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Abstract. Three theorems are proved. With suitable hypotheses in each case,
characterizations are found for the Virasoro algebra, for some of its representa-
tions, and for the Ramond-Neveu-Schwarz superalgebra built around the
Virasoro algebra.

1. Introduction

In its centerless version the Virasoro algebra is a Lie algebra with basis ub ί ranging
over the integers, and multiplication table u{u} = (i —j)ui+j. (I am omitting brackets
throughout the paper in the belief that there will be no ambiguity.) It surfaced in
the physics literature in the late 1960's and numerous later physics papers have
studied it and related algebras.

There was (more or less) an anticipation in the mathematical literature. In the
1930's Witt discovered the Lie algebra that subsequently carried his name; it has
the same multiplication table as the Virasoro algebra, but the subscripts range
over the integers modp, p a prime, and the characteristic of the coefficient field is
p. Witt did not publish anything; the first reference occurred in the paper [6] of
Zassenhaus. In the early 1950's several mathematicians discussed the centerless
Virasoro algebra (calling it the "infinite Witt algebra") but nothing was published.

Ramond [4] discovered a way of draping a Lie superalgebra around the
Virasoro algebra. Independently, and about at the same time, Neveu and Schwarz
[3] did it in a slightly different way. These papers marked the first appearance of
Lie superalgebras in the western physics literature.

In this paper I make several modest contributions. I give a certain characteriza-
tion of the Virasoro algebra; I study some of its representations; and I establish
a uniqueness theorem for the Ramond-Neveu-Schwarz construction.

In [5] there is a uniqueness theorem for superalgebras which are allowed to
be considerably larger. It is to be observed that they assume outright that the
products follow the familiar pattern. The point of this paper is to show, under
suitable hypotheses, that this pattern is forced in the "small" case.
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2. A Characterization of the Virasoro Algebra

The centerless Virasoro algebra—call it V for short—is Z-graded, that is, graded by
the additive group of all integers, and each homogeneous piece is one-
dimensional. A converse can be proved if it is assumed that all products of two
different homogeneous constituents are nonzero. Indeed, the hypothesis can be
cut down to four products.

Theorem 1. Let L = ΣLt be a Z-graded Lie algebra in which each L{ has dimension
^ 1. Assume that LQLλ, LXL_ v L2L_V and L_2LX are nonzero. ThenL is isomorphic
to V.

Proof. The conditions L0Lί ψ 0, L 1L_ 1=^0 can be recast as saying that the
subalgebra spanned by L_ l 9 Lo, and Lx is the 3-dimensional simple Lie algebra.
We take a standard basis M_1 ? M0, UV

Let A be the subalgebra spanned by the spaces L{ with i Ξ> — 1. From L2L_X φ 0
one deduces that Lx ψ 0 for i >̂ 3 and that a basis can be completed so as to satisfy
utUj = (i —j)ui+j. This is known; it is essentially the first step in the structure theory
of Cartan's infinite pseudo-groups. A proof from scratch takes only a few lines.
Exactly the same remarks of course apply to the subalgebra B spanned by the L/s
with i ^ 1. It remains for us to blend A and B.

The key is to prove u2u_2 =4u0. Initally we know only that u2u_2 =ru0 for
some scalar r. We proceed to a circuitous trip through various triples, applying
the Jacobi identity repeatedly. From the triple u1,u_2,u3 we get u4tί_2

 = 6u2. We
use this in the triple w1?w_2, t/4 to get u5u__2 = Ίu3. From the triple u l 5 M_2, U2,
however, we only get u3u_2 evaluated in terms of r as (9 — r)u1. But by using the
information now available, the triple u2,u_2,u3 gives us an equation. In detail:

u2uz'U_2 -h u3u_2'U2 -f- u_2u2'U3 = 0 ,

7 + (9 - r) - 3r = 0.

So r = 4 is established. It is now easy to complete the proof of Theorem L We
have to compute utu_j with i and j both ^ 2 and one of them (say ϊ) actually
larger than 2. We need only write uf — {u^^^Ki — 2), apply the Jacobi identity
to the triple w1,u/_1,u_J , and use induction.

3. Virasoro Modules

There is as yet no complete classification of the representations of the Virasoro
algebra, or even of its irreducible representations. See [1] and [2] for a study of
certain representations. Here I present a theorem concerning a different class of
representations—essentially those which occur in the Ramond-Neveu-Schwarz
superalgebras.

Let A be a representation space for V. It is reasonable to assume that A shares
with V the key properties of being Z-graded and having one-dimensional
homogeneous constituents. Thus A has a basis {Vj} such that uivj = t(i,j)vi+j, with
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the ί's scalars yet to be specified. We put aside the trivial representation where
each uivj = 0. Then the only representations I know have the form

uiυj = (a + bi-j)vi+j. (1)

For any scalars a and b this is indeed a representation.

Remark. The subscript j is being taken to range over the integers. It could instead
range over any coset of the integers in the complex numbers. But a renormalization
can switch this coset to the integers, a corresponding change being made in a. In
Sect. 4, however, it will make a real difference to have j range over halves of odd
integers.

There is a decisive result if it is assumed that u1 and u_1 do not annihilate
any of the i 's.

Theorem 2. Let A be a representation space for the centerless Virasoro algebra
V. Suppose that A has a basis {WJ} such that, for all i and], utWj is a scalar multiple
of wi+J . Suppose further that uxWj and w_1wJ are nonzero for all j . Then the vt̂ 's
can be replaced by suitable scalar multiples Vj so that (j) holds for appropriate a and b.

Proof. In the first part of the proof, (1) will be achieved for i = —1,0,1. This is
really a part of well known facts concerning infinite-dimensional representations
of the simple three-dimensional Lie algebra. However, since the form of the result
as given here is not standard, a sketch will be offered.

The equation uowo = aw0 determines a. The commutation relation between u0

and u1 then yields MOW7 = (a — j)Wj for all j . Write u_1 u1wj = cjwp u1 u_1wj^=djwj.
The Jacobi identity yields

dj-cj = 2(a-j). (2)

By evaluating u1(w_1 w1wj_1) in two ways we get u1 cj_1wj_1 =dj u1wj_1 and
hence

dj^cj.,. (3)

Combining (2) and (3) gives us the recurrence dj+ 1=dj — 2(a —j). Let b be either
of the solutions of do = (a — b)(a + b + 1), regarded as a quadratic equation in b.
Then from the recurrence we can evaluate dj for all j and find

dj = {a-b-j)(a + b-j+l). (4)

Note that our hypothesis implies dj=/=O and hence both factors in (4) are
nonzero. We are now ready to define the i 's. We take v0 = w0 and then
determine the i 's by requiring w_ 1vj = (a — b —j)Vj- x for all j . It follows from (4)
that u^j = (a + b —j)vj+ x for all j .

To complete the proof of Theorem 2 it will suffice to show that u2 and u_ 2

act on A in the desired fashion, for V is generated by u_2, u_ 1 ? . . . , u2. Our entering
wedge is the equation

u2u_ 1'Vj = u2"u_ίvj — u_1' u2v (5)

which partially determines the action of u2. Write u2vj = e{j)vj+2. Then (5)
becomes

3(α + b -j) = e{j - ί){a - b -j) - e(j)(a -b-j- 2). (6)
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The desired solution of (6) is e(j) = a + 2b —j. We define an "error term" /(/):

a + 2b-j. (7)

By inserting (7) into (6) we derive

0 = / ( / - l)(α - ft - j) - f{]){a -b-j- 2). (8)

Equation (8) enables us to express /(I), /(2),... in succession in terms of /(0). The
result is

where we have set z = a—j. In parallel fashion we write u__2vj = g(j)vj_2, g(j) =
h(j) + a — 2b — j and get

The elements wo,w2, and w_2 span a three-dimensional simple Lie algebra and ̂  is a
representation space for it; so is the subspace spanned by the v/s with j even.
Recall that the characteristic roots of u0 on the even vfs move with differences
of 2. From this it is a standard conclusion that the coefficients e(j)g(j + 2) in the
map vj-^u_2 u2vj = e(j)g(j + 2)Vj are, for large even j , a quadratic polynomial
in j . So the rational function

[/(/) + z + 2b][fc(/ + 2) + z - 2b - 2] (11)

must actually be a polynomial. We substitute from (9) and (10); then the first factor
in (11) becomes

f(0)(a-b-2)(a-b-l) + (z + 2b)(z-b-2)(z-b-l)

(z-b~2)(z-b-l) '

and the second

+ 5 + l)(α + b + 2) + (z - 2b - 2)(z + b)(z + ft - 1)

(z + b)(z + b^Ί) ' ( }

For the product of (12) and (13) to be a polynomial, each of the four linear factors
in the two denominators must divide the numerator of (12) or the numerator of
(13). Let us assume that /(0) and h(0) are both nonzero. Note that our hypothesis
that ux and ι/_1 do not annihilate any of the tfs implies that the coefficients of
/(0) and h(0) in (12) and (13) are nonzero. So z - b — 2 does not divide the numerator
of (12) and it must divide the numerator of (13). The same is true for z — b — 1.
Now the numerator of (13) is a cubic polynomial in z that leads off z3 — 3z....
Hence we can identify the numerator of (13) as

( z - b - 2 ) ( z - b - l ) ( z + 2b).

(Incidentally, we have thereby evaluated h(0), but this will play no role.) In the
same way we find the numerator of (12) to be

(z + b)(z + b-l)(z-2b-2).
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In sum (under the assumption /(0) ̂  0, h(0) ψ 0) we have proved

(z + 6)(z + 6 - l ) ( z - 2 6 - 2 )
e(j) ~ ( z - b - 2)(z - 6 - 1)

and

(z - 6)(z - 6 + l)(z + 26 + 2)
Q^ (z + 6+2)(z + 6 + l) '

It is a fact that these formulas for the action of u2 and u_ 2 are consistent with all
relations inside the set w_2, w_ u u0, wl5 u2 in other words, we have found a peculiar
representation of this "local Lie algebra." So to get our contradiction we have to
move higher, say to u3 and w_3. From u3 =u2u1 we compute the coefficient in
u3Vj = ( )vj + 3 to be

(z + 6)(z + 6-l)(z + 6-2)(z-36 + 3)

(z-6-2)(z-6-l)(z-6-3) l j

and similarly for u_3 the coefficient is

(z - 6)(z - 6 + l)(z - 6 + 2)(z + 36 + 3)
(z + 6 + 2)(z + 6 + l)(z + 6 + 3)

(15)

Now, just as for w2 and w_2, the product of (14) and (15) must be a quadratic
polynomial in z. It is not. Faced with this contradiction, we retreat to the untenable
assumption that /(0) and h(0) are both nonzero, and deny it. By symmetry we
may assume that /(0) = 0. The product of (12) and (13), i.e. the product of (13) by
z + 26, must still be a polynomial. This forces h(0) = 0. We have proved that u2

and u_2 act on A as required, and this completes the proof of Theorem 2.

4. Virasoro Superalgebras

We take V and A as in the preceding section and study the possibility of introducing
a multiplication A x A -> V so as to make V + A a Lie superalgebra with F the
even part and A the odd part. This is to be done while maintaining the Z-grading
in other words, υpk is to be a scalar multiple of uj+k. There are then two possibilities
for the range of;: all integers and all halves of odd integers.

It is possible to set every VjVk equal to 0 and get a legal Lie superalgebra. We
set aside this trivial case. We can promptly deduce that the parameter a in (1) is 0. For
the Jacobi identity on the triple uo,Vj,υk reads

If VjVk 7̂  0 we deduce

whence α = 0. From now on uivj = (bt —j)vi+j.
We proceed to prove that 6 = 1/2. Assume the contrary. We have vjvj = O

(this is true for any odd element in a Lie superalgebra). We have u2jυj = (2/6 —j)v3j

which is nonzero for j φ 0. Hence, temporarily excluding v0 in case it is present,
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we have v2 = 0. Next take j and k different and nonzero. From the vanishing of
v2vk and the Jacobi identity we get vyVjVk = 0. Since

we conclude that vpk — 0 unless bj + bk — j = 0. By using v\v^ instead we get the
same conclusion unless bj + bk — k = 0. It is not possible for both of these statements
to hold, so VjVk = 0. This has looked after all products of u's except υ% (if v0 is
present). To catch v% we use v0Vj = 0 (for j ± 0) and the Jacobi identity to get
vlvj = 0. Since u0Vj = —jvj φ 0 we deduce v2

0 = 0. So A2 = 0. But this is the trivial
case we excluded at the beginning of the discussion. This contradiction shows
that b = 1/2.

Henceforth uivj = (i/2—j)vί+j. Write vjυk = s(j,k)uj+k. We proceed to establish
that s is actually independent of j and k. By the Jacobi identity

v2vk + 2VjVk'Vj = 0.

From this we get

so that s(jj) = s{j, k). From this the independence of s follows at once. We have
proved Theorem 3.

Theorem 3. Suppose given a Lie superalgebra in which the even part V is the
centerless Virasoro algebra and the odd part A is one of the representation spaces
of Sect. 3. In detail: V has a basis ub i ranging over the integers^ with uiuj = (i —j)ui+j;
A has a basis Vp j ranging over the integers or halves of odd integers, with
utVj = (a + bi —j)vi+j. Suppose further that each v ok is a scalar multiple of uj+k, and
that A2^0. Then a = 0, b = 1/2, and the scalar s occurring in v-vk = suj+k is
independent of j and k.

Remark 1. We can change basis in the odd part by replacing each Vj by
rvp r a fixed nonzero scalar. This changes s to r2s. So over the complex numbers,
or more generally over any field where every element is a square, we can renormalίze
s at our pleasure, e.g. to s = 1 or (the Ramond-Neveu-Schwarz version) to s = 2.

Remark 2. There are parallel versions of the three theorems for the full Virasoro
algebra (with center). I leave it to the reader to make the slight changes necessary.
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