result of the circle of ideas presented here is the
condition on the spectral curve which assures regularity of the monopole. This is
condition B4 : H°(S, L?(k—2))=0 for z€(0, 2). In general, this may still be a difficult
condition to determine, depending as it does on the geometry of the theta-divisor.
However, as an illustration of the power of the result, we prove finally that the
axially symmetric solutions of Prasad and Rossi [11] are non-singular.

Theorem (8.2). Let S be the curve in TIP, defined by w(n,{)=0, where

n

p=n[] 0*+Pn*?) for k=2n+1,

=1

or
p=[] @*++5*n??) for k=2n+2.
1=0
Then S is the spectral curve of a non-singular solution of the Bogomolny equations.

Proof. We must verify that S satisfies conditions B1-B4. The first two are clearly
satisfied, so we must consider just B3 and B4.

Now the curve S is reducible and has singularities at (, {)=(0, 0) and (0, o), so
in order to consider holomorphic sections of line bundles on S, we must
understand what is a holomorphic function in a neighbourhood of a singularity of
S. This will be a local section of the sheaf O/.# on TIP,, where . is the ideal
generated by v, thus of the form

I=l-a,0)n—a0)...(n—ad)].

A local section of O/ near (0,0) may then be represented uniquely by a function

=90 +ng,)+ ... +n*7 g0, (8.3)
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and on each component #=a,{, we obtain a function

fi=g1(o + angz(C) + ... (a,-C)k_ lgk(C) .
Now, given k holomorphic functions f({), we wish to know what conditions to
impose in order that they define a local section of the sheaf O/.#. Clearly from (8.3)
this is
1 1 a,l...d™ 1N g,

f) |1 @l a7 g, 8.4)

f. 1 al...d 't \g,

Now if the a;’s are distinct, the Vandermonde matrix V is invertible, where

k=1
1 a,...a]
1 a,..d !
V: . - 2
1 a..a !

Hence by taking g, = (* 'k, for suitable holomorphic functions A, in (8.4), it is clear
that the condition depends only on the (k—2)-jet of f,. Thus, if

JO=fu+fol+ o fum {2 mod 71,

then the condition (8.4) becomes:
fu=911>
f2=912+a9,5,,
fis=913+ag,,+algs,, et
Le.

fi,~=z VilGlj’ 8.5)
1

where G;; is a k x (k—1) matrix with G;;=0if i>}].

Consider now the condition that L? be trivial on S. A section of L? is described
by a holomorphic function f on U and f’ on U’, such that (see (5.1)) f=e>"*f" on
UNU'. On each component  =q,{, we then require (constant) functions f,, f/, such
that

fi=e*f!, (8.6)

but also satisfying the compatibility condition (8.5) and the analogous one at
(1,0)=(0, c0). This implies

fi=fh= - =fo

fi=hh= . =k
and so L? has a section on § if and only if e?%=¢?%, 1 <i, j<k, ie. a;— a;=min,
meZ. Clearly this is satisfied by S above, so L? is trivialized by a section a.

We require also that L(k— 1) be real. If k is odd, this is equivalent to L being
real, and if k is even to L being quaternionic, and this (see Sect. 6) depends on
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whether ¢=aa(a) is positive or negative. Now if we take a to be defined by the
functions (f,=e>*, f/=1) on n—a/(=0, then (recalling that the real structure
interchanges U and U’) we have

ol@)=(f;=1,f/=e*™ on n—al=0.

Thus
ao(a)=e**
=eliln=1 if k is odd
=T UDT— _ 1 if k is even.

Hence the reality condition is satisfied and condition B3 holds.

To verify the nonsingularity condition B4, we shall consider a section of
L7%*(k—2) on S. On the components of S this defines polynomials f; of degree
(k—2) such that (8.4) is satisfied and

fi/=ezn/{c—(k—,’l)f;=ezaic—(k-2)fi

is a polynomial in (™! which satisfies a condition analogous to (8.4), namely

11 1 a7t dimir e g
’ a(

i 1 aqlt.a " D) \g

for holomorphic functions g; of {™*.
We obtain then a matrix equation

Zl:DilfzJ:Z VaGijs (8.7
1

where D;;=0 if i+j and D;=¢*" and Gj; is a kx(k—1) matrix with G;;=0 if
k—j<i.

Thus, from (8.5) and (8.7), L™ %(k—2) has a non-zero section if and only if we
can find non-zero matrices G and G’ as above with

DVG=VG', ie. V DVG=G'. (8.8)

Now if G (and hence G') is not identically zero, the j'® column of G must be non-
zero for some j. Since G,;=0 for i>j, only the first j entries of that column are non-
zero. On the other hand Gi;=0 for k—j<i<k, so if (8.8) is satisfied, the j x j minor
of V"1DV in the bottom left hand corner must be singular.

Hence the condition that L™ *(k— 2) should have no sections on S is that all the
minors of ¥~ 1DV leading in from the bottom left hand corner should be non-
singular.

The columns of ¥~ ! are the coefficients of the polynomials p, ..., p, of degree
(k— 1) which satisfy p(a;)=0, i+j, p(a;)=1. Hence the columns of V'~ 1DV are the
coefficients of the polynomials ¢,({) of degree (k— 1) defined by

k
qi(C)=lZ pQaje™.
=1
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Thus g,({) is the Lagrange interpolation polynomial which satisfies g,({)=e* at

o
{=a; and (0)= 572" Let
GoO=col* T+, 02+ o+,

then V™DV is the matrix

ckT 1 c;c_— 1 cik 11)
. R 8.9
€y ¢ . 59)

Co oy ...ckD

where ¢’ =0c/0z.
0
Now at {=a,, qug =a,e*"={(q, hence,
a k

Mo _rgo=— ﬂg a). (8.10)

~ ¢ =(—1)¢y0,, ,(ay,...,a,), and so each ¢, is a linear combination

with constant coefficients:

=;,& (8.11)

Thus the determinant of the j X j minor we are seeking is, from (8.9) and (8.11)
GO 2D

Co Coer |

Co Co..o €TV

and this vanishes at z=z, if and only if there exist constants 4, such that
ji—1 alc
J@=2 w57 (8.12)
1=0 Z

vanishes with multiplicity j at z,.
Now the Lagrange polynomial ¢({) is given by

qO(C)_ Zl l;[ ((C a)) .

SO

i (8.13)

If k=2n+1, this is
L n eFml( ) (271)

O & n2(2n)!
22— 1)

= W (sinzm/2)?", (8.14)
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and if k=2n+2
I QEmit 12 _ 1y (2n+ 1)

©F L Qn+D)lim@ I\ g
22n+ 1(_1)n .
= m(sln Zn/2)2"+ 1 . (815)

Now from (8.12), (8.14), and (8.15)
ji—-1 !

0 :
f@=Y ,u,a—zf’ =(sinzn/2)*"~2I*2P(cotzn/2),
1=0

where P is a polynomial of degree (j— 1). But if ze(0, 2), then sinzzn/2 &0, hence if
f(z) has a zero of order j, then f vanishes identically. It is impossible however, for
¢, to satisfy a linear differential equation of order <2n since it vanishes with
multiplicity 2n at z=0. Thus all the relevant minors of ¥~ !DV are non-singular
and condition B4 is satisfied.

Hence S gives a non-singular monopole via Nahm’s construction.
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