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Abstract. We rigorously establish the existence of a Kosterlitz-Thouless
transition in the rotator, the Villain, the solid-on-solid, and the 7Ln models, for n
large enough, and in the Coulomb lattice gas, in two dimensions. Our proof is
based on an inductive expansion of the Coulomb gas in the sine-Gordon
representation, extending over all possible distance scales, which expresses that
gas as a convex superposition of dilute gases of neutral molecules whose
activities are small if β is sufficiently large. Such gases are known not to exhibit
screening. Abelian spin systems are related to a Coulomb gas by means of a
duality transformation.

1. Introduction

1.1. General Remarks

In this paper we rigorously establish the Kosterlitz-Thouless transition [1] in a
class of two dimensional models including the plane rotator, the TLn -model for n
sufficiently large and the lattice Coulomb gas. These results and a brief sketch of
the proof have already appeared in [2]. Our methods extend to higher dimen-
sional abelian spin systems, abelian lattice gauge theories and to the one-
dimensional Ising model with 1/r2 interaction. Details of these extensions will
appear elsewhere.

All the models we shall analyze are known to have a high temperature phase
with exponentially decaying truncated correlations. For example, the Coulomb
gas has a high temperature, low density plasma phase characterized by exponen-
tial Debye screening [3]. The Kosterlitz-Thouless transition is one from a high
temperature phase'to a low temperature phase characterized by scaling and a
power law fall-off of correlations. In this paper we shall prove the following
results:
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1. at low temperature, T, the spin-spin correlations in the two-dimensional
plane rotator and Villain model have a power fall-off;

2. in the two-dimensional Coulomb gas, the sum rule1 for the two-point
correlation function of the charge density typical for Debye screening is violated,
and the correlation between two opposite, fractional charges in this gas have
power fall-off, i.e. fractional charges are not screened, provided the temperature
and density are sufficiently small

3. at high temperature, the expectation of (φ(0) — φ(x))2 in the discrete
Gaussian model, (the dual of the Villain model) and in the solid-on-solid model
diverges like ln|x|, as |x|~»oo;

4. for n large enough, there exist temperatures Tc > 0 and fc >TC such that, for
TC<T<% the ZM-model has a massless, intermediate phase.

Although we shall only consider lattice models, our methods extend e.g. to the
regularized continuum Coulomb gas in two dimensions.

In order to heuristically describe the mechanism behind the Kosterlitz-
Thouless transition, let us consider the two-dimensional Coulomb gas. In two
dimensions the Coulomb potential behaves like (2π)~x log(l/r), for large distances,
r. This potential tends to bind oppositely charged particles into dipoles or more
generally into neutral multipoles. More concretely, consider two oppositely
charged particles separated by a distance /. The Boltzmann factor at temperature
T for such a configuration, in the absence of other particles, is

β=(kτy1. (i)

However, if β is not sufficiently large, the dipole can break up due to entropy
effects. The entropy of such a dipole configuration is roughly

S = ln(<M) + const, (2)

where £ estimates the number of possible positions of the negative charge, given
the position of the positive charge, and A is the area over which the positive charge
may range, namely A^i1. Thus we have

rβ Ώ r^ y3n~~(β/2π)ln(/+ 1) n\

When β > 8π, the right side of (3) is summable in /, so that the probability that a
dipole will break up is zero. Thus we conclude that, for large /?, the Coulomb gas
looks like a dilute gas of dipoles where long dipoles are unlikely. In Sects. 2-4 of
this paper we derive a mathematical identity which expresses the Coulomb gas as a
convex combination of neutral multipole gases with small effective activities when
β is large. This identity is formulated in the sine-Gordon representation. In this
representation neutral multipole gases are formally invariant under the con-
tinuous symmetry φ-^φ + const, and a Mermin type argument can be applied to
prove the absence of exponential screening for such dilute gases. See [5] for a
detailed analysis of dipole gases.

The plane rotator and other models analyzed in this paper can be expressed, by
a duality transformation, as gases of particles interacting with Coulomb-like

1 We refer here to the Stillinger-Lovett sum rule, see [4]
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forces. Our analysis of these models will follow quite closely that of the Coulomb
gas.

Our paper is organized as follows: In Sects. 1.2 and 1.3 the Coulomb gas is
described and expressed in the sine-Gordon variables. Our main results on the
Coulomb gas and the solid-on-solid model are stated in Sect. 1.3. In Sect. 1.4, we
present our results for the plane rotator and the Zw-models. A brief outline of our
methods is given in Sect. 1.5. Sections 2-4 form the technical core of our paper. In
these sections we establish an identity expressing Coulomb gases as a convex
combination of neutral multipole gases. We obtain bounds on the entropy of
neutral multipoles (Sect. 2) by a purely combinatorial argument. Our bounds on
the effective activity, proved in Sects. 3 and 4, follow from a kind of generalized
electrostatic inequality. These identities and estimates are applied in Sects. 5-7 to
the various models discussed above. Section 5 is devoted to the Coulomb gas and
to the Villain approximation of the plane rotator. Sections 6 and 7 provide a
technical refinement of the arguments presented in Sect. 5. We treat the plane
rotator in Sect. 6 and the TLn- and solid-on-solid models in Sect. 7.

1.2. The Coulomb Gas

We consider a system of classical particles with electric charge ± 1 whose possible
positions range over a finite array of sites, A, contained in the simple square lattice
Έ?, (respectively in the lattice Έv)2. These particles interact via a two-body
Coulomb potential defined as the Green's function, C(i, j), of the finite difference
Laplacian, A, with some boundary conditions (b.c.) at dA, the outer boundary oϊA.
We can analyze the following b.c.:

i) "Free" b.c, i.e. C(i, j) = C(i—j) is the Green's function of the finite difference
Laplacian on Έ2, but i and j are confined to the region A.

ii) Dίrίchlet b.c, i.e. A is the finite difference Laplacian with 0 Dirichlet data at
dA, and C(ί,j) its Green's function. Thus

C(U) = 0 if iφA or jφA.

iii) Periodic b.c; see Sect. 1.3.
Free b.c. correspond, physically, to putting the particles into a container A with

perfectly insulating walls, whereas Dirichlet b.c. correspond to perfectly conduct-
ing walls. Usually free or periodic b.c. will be imposed, as they are somewhat
simpler technically. (With some technical complications, our methods could be
extended to include Dirichlet b.c. as well; see Appendix D.)

A configuration of the gas is given by a function qΛ = {q(j)}jeΛ with values in TL.
Namely, with each site jeA, one associates the total electric charge, q(j),
concentrated at j . The energy, E, of a configuration qΛ is the total electrostatic
energy of qΛ, self-energies included, i.e.

E(qΛ)=l/2 X
ΪJeΛ

(1.4)

2 The following general remarks apply, of course, to classical Coulomb gases on a lattice of arbitrary
dimension v ^ l , but the main results of this paper concern the two-dimensional gas
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The Boltzmann factor for a configuration qΛ is

. (1.5)

The a priori weight of qΛ is given by

Π %(/)), (1.6)

where dλ(q) is a positive (not necessarily finite) measure on Έ. The equilibrium
state of the system is defined by the usual Gibbs measure, dμ, on the space of all
configurations

dμ{qΛ) = ZΛ

 1 exp[ - βE(qΛ)] Π dλ(q(j)), (1.7)
JeΛ

where

ZΛ = j exp[ - βEiqJ] Π dλ(q(j)) (1.8)

is the partition function. The finite volume correlations of the charge density are
given by

$ . (1.9)

A thermodynamic limit A\l? can always be constructed by a compactness
argument.

Examples. 1) The hard core gas:

ri, «=o
λfo)= z/2, <j,= ± l (1.10)

[0, otherwise.

In this gas at most one particle can occupy a lattice site, and the bare activity of the
particle is z/2.

2) The standard gas:

λ(q)=— J exp{zcosθ)cos(qθ)dθ (1.11)
2π 0

for qeZ, and z/2 is the bare activity. Note that, as z-> oo, /l(^)//l(0)-^ 1, and we obtain

3) The "Villain gas":

λ(q)=l for all qeΈ. (1.12)

In the case of Examples 2 or 3 the thermodynamic limit is known to be
independent of the subsequence, as A\Έ}. See [6] for details.

All the a priori measures we shall study will be assumed to satisfy Condition λ:
Condition λ holds if and only if for all qeZ,

a) λ(q) — λ( — q) (charge conjugation in variance).
b) \λ(q)\ ^ const exp[(α + ε/?)g2], ε<l/16; (low density condition).

Remark. If our low density condition b) fails, then the gas may be in a crystalline
phase. The existence of such a phase for high density and low temperature was
proved in [7].
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1.3. The Sine-Gordon Representation of the Coulomb Gas

In this section we discuss the Fourier transform of the Gibbs measure we defined
in (1.7) with respect to the charge variables {q(j)}. This provides a technically
extremely useful representation of the Coulomb gas, known as sine-Gordon, or
Siegert representation [5, 8, 9]. We denote by dμβΩ the Gaussian measure with
mean 0 and covariance β( — ΔΩ)~ *, where ΛΩ is the finite difference Laplacian with
O-Dirichlet data at the boundary dΩ of some finite region Ω.

Clearly

- J f l ) - 1 ρ ) ] , (1.13)

where φ(ρ) = ΣΦ(j)£?(Λ a n d ^ is a function of finite support in Ω. It is easy to see
3

that, for a fixed function ρ of finite support,

Here E{ρ) is the electrostatic energy of ρ corresponding to free boundary
conditions. Note that if ^]ρ(/) + 0, EΩ(ρ)-+co as Ω]Έ2, because — Δ(p)~1^p~2 is
not integrable about p = 0. Formula (1.14) also holds for the case where periodic
boundary conditions are imposed on the boundary of the rectangles Ω. Let dμβ

= \imdμβ Ω, as Ω\TL2.
By (1.8) and (1.14) the partition function ZA of the Coulomb gas is given by

where λ is the Fourier transform of dλ.
Let < y^(β, λ) be the expectation with respect to the measure (not necessarily

positive)

U k Φ ) . (1.16)

By definition of λ and < >φ the charge density correlations are given by

β, A) = ( Π kΦ(J)T

If no confusion results we set < > φ = < >. By integration by parts in a periodic box
one can easily establish (see [5])

(\φ(k)\2>(β,λ) = βC(k)-β2C(k)2(\q(k)\2)(β,λ) (1.17)

for fcφO. If < }φ is a positive measure, the left hand side of (1.17) is positive, and we
conclude that
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Now let

M{β)= ~ Σ <$(O)$O0>GM) (/? + J1)

) ) l k = ° - ( L 1 8 )

If exponential Debye screening holds, then <|g(fc)|2> is analytic in k near 0, and a
well-known ^-independent sum rule [4, 5] asserts that M(β) = 2β~1. By expanding
the right side of (1.17) in a power series in k we see that {\φ(k)\2} is bounded at
fe = 0if M(j8) = 2j8"1.

In Sect. 5 we prove the following theorem.

Theorem A. // dλ satisfies condition λ then for β sufficiently large there exists a
constant cγ > 0 such that for φ(/) = Σ </>(/)/(/)

whenever Σf(j)

Remarks. Theorem A implies that for /cφO <|0(fc)|2>^c1fe~2, which is singular
near fc = 0. Thus the sum rule for Debye screening must be violated.

If λ{q) = U for all qeZ, we see that λ{φ{j)) = £δ{φ(j)-2πn\ and < >φ is, by
n

definition, the discrete Gaussian model. If we now let f(j) = δxj — δy p Theorem A
asserts that

<lφ{x)-φ(y)-]2y^n-"c1\og{\x-y\ + l) (1.20)

for large β, which proves the existence of a roughening transition for the discrete
Gaussian model.

In Sect. 7 we extend these results to the solid-on-solid model [10]. In this
model the Gibbs measure is given by

exp ί - Σ β\ΦW - Φ(J')\\ Π kΦj)dφj, (1.21)

where the sum is over nearest neighbors. The single spin distribution is again λ(φ)

We also determine the behavior of the fractional charge correlation defined by

Gξ(x) = <exp(ίξ(φ(0) - φ(x)))}, (1.22)

where ξ is the strength of the fractional charge. Using the sine-Gordon repre-
sentation (Sect. 1.3) it is easy to see that the log of

Gξ Jx) = Z~/\ e x p [ - βE(qΛ + ξ(δj0 - δ .χ))] Π dλ(q(j)) (1.23)

measures the average energy required to pump two opposite fractional charges
located at 0 and x into the system. Using Jensen's inequality in the q variables we
can show that

Gξ{x) ^ exp( - j8[C(0,0) - C(0, x)])«\x\ ~[βl2π] (1.24)
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(see [5] for details). If screening occurs (e.g. at high temperatures) then it has been
shown [3] that

Gξ{x)-*L>0

exponentially fast. We prove

Theorem B. For β sufficiently large and λ satisfying condition λ we have for 0 < ξ < 1

0 ^Gξ{x)^ const \x\-β[9 (1.25)

where βf = β'(β,ξ)->co, as β-^oo, and Gξ is given by (1.23).

1.4. The Two-Dimensional Villain - and Rotator Model

The equilibrium states of the Villain and the plane rotator models in zero magnetic
field, in a finite region AcTL2, are given, respectively, by

; 1 Π υ^-θjYi

; 1 Π r^θ-θ^γi
(1.26)

where \\ extends over all nearest neighbor pairs in A, and
(ij)CΛ

υβ(θ) = Σ exp[ " 08/2) (0 + 2πm)2] (1.27)

meZ

is the periodized Gaussian, and

sθ). (1.28)
The variables θ , jeA, are angular variables in terms of which the original spin
variables are expressed by

The expectation in the measures defined in (1.26) is denoted by (-yΛ{β) The
thermodynamic limit, < — >(/?), of the states {{'}Λ{β)} is known to exist, a
consequence of correlation inequalities [11], and to be the unique translation-
invariant Gibbs state of the system [12], for all values of/?. It is invariant under the
continuous symmetry θj-+θj + (x, mod2π, where α is an arbitrary constant. By the
Θ-+ — Θ symmetry.

<SJ..S,>G8) = <cos(θy-θ,)>08) = < ^ - ^ > 0 8 ) . (1.29)

By using e.g. a standard high temperature expansion, one shows that

<βj Se>(β)-*O, as I J W I - O O (1.30)

exponentially fast, provided β is small enough. (It is shown in [13] that for the
rotator model (1.30) holds if β<2βcήt (Ising). Further upper bounds on critical
temperatures are mentioned in [5].) McBryan and Spencer [14] have shown that,
for all β and for every ε > 0, there exists a finite constant K = K(ε, β) such that

0^<S7. S,>(iS)^X(l + | j - ^ ) - [ 1 / ( 2 π + ^ ] . (1.31)

One of the main results of our paper is
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Theorem C. In the two-dimensional Villain and plane rotator models, for sufficiently
large β,

<S

for some β' = β'(β)>l/4π. Moreover β'{β)-+oo, as β-*oo.

The proof appears in Sects. 5 and 6.
Next, we define the usual disorder operator. Let x be the site (n, 0), and define

υoχ- 1111 j7λZΓn
m=l Jβ\ϋ(m,l) σ(m, 0))

where fβ = rβ, respectively vβ, and ξe(0,1). It follows from a high temperature
expansion that

<!><,> ( 0 £ const > 0 , (1.33)

uniformly in \x\9 when β is sufficiently small.
In Sect. 5 we prove the following result for the Villain model.

Theorem D. For each ξe(0,1) there exists some finite βo(ξ) such that for β>βo(ξ)

for some positive β" = β"(ξ9 β).

Our proofs of Theorems C and D proceed by studying the models dual to the
Villain, respectively the plane rotator models which are obtained by Fourier
transformation in the angular variables. The Fourier coefficients of vβ and rβ are
given by

i5^) cons texp[( l/2^)0 2 ] , |

J
where Iφ(β) is the φxh modified Bessel function. Let Iβ(φ) = ϋβ(φ) or rβ{φ). Let A be
some finite region in the dual lattice. We define a statistical weight of a
configuration {φ(j)}jeΛ of integer-valued spins, φ{j\ by

A

where ]~J extends over all nearest neighbor pairs (ίj) with (/j)n/lΦ0 and

for
Let < >*(/?) be the expectation determined by the weight (1.35), and let < >*(/?)

denote its thermodynamic limit. This is the Gibbs state of the model dual to the
Villain, the rotator model, respectively. We define

°x ϋ /(φ(m0)

where x = («, 0), and ξ is some integer. It is well known that

< e i«βo-*J > ( ^ = <D«X>* 0»), (1.37)

in particular

< S 0 S x> (β) = <e« o-βχ)> ( ^ = <ΰi j e>*( iS).
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The relation dual to (1.37) is

<Dξ

0x>{β) = <e2πiξ(φo'φx)>*(β). (1.38)

These relations can be extended to general correlation functions of products of
spin variables and disorder operators. See Appendix A for a proof of these
identities. We shall see that (1.37) is important for our proof of Theorem C.

We also obtain results for the 2^-models which are defined by the Hamiltonian

Hn{θ)=- Σ cosφ,-θ^-hΣ^inθj), (1.39)
(ij)CΛ jeΛ

as h-+co. The corresponding states defined by

('>in){β)= l i m (.yn\β,h)= l i m Z~A

ι f e - * * « < * ) _ Π dθ, (1.40)
fj->-oo n-*oo A

J9Λ

are known to have a thermodynamic limit independent of {/!}, as A\TL2, by
Ginibre's correlation inequalities. The spin-spin correlation is also monotone
increasing in h and A. Hence

<βWo-βχ)>(»)( j 8)^<ei«(βo-βae)>(») ( j g jo) ί (1.41)

which is bounded below by a power law by Theorem C when β$>l. Note that, as
k

h-+co, θ is c o n s t r a i n e d to t a k e discrete va lue - 2 π , k= 1,2, ...,w.
n

The next theorem establishes the existence of a massless intermediate phase for
large n.

Theorem E. Given β and qe(0,l), there exists n0=n0(β,q)<co such that for all
n^.n0 and all integers ξ with min(ξ/π, 1 — ξ/n)^q

l + \x\)-[ξ2/2πβ''\ (1.42)

for some β" = β"(β, q)<oo.

A related result was proved by Elitzur et al. [15] for the Villain approximation
using duality and correlation inequalities. Their proof assumed Theorem C.

1.5. Outline of the Proof

We conclude this section with an outline of our proof of Theorem A. For
simplicity we shall consider the special case of the hard core Coulomb gas whose
finite volume expectation is given by

<'>Λ = Z^^ll(ί+zcosφ{j))dμβ(φ). (1.43)

Let us estimate <eε<^(/)>, from below where, for example, f(j) = δOj — δxj. To do
this we make a change of variables

(1.44)

where

σ(j)=-βε(δj,Δ-1f}. (1.45)
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We then obtain the identity :

<eeφ(f)}

where

J6/1

We would like to apply Jensen's inequality to obtain a bound from below on
Z~1(0)Z(σ). The problem is that σ(j) is not small. However if \j — fc| = L, then

1 • (..48)

Our first major step is to arrange for differences of this type to occur. In Sect. 2 we
prove the identity

> 0 , (1.49)
Λr QEJV

where Jί is a collection of neutral charge densities, ρ [i.e. Σρ(j) = O~], and
φ(ρ) ΞΞ Σφ(j)ρ(j). More precisely, «#" contains at most one charged density ρc which
we shall show has 0 effective activity, since its self-energy is infinite. By (1.48) we
see that σ(ρ) is fairly small if ρ is neutral and supported away from 0 and x. The
constants K(ρ) are closely related to the entropy of the charge density ρ and are
large for a big multipole ρ. Our next major step is to offset the entropy by extracting
part of the Boltzmann factor. In Sect. 4 we prove that

Z > 7 ) = { Π (l + K(ρ)cos(φ{ρ) + σ(ρ)))dμβ(φ)

{ Π φ), (1.50)

where ρ is a new effective neutral charge density corresponding to ρ and Eloc(ρ) is
roughly the electrostatic energy of ρ. This result follows from elementary, but
lengthy electrostatic identities.

In Sect. 3 we prove the key bound on the effective activity z defined by

z(β9ρ) = K(ρ)e-βE^)^Qxpl(-βc + b)log(d(ρ) + m9 (1.51)

where c and b are positive constants independent of β, and d(ρ) is the diameter of ρ.
For large β, (1.51) implies large multipoles are unlikely. It is now straightforward
(see Sect. 5) to apply Jensen's inequality and the double angle formula to show that

-const £ z^ρ)σ(ρ)

for each Jί appearing in (1.49). The constant y(/?)->0, as β becomes large. If we
combine (1.46), (1.50), and (1.52) we see that

(1-53)

Theorem A now follows by expanding up to second order in ε, dividing by ε2 and
taking ε-»0.
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2. An Expansion in Terms of Neutral Multipole Ensembles and Entropy Estimates

In this section we prove our main combinatorial theorem which expresses
expectations in the two-dimensional Coulomb gas as convex combinations of
expectations in dilute gases of neutral multipoles of variable size. Our principal
estimate is on the entropy, respectively bare activity, of the neutral multipoles
which constitute the resulting gases.

First, we derive an expansion for the partition function, see Subsects. 2.1-2.4.
That expansion also serves as a starting point for estimating the expectation of the
disorder parameter (1.36) and of (φ(0) — φ(x))2 see (1.19). In Subsect. 2.5, we
explain how to modify the expansion in order to obtain a suitable representation
of the fractional charge correlation, Gξ(x\ defined in (1.22).

In Sects. 2-5, we impose free (i.e. insulating) boundary conditions. Our method
extends to periodic b.c, as well, but Dirichlet b.c. require some refinements briefly
sketched in Appendix D. We recommend that the reader try to absorb the
definitions and arguments in this section by representing them graphically.

2.1. Notation

Let AQTL2 be a large rectangular array of lattice sites jeZ2. We confine the
positions of the charged particles in the gas to be inside A. A charge density ρ is an
integer-valued function on A whose value, ρ(j\ at some site je/1 indicates the
charge concentrated at j . The diameter of the support of ρ is denoted by d(ρ\ and
dist(ρ1,ρ2) is the minimum distance between the supports of two charge densities
ρ1 and ρ2.

An ensemble, $, is a collection of charge densities, ρ, whose supports are
mutually disjoint. A charge density ρx is said to be compatible with an ensemble $
if

ρ1= X ε(ρ1?ρ)ρ, with ε(ρ1;ρ) = 0, ± 1. (2.1)
ρeS

We say that an ensemble i 1 is a parent of an ensemble S2, &x-^$2, iff every charge
density ρeS2 is compatible with Sv We say that a density ρ is a constituent of a
density ρ1 ? ρCρ 1 ? iff suppρCsuppρ t, ρ{j) = ρχ(j) for all jesuppρ.

The total charge, Q(ρ), of a density ρ is defined by

Q(Q)=ΣQ(J)'

A density ρ is neutral if Q(ρ) = 0 otherwise it is said to be charged. We define an
area of a density ρ on various distance scales: Let An(ρ) be the minimal number of
2n x 2" squares - i.e. squares with sides containing 2" sites - needed to cover suppρ.
Clearly ,40(ρ) = card{suppρ}.

An ensemble $ = $nΊs called an n-ensemble iff for all ρ1 ? ρ2 in in, ργ Φρ 2 ,

dist(ρ 1 ;ρ 2)>2". (2.2)
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2.2. Main Result

Theorem 2.1. There exists a family, έF = ̂ Γ

Λ, of ensembles, Jί, such that

Π ( l + z c o s φ O ))= Σ cJίX\{l + K{ρ)cosφ{Q)), (2.3)
jeΛ Jfe& ρeJί

φ(ρ) = ΣΦ(J)Q(J)\ where Cjr>0,for all Jίe^F, and each JίeίF has the following
j I

properties:
a) all densities ρ in Jί are neutral, i.e. Q(ρ) = O, except possibly one, ρc, which is

charged.
There exist constants M > 1 and α, 3/2 < α < 2, independent of Jί such that

b) dist(ρi,ρ2)^Mlmm(d(ρi),d(ρ2))Y, (2.4)

for all ρv ρ2 in Jί, ρ1φρ2 Moreover, if Jί contains a charge density ρc with

Q(βc)+o
dist(ρ, ρc)^

for all ρ in Jί, ρ + ρc.
c ) If βι CρejV is such that

(2.5)

then ρx is charged.

Finally, the constants K{ρ) on the right side of (23) satisfy

0<K(ρ) = zΛo{ρ)eSiρ), with S(ρ) ̂  C A(ρ), (2.6)

for some ρ - and Jί - independent constant C, where
n(Q)

A(ρ)= Σ MQ), (2-7)
k=O

with
n{ρ) the smallest integer ̂ ln2(Md(ρf), (2.8)

for all ρ φ ρc. •

Remarks. 1. S(ρ) can be thought of as the entropy of a multipole with charge
density ρ.

2. The constants M and α above will be chosen later. We shall see that f < α < 2
is the admissible range of α. Property b) of the ensembles Jίe $F, asserted in
Theorem 2.1, ensures that the gases with ensembles Jί are sufficiently dilute to
enable us to extract the selfenergy factor e x p [ - constβE(ρJ] of the neutral charge
density ρ; (α>§ is a sufficient condition for this to be possible). See Sect. 4 and [5]
for the case of dilute dipole gases. One then obtains an effective, or renormalized,
activity

z(jB,ρ) = K(ρ).exp[- const j8£(ρ)]

which is very small, for large β.
3. The key assertion of Theorem 2.1 is contained in (2.6)-(2.8). The number

K(ρ) = zΛoiρ)esiρ) is the "bare activity" of the multipole with charge density ρ. The
constant C in (2.6) satisfies C ^ 225-In 3.

In order to motivate interpreting S(ρ) as an entropy we consider the example of
a dipole of length L. In this case ρ^^δ^ — δ^, with \k — £\ = L, $#=1, i=j, δji = ®>
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otherwise. Then, since An(ρ) = 2, for n^\r\2L— 1, and ^4n(ρ) = l, for n(ρ)^n^\
/l(ρ) = ( l + α ) l n 2 L +const, so that S(ρ)S const In 2L.

While K(ρ) grows in L like e c o n s t l n2L this is offset by the factor
exp[ — constβE(ρ)\ where E(ρ)&(\nL)/2π is the self-energy of the dipole, provided
β is large enough.

4. It turns out that the magnitude of the coefficients c^ is unimportant. Only
their sign, i.e. cjr>0, is crucial. If we define

/Y[(l+K{ρ)cosφ{ρ))\
χ = ( , Xge^ β

/β

where < }β denotes the expectation in the Gaussian measure dμβ, with mean 0 and
covariance βC, we clearly have

) = Σ ^ < ' ) / W , (2.9)

Here {'}jr(β) is the state with Gibbs measure

Z " 1 Π (1 + K(ρ)cosφ(ρ))dμβ(φ). (2.10)
qeJΓ

Thus, Theorem 2.1 provides us with a representation of the state of the Coulomb
gas as a convex combination of states describing dilute gases of neutral multipoles
("dipole gases").

5. As noted in Sect. 1, the factor (1 + K(ρc)cosφ(ρc)\ ρceJί, β(ρc)Φθ, can be
replaced by 1 in (2.10) iϊdμβ(φ) is the infinite volume, zero-mass Gaussian measure,
because the self-energy, £(ρc), of ρc is infinite if Q(ρc) φ 0. This is not true if Dirichlet
boundary conditions are imposed at dΛ, in which case the expansion established in
this section must be modified (see Appendix D).

6. The proof of Theorem 2.1 consists of an inductive construction of the
ensembles Jί.

2.3. The Basic Lemma

Lemma 2.2. Let $ — $n be an n-ensemble. Then there is a family {Sy} of («+l)-
ensembles, labelled by a parameter γ, such that $->$y, for all y, and

Π(l+Kte)cosφ(ρ))= Σcγ Π {l + K'(ρ')cosφ{ρ')). (2.11)
ρeS1 y ρ'zSy

For all 7, c y >0, and for each ρ'eSy

a) ρ' — Σ ?>{ρ\ Q)QI i e- ρ' is compatible with $

b) if there is a charge density ρ\ C ρr which is compatible with $ then

dist(ρ' 1 > ρ'-ρ' 1 )S2" + 1 .

c) 0 < K ' ( { ' ) ^ c " ' " ( i l ) [ l K ( e ) ! l ( f i ' ! ) l . (2.12)

The constant Cί is independent of ρ' and n.
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Proof. The lemma follows from iterated application of the identity

(ί+Ka cos φ(ρa)) (ί+Kβcos φ(ρβ))

= 1/3(1 + 3Ka cosφ(ρj) +1/3(1 + 3Kβ cos φ(ρβ))

+1/6(1+ 3K.K, cos φ{Qa-Qβ))

(2.13)

Note, all densities on the right side of (2.13) are compatible with {ρa,ρβ} and all
coefficients are positive. Identity (2.13) is only applied to a pair {ρx, ρβ}C$ if

d i s t f o a ^ 2 " + 1 . (2.14)

We start by applying (2.13) to any two factors on the left side of (2.11)
corresponding to two charge densities ρα, ρβ in S for which (2.14) holds. (If there
are no such factors the lemma holds trivially.) The right side of identity (2.13) is
then inserted on the left side of (2.11), replacing the two factors labelled by ρα, ρβ by
a sum of four terms, and by expanding we obtain a sum of four products. If one of
the resulting products contains two factors labelled by densities ρ'a, ρ'β satisfying
(2.14), we apply identity (2.13) again and expand the resulting expression into a sum
of products. We repeat this operation until we obtain a sum over products indexed
by ensembles Sy with the property that, for arbitrary ρ1 ? ρ2 in $v dist(ρ1? ρ2)>2n+1.

As noted already, each application of (2.13) replaces charge densities which are
compatible with 8 by other charge densities compatible with g. Thus ρ'
= ]Γ ε(ρ',ρ)ρ, for all ρfe$γ and all y. Moreover, all coefficients cγ are clearly

ρei

positive, [since by (2.13) each c =(l/3)"v(l/6)Wv, for some positive integers nγ and
πiγ]. This completes the proof of (2.11) and a). Part b) of the lemma then follows
directly from (2.14). Thus we are left with proving c).

At intermediate stages of our operations we have identities

with £-*J>, (i.e. S is a parent of each J), and c^>0, for all intermediate ensembles
J. In order to prove (2.12) we now consider some density ρ'eSy and an
intermediate ensemble J> such that ρ' is compatible with J. (If ρ' is not compatible
with </, further operations on the factors indexed by densities in J can never
produce ρ', as is immediate to see.) We must keep track of all applications of
identity (2.13) necessary to produce the given ρ', starting from </, i.e. we must
consider all possible applications of (2.13) to pairs {ρa,ρβ}CJ' for which either

β

ii) ±ρβCρ', ραnρ' = 0, or
iii) ±ρ α Cρ', ±ρ^Cρ ;.
In case i) the term on the right side of identity (2.13) is chosen in which ρβ is

eliminated. (Suppose not then ρα and ρ^ would have been combined to ρα ± ρ .̂ At
later stages, either ρα ± ρ^ would have been eliminated, or it would have been kept,
so that either ρα<tρ', or ±ρβCρ'.) The term in which ρβ is eliminated is
oc(l + 3Kαcos(/>(ρα)), so the coefficient, 3Ka, of cosφ(ρα) is independent of Kβ and
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Since (2.14) has been imposed, ρβ contains at least one density ρeS with the
property that dist(ρ,ρ')^2"+ 1. Thus, the total number of applications of identity
(2.13) of type i) necessary to produce ρ' is at most

Case ii) is the same as case i) with a and β interchanged.
In case iii) a term on the right side of identity (2.13) is chosen in which ρα and ρβ

are combined to ρa

Jrρβ or ρa — ρβ. The coefficient of cos φ(ρa ± ρβ) is 3KaKβ. Given
ρ', there are precisely card{ρe<ί :ρCρ'} — 1 applications of (2.13) in which a term of
type iii) is kept which are needed to form ρ\ independently of the order in which
the constituents, ρeS, of ρf got paired. (The proof of this is an easy combinatorial
exercise.)

From the discussion of cases ί)—iii) above, we now conclude that

K\ρ')^yM) Π K{ρ)M e){, (2.15)

where ng{ρ') = c&τά{ρe$ :dist(ρ,ρ /)^2"+ 1}. Next, we make use of the fact that $
was assumed to be an n-ensemble, i.e. for any two densities ρv ρ2 in &, ρί Φρ 2 ,
dist(ρ1,ρ2)>2". From this property it follows immediately that a 2"x2" square
cannot intersect more than three different charge densities in $. Let Λn(ρ) be the
minimal number of 2" x 2" squares needed to cover {jeΛ:άist(j, suppρ)^2" + 1 } . It
is easy to check that An{ρ) ^ 25^4n(ρ). Thus

for some constant C 2 ^
From this and inequality (2.15) we obtain part c) of the lemma, with

C 1 = C 2 ln3. D

2.4. Proof of Theorem 2.1

The theorem follows by an induction in distance scales 2", n = 0,1,2,... . Each
induction step is carried out by applying Lemma 2.2 to appropriately chosen
n-ensembles, Sn. The initial ensemble is given by So = {Qx}xeΛ, ρx(j) = δxj. Clearly, So

is a n= — 1 ensemble. By Lemma 2.2, (2.11) we have

Σ S Π {l+K(ρ)cosφ(ρ))9 (2.16)
jeΛ y ee&ι,v

where each SltΊ is a 1-ensemble. Next, we apply (2.11) again to each term in the
sum on the right side of (2.16), with S = S1 , for each y. We end up with a sum over
2-ensembles. For n ̂  n0, with 1 < n0 ^ ln2 M, we must however choose the ensemble
$ on the left side of identity (2.11) to be a sub-ensemble of some Sn y obtained in
previous applications of (2.11), in order to avoid generating unnecessarily large
charge densities and combinatorial factors, K(ρ). Roughly speaking, we shall apply
the lemma to sub-ensembles which do not satisfy the assertions of Theorem 2.1.
More precisely, those sub-ensembles, $n = Qn — Jfn, are chosen inductively as
follows:
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Let Qo = So = {ρx}xeΛ, <yVQ = 0. Let Qn be one of the ensembles obtained after the
π t h induction step. The induction hypotheses for Qn are as follows:

Sn is an rc-ensemble, and Jίn is a maximal sub-ensemble of Qn defined by
α) ^ 2 ^ - 1 , for some Jίn_1\& charge density ρeQn belongs to Jfn iff
β) ρ is neutral, i.e. β(ρ) = 0;
γ) if ρλ is some other, neutral charge density in Qn,

dist(Ql,Q)^Mlmm(d(Ql\d(Q)W (2.17)

δ) d i s t ( ρ i ,ρ)^Mφ) α , (2.18)

f o r a l l ρ 1 e β Λ - Λ ς
It is not hard to see that jVm — 0, for m < n0. In order to carry out the induction

step, we apply identity (2.11), Lemma 2.2, with $) = $n:

Y\ (1 + K(ρ)cosφ(ρ))= Σcγ Y\ (1 + K'(ρ')cosφ(ρ')). (2.19)
ρeSn y Qe&n+i,γ

By Lemma 2.2, a) $n-*Sn+ 1 ? γ, for all y, and each $n+ 1 > y is an (n+ l)-ensemble. We

for all y. We now choose Jίn+ x = Jr

n +1? γ to consist of Jίn and of a maximal subset,
J^ n + 1 y, of ̂ n + 1 y in such a way that «/n+1 y^^in satisfies α)-δ), above (with n
replaced by n+1) . Clearly

is an (ft-fl)-ensemble, since $n+1Q$n+1 v and $n+liJ is an (n+ l)-ensemble, by
Lemma 2.2. This completes the induction step.

Remark. One may define Jίn constructively as follows:
α') Jfy^Jίn-x, for some Jίn-γ\
β') for each ρe Qn — Jίn_ u let B(ρ) be the set of sites within distance < Md(ρ)a of

supp ρ. Let Sd\ be the family of ρe Qn — Jfn_ x for which Q(ρ) = 0 and £(ρ)nsupp ργ= 0,
f o r a l l ρ ι G β n - ^ ς _ ι , ρ 1 * ρ . Let ^ Ξ ^ - ^ . ^ ^ U . . . U # Π ) and define J*^+ι

to be the family of all those ρei^ for which Q(ρ) = 0 and J5(ρ)nsuppρι=(3,
for all ρxe£{ϊ\ ρ, =t=ρ, fc= 1,2, 3,.... We define

For bounded /I, Sn clearly converges, as n-> oo, either to the empty set, or to an
ensemble consisting of a single, charged element, so that Lemma 2.2 cannot be
applied anymore.

Thus, by induction in n, we obtain identity (2.3) of Theorem 2.1, and by (2.17)
and (2.18), [respectively α'), β')] each ensemble, Jf, on the right side of (2.3)
satisfies parts a) and b) of Theorem 2.1. In order to prove part c) of Theorem 2.1,
let ρ be some charge density in one of the ensembles, Jf, and suppose ρ ^ ρ
satisfies

α . (2.20)
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In the course of building up ρ out of some collection of densities, {ργ}, with which ρ
is compatible, it must have happened that some ρμζρ1 got paired with some ± ρ v ,
Qv = Q~Qi t 0 f ° r m Qμ + Qv Since άist(ρμ,ρv)^Rv this happened on scale 2k of the
inductive construction, with 2k+1^Rv Since R 1 Ξ 2 M φ 1 ) α ^ 2 M φ / , ρμ is
charged. For, if ρμ is neutral, ρμeJr

k, as 2k^(l/2)R1^Md{ρμ)
a.

Suppose now that ρμξρv Then at a later induction step some ρ'2ρμ + ρv β°t
combined with some non-empty ρλQρ1— ρμ. But

and

for α> 1, M > 1. However, the expansion on scales <2k was already terminated at
this point. Thus ρμ = ρ1 ? and therefore ρx is charged. This completes the proof of
part c) of Theorem 2.1, (2.5).

Now we turn to the proof of (2.6)-(2.8). We choose some Jί. Let ρ be some
neutral density in Jί, and let n(ρ) satisfy 2 " ( e ) ^ M φ ) α , as required in (2.8). Let
m > n{ρ\ and suppose ρ was produced during the induction step on scale 2m. Since,
for arbitrary constituents ρμ, ρv of ρ, dist(ρμ, ρ v)^d(ρ)<2«~ l γ n<2m, for M> 1, a > 1,
ρ must have been paired with some ρ" Φ ρ at distance at least 2m from ρ, and ρ" got
eliminated, i.e. the first term on the right side of identity (2.13) was chosen, (with ρα

— Q^Qβ — Q" \ s e e cases i), ii) in the proof of Lemma 2.2). However, since ρ is neutral,
and 2m>2n{Q) ^Md{ρf this would violate the rules for choosing Jίn, namely Jίn{ρ)

would not have been chosen to be a maximal subset of Qn(ρy Thus, for some
ρe.yΓm. By Lemma 2.2, (2.12)

where ρ = £ε(ρ,ρy)ρy, and all densities ρy belong to some (m—l)-ensemble.
Applying (2.12) again, we obtain

Σ4n-iG? y ) l l Π &((>*)> ( 2 2 1 )
±QγCQ JJ ±ρσCρ

for densities ρσ in some (m —2)-ensemble.
Next, we make use of the inequality: If dist(ρy, ρy,) > 2k, for all y Φ y' then

Σ Ak{ρy)^C3Ak{ρ), (2.22)
QγQρ

for some constant C 3 ^ 3 . (The proof is straightforward; see also end of proof of
Lemma 2.2.) By combining (2.21) and (2.22) and a recursion, (2.6) and (2.7) follow,
with C ^ C 1 C 3 g 225 In 3; (the upper bound on C is vastly larger than what one
could presumably obtain by more detailed, combinatorial arguments). This
completes the proof of Theorem 2.1. D

2.5. The Fractional Charge Observable

Next, we make a minor modification in the above arguments to include, in the
inductive construction of the ensembles, Jί, an observable

= cosφ(ξρ0), (2.23)
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where ρ 0 is some charge density of compact support, and £e(0,1). These
modifications are not needed for the proof of Theorems A and C. As an example
we mention

so that ξρ0, ξφO, 1, is the charge density of a dipole consisting of two fractional
charges, ± ξ , separated by a distance L.

We wish to derive an expansion for cosφ{ξρ0) Y\ (l + zcosφ(j)) for which the

analogue of Theorem 2.1 holds. First, we note the identity

cosφ(ξρ0) Yl (1+z cos φ(j))
jesupp ρ0

no

= 2̂  ^ a(cos0(^ o) + z a cos0(^Q+ ρα)), (2.24)

no

with c α >0, for all α, and £ ca=l; ρJJ) = 0, ± 1 , for jesuppρ 0 , and ρα(/) = 0> f° r

α = 1

7^suppρ0; 0<z α <oo, with zacczAoiQa(\
Identity (2.24) follows by induction from the identities

cosφ(ξρ0)(l+ K1 cos φiρj)

+ l/2(cosφ(ξρ0) + Kλ cosφ(ξρ0 -Ql)), (2.25)

and

= l/3(cosφ(ξρ0) + 3i^x cos φ(ρx))

+ l/6(cos φ(ξρ0) + 3K2 cos φ{ξρ0 + ρ2))

+ l/6(cos φ{ξρ0) + 3X2 cos<^(ξρ0 - ρ2))

XK2 cosφiρ, - ρ2)), (2.26)

with ρ ^ ξ ρ o + έ?!, in (2.26). Identities (2.13) and (2.26) are our basic tools to
expand each term in the sum

Σ cα(cos0(ξρo) + zαcos(/)(^ρo + ρα)) f ] (l + zcosφ(j)) (2.27)
α = l je/ί\supρρo

into a sum of terms, as in Theorem 2.1, (2.3).
In order to estimate the terms produced by that expansion, (Sects. 3 and 4) we

will need the following condition on ρ0.

Condition (2.28). // ρ 0 can be decomposed as

-Q\ ( 2 2 8 )

and ρ' satisfies dist(ρ',ρo-ρ')^2M<i(ρ')α, then Q(ξρf)e[m + ξf, m+l — ξ''], for some
integer m, 0 < ξ ' ^ l / 2 , i.e. Q(ξρ') is fractional.
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In the example of the dipole, ρ' = δxj, Q{ξρ') = ξ, so Condition (2.28) is fulfilled if
l, i.e. the charges in the dipole are fractional We now prove

Theorem 2.3. There exists a family, ^Λ(ρQ), of ensembles, Jί, such that

cosφ{ξρ0) Y\ {1+ z cos

+ ρjr)y U (1 +K(ρ)cosφ(ρ)), (2.29)

where each Jί satisfies properties a)-c) stated in Theorem 2.1, Jf\j{ξρ0} and
Jru{ξρ0 + ρjr} satisfy a) and b), and if Condition (2.28) is imposed on ρ0 then c)
holds, too, in particular, if'ρ^CξρQ + ρ^ is such that dist(ρl5 ξQo + ρ^ — ρ^
^2Md(ρ1)

α then ρι is charged, with Q(Qι)^[rn + ξr, m+ 1 — ξ'\ for some integer m.
The coefficients K{ρ), ρeJί, satisfy (2.6)-(2.8), and

where k is some constant, s{ρo,ρ
jr) = swpipρovsuipipρjr, and C and A are as in

(2.6)-(2.8). Moreover, the coefficients c^, K{Q^\ K(ρ), ρeJί, are independent of

Remark. It is not hard to also prove a variant of Theorem 2.3 with cosφ(ξρ0)
n

replaced by Y[ cos φ(ξρj), where each ρ7- satisfies Condition (2.28). The proof of

this is an easy generalization of the one given below.

Proof of Theorem 2.3. We closely follow the proof of Theorem 2.1. In order to do
the induction step we need a slight generalization of Lemma 2.2: We consider
n-ensembles of the form

i
corresponding to a product

ρ0) + K(ρ)cosφ(ξρ0 + ρ)) f ] (1 + K(ρ)cosφ(ρ)). (2.31)

The definition of an rc-ensemble is as before, but it is required that

dist(s(ρ0, ρ), ρ) > 2", for all ρe δ,

with
s(ρ0, ρ) = suppρ0 usuppρ.

In the pairing step of the proof of Lemma 2.2, see (2.14), we treat the factor
cosφ(£ρ0) + K(ρ)cosφ(ξρ0 + ρ) as if it were = 1 + K(ρ)cos0(ρ), where ρ is a fake
charge density with suppρ = s(ρo,ρ), d(ρ) = diam(s(ρo,ρ)), β(ρ) = Q(ρ) and K(ρ)
= K(ρ). Thus, the factor (cosφ(ξρ0) + K(ρ)cosφ(ξρ0 + ρ)) may be paired with a
factor (1 + K(ρ) cos φ(ρ)) iff

If this condition is verified, the product

(cos φ(ξρ0) + K{ρ) cos φ(ξρ0 + ρ)) (1 + K(ρ) cos φ(ρ))
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is replaced by the right side of identity (2.26), which is inserted in (2.31) and
expanded, etc. The combinatorial aspects of identity (2.26), in particular the
multiplication of the coefficients Kv K2 and K1K2 by factors of 3, are identical to
the ones of identity (2.13). Thus, the identity

[(ί + K(ρ)cosφ(ρ))
ρei

= Σcfi°s<KξQo) + KWcosφ(ξQ0 + Q')) Hil+KWcosφieΠ) (2.32)
γ Q'eSy

replaces (2.11), and parts a)-c) of Lemma 2.2 hold, with Sy replaced by iγu{ρ'}. In
particular, $y is an (n+ l)-ensemble, and

dist(s(ρo,ρ'),ρ')>2"+ 1,
for all ρ'e $v and all y.

With the above modifications, the proof of Theorem 2.3 is virtually identical to
the one of Theorem 2.1, in particular, the above generalization of Lemma 2.2
permits us to carry out the induction steps. The initial ensembles are

where ρα is one of the charge densities appearing on the right side of (2.24).
Inequality (2.30) is proven in the same way as (2.6)-(2.8) if one uses the simple fact
that zaSkΛo{βo)zAoiQκ) see (2.24). The last point to be checked is that part c) of
Theorem 2.1 holds in the present situation, provided Condition (2.28) is imposed:
If ρeJf the proof of c) is as before. If ρ = ξρ0 Condition (2.28) just says that c)
holds. Hence we must only consider the case ρ = £ρ0 + ί?1 -̂ Let ρ1 Cρ be such that
dist(ρ1? ρ — ρ1)^2M<i(ρ1)

α. If ρ^suppρo + 0 then Qίρ^ + O, since, by Condition
(2.28), Q(ξρo/ s uPP^i) *s fractional. If ρ 1 nsuppρ o = 0 the proof that βfeJφO is as
before. D

Corollary 2.4.

H Σ c^l + X(ρ^)cosφ(ρ 0) Π (I + K(ρ)cosφ(ρ)), (2.33)
jeΛ

where ^Λ{ρ0\ c^ Kiρ^) and K{ρ) are as in Theorem 23.

Proof. Follows from Theorem 2.3, in particular the fact that i^(ρ 0 ), c^ , i^(ρ^), and
K{ρ) are independent of ξ, by letting ξ tend to 0. D

3. Charged Constituents and Bounds on the Effective Activity of Charge Densities

In this section we estimate the total number of isolated, charged constituents of a
given charge density ρ in one of the ensembles JV constructed in Theorems 2.1-2.3
in terms of its entropy. In order to accomplish this, we use (2.5), part c) of
Theorems 2.1 and 2.3. We show that sufficiently many constituents ρ t of ρ are far
from ρ —ρ l 5 in the sense of inequality (2.5), and hence are charged, so as to permit
us to renormalize the bare activity K(ρ) by electrostatic inequalities, see Sect. 4, in
such a way that if β is large enough the renormalized activity is bounded above by
1.
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More precisely, we shall show in Sect. 4 that the renormalized activity, z(β, ρ),
of some ρeJί is bounded by

(3.1)

for some positive, finite constants, c, d. Here £ l o c(ρ, Jί) is a (local) portion of the
electrostatic self-energy of ρ in the ensemble Jί. Clearly, inequality (3.1) requires
proving a lower bound on £ l o c(ρ, Jί) in terms of A(ρ). We state this lower bound
below and then prove a combinatorial lemma needed to establish it. We now need
some definitions:

Let ^k(ρ) be a minimal collection of 2k x 2k squares covering the support of ρ.
By minimal we mean that Sfk(ρ) is chosen such that its cardinality, |^k(ρ)|, is
minimal, i.e.

(3.2)

(the area of suppρ on scale 2k).
Now, we define ^k(ρ) to be the sub-collection of those squares s in Sfk{ρ) which

are far separated from other squares in 5^(ρ), in the sense that

dist(s', s) ̂  2M2α/c = 2ak+b, (3.3)

for all se£fk(ρ), sή=s'. [If ^k{ρ) consists of only one square and Q(ρ) = 0 we set
^k'te) = 0 ] Here we have set 2M = 2\ for some b> 1. We define ^ " ( ρ ) - ^ ( ρ ) \ ^ ( ρ )
and set £fo(ρ) = S?ό(ρ\ so that \^{ρ)\ = Λ0(ρ). We note that, by (2.5), respectively
Theorem 2.3, c), s'nρ is charged, for each s'e^'(ρ), k = 0,1,2,.... Let

Λ'(Q)= Σ 1-^(6)1+^o(β) (3-4)

Note that, for k>\n2d(ρ), ^k{ρ) consists of a single square covering all of suppρ.
Hence 5^(ρ) = 0, \£fk\ρ)\ =0, so that the sum on the right side of (3.4) terminates at
some k = fc(ρ)^ln2d(ρ) [unless ρ is charged, in which case k(ρ)= oo, | ^ ( ρ ) | = 1, for
all k>ln2d(ρ)]. In Sect. 4 we prove that each constituent of a charge density ρeJί
covered by some square s'e£fk'(ρ\ k = 0,1,2,..., contributes at least a positive
constant Dv independent of ρ and Jί, to the electrostatic self-energy Eloc(ρ,Jί).
Thus

E l o c ( ρ , Λ 0 ^ / V ( ρ ) . (3.5)

The main result of this section is

Lemma 3.1.

A(ρ)ZD2A'(ρ), (3.6)

for some finite constant D2 independent of ρ and Jί. D

Remark. By combining inequalities (3.5) and (3.6) we conclude
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and, using Theorem 2.1, (2.6)—(2.8), we obtain

• exp[(C - βD JD2) (A(ρ) - 40(ρ))] . (3.7)

For zSoonsteεβ, ε<Dί/D2, this yields (3.1). A similar estimate follows from
Theorem 2.3, (2.30).

Proof of Lemma 3.1, We define a function γ by

where [x] denotes the integer part of x.
We now fix some fc, with 2y{k) < d(ρ), so that ^γik)(ρ) contains at least two

squares. Let st be some square in ^'(k)(ρ). [It is assumed, here, that ^'('fc)(ρ) Φ 0.
Hence |ί^ f c )(ρ)|^2.] Then, by the definition of ^'{k)(ρ), there exists some square
s2e£9"{k)(ρ) such that

Since d(sί) = d(s2)=]/22y{k\

provided 0 :g y(k) g k — 4 which holds for b > 1, α > 1. Thus, 5! and 52 can be covered
by a single square se ^k{ρ). Next, let sv ..., sm, m ̂  3, be squares in S^γ[k){ρ) such that

Then, since

+ 0 + 2(2M2αy(/c)) < 2y(fc) + 3 + 2k~' < 2k,

Sf-Vse and ŝ  + x can be covered by a single 2fc x 2k square, for any / = 2,3,..., m — 1.

Therefore — ^ —• 2kx2 f c squares suffice to cover s1? ...,5W. for any m = 2,3,....

From this we easily derive the inequality

provided ^ ( t ) ( ρ ) contains at least two squares. We recall that

n=0

with

see Theorem 2.1. We therefore need to prove (3.8) only for k^n(ρ). For such values
of fc, 2 y ( f e ) < φ ) , (provided α<2). Therefore | ^ ( k ) ( ρ ) | ^ 2 , and the above proof of
(3.8) applies. [For k>n(ρ\ (3.8) would, however, be false.]
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Let δ = b — 2. Clearly, inequality (3.8) can only be applied if

i.e. ktδ.

For each k, we now iterate inequality (3.8) / = /(&) times, where ί(k) is the maximal
number for which

ym{k)^O, i.e. ym~\k)^δ. (3.9)

Here ym denotes the m-fold composition of y with itself. This yields

; H ) A0(ρ), (3.10)

with / = /(/c) given by (3.9). We have used that

Λ0(ρ)^Aj(ρ), for all j^O.

We now estimate ί(k). For this purpose we extend the definition of y to the whole
interval [δ, GO), by setting y(x) = [μ~1(x — (5)], for arbitrary x^ό. Obviously, 7 is
monotone increasing, and

γ(x)>α- 1 (^-<5)-l. (3.11)

These two properties yield

and, by induction,

Σ a~J" - Σ oc~j. (3.12)

If we let m—•oo in the last two terms on the right side of (3.12) we obtain

ym(x)>a~mx-(oc-iy1(oί+δ).

For /c^(α— l)~1(a + δ\ we define /0(fe) to be the maximal integer for which

α - ^ ( k ) k _ ( α _ 1 ) - i ( α + 5 ) ^ 0 . (3.13)

Then yίfo(/c)(/c)>0 and therefore /(/c) ̂  ̂ 0(fc).

By taking logarithms in (3.13) we thus obtain

[(l/ln2α)ln2(/c//c0)], otherwise, v ' ;

where ko = (a—l)~ι{a + δ).
Next, we estimate the cardinality, |iVm |̂, of the sets

Nmj = {k:f\k)=j}, (3.15)

for given m and j. By the definition of y
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Since γ is monotone increasing,

and, by induction,

Next, let fc_ be the minimal and k+ the maximal integer in Nj>m. Then
Im \ m-1

c/-mk — δ \Yn~e I — V a~e<vm(k )~i — vm(l

Thus

Using (3.10) we have
n(ρ)

k=0

n(ρ)

Σ
m=0

Me)

^ Σ

where

By (3.14) and (3.18)

with

Therefore E is finite, provided

l<α<2, i.e. l/ln 2 α>l.

Now we turn to our estimate of F. We use

= Σ ( Σ Ύ
j=0 \fc=O m = 0

k(ρ) j oo

^ Σ Σ 2-'"δγm+Hk)J)\^{ρ)\
j=0 \ιw,Λ=0

k(e) / oo

= Σo(jo2
*(β)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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where we have used the definition of Njtm, inequality (3.16) and condition (3.20).
Hence

F g 8 α ( 3 α - α 2 - 2 ) " 1 . (3.21)

Lemma 3.1 now follows from (3.17), (3.19), and (3.21), by setting
D2=ma.x(E,F). D

Remark. Inequality (3.17) is a somewhat finer version of Lemma 3.1 which can be
used to slightly improve the upper bound (3.7) on z(β, ρ).

4. Electrostatics and the Renormalization of Multipole Densities and Activities

One of the main issues of this section is to interpret and prove inequalities (3.1) and
(3.5), i.e.

z(β9 ρ) S K(ρ) exp[ - βElθG(ρ, JT)~\\ „ χ)

for some positive constant Dv Here z(β, ρ) is the renormalized, or effective activity
of a (neutral) multipole with charge density ρ, and £ loc(ρ, Jί) is a "local" portion of
the electrostatic self-energy of ρ. Moreover, Jί is a multipole ensemble satisfying
the properties stated in Theorems 2.1 and 2.3. Finally A\ρ) counts the number of
charged constituents of ρ on all possible scales see (3.4). In Sect. 3 we have shown
that (4.1) implies

(4.2)

for some finite, positive constants c and d, provided z^consteε/?.
It is an immediate consequence of the definition of A(ρ) that

A{ρ) ̂  (n{ρ) — [ln2 d(ρ)]) + 2[ln2

^(α +1) [ln2ίi(ρ)] >31n<i(ρ), (4.3)

hence
z(β9 ρ) S exp[3(c - βd) lnd(ρ)] , (4.4)

so that z(β,ρ)<l, for /? large enough; (α(ρ)^2, for all neutral ρ!).

4.1. Main Result

Let Jί' be an ensemble satisfying properties a)-c) of Theorem 2.1. Let ρ = 0, ξρ0,
ζQo + Q^Ί where ξρ0 satisfies Condition (2.28), (i.e. the constituents of ξρ0 are
fractionally charged), and Jί\ ρ0, ρ^' satisfy the properties listed in Theorem 2.3.

The main result of this section is

Theorem 4.1. Let Jί' and ρ be as above, and J^ = Jί'vj{ρ). For each ρeJ^, let σ(ρ)
be some real number. Then

= ί Π Cl + W, Q)cos(φ® + σ(ρ))]dμβ{φ), (4.5)
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where

and Eloc(ρ, Jί) is some function of ρ satisfying

' ( ( ?). (4.6)

Moreover, ρ is a charge density which depends linearly on ρ and satisfies
a) Q(ρ) = Q(ρ),and
b) d(ρ) S 2d(ρ) (unless ρ is charged in which case d{ρ) = GO, £ l o c(ρ, Jί) =00). D

Remarks. 1. The functional Eloc(ρ, Jί) is a "local" portion of the electrostatic self-
energy of ρ in a sea of multipoles indexed by Jί\{ρ}. The renormalized charge
density ρ and Eloc(ρ, Jί) will be implicitly defined in the proof of Theorem 4.1.

2. The basic idea behind Theorem 4.1 is as follows: The renormalization of the
charge densities ρ and activities is done inductively in the scale of ρ. Let

Suppose that the induction has reached scale 2k, i.e.

j Π [1 + K{ρ) cos(φ(ρ) + σ(ρ))] dμβ(φ)

• Π U + K(ρ) cos(φ(ρ) + σ(ρ))dμβ(φ). (4.7)

Pick some ρ' with 2k<d(ρ')^2k+1. One can, in principle, renormalize
1 + K(ρf) cos(φ(ρ') + σ(ρ')) by integrating over all variables φ(j), with j belonging to
some bounded array, Ω(ρf,J/r), of lattice sites centered around suppρ' and
diam(Ώ(ρ;, Jί)) ^ 2d{ρ'\ in such a way that the factor

where W extends over all those ρeJί<k for which dist(ρ, ρ')rgd{ρ% is not affected.
Note that if ρ" satisfies d{ρ")>2k then~

dist(ρ", ρ') ̂  M2ak >2k+2^ 2d{ρ'\ for M ^ 4,

so that factors [l + K(ρ//)cos(φ(ρ//) + σ(ρ//))] corresponding to unrenormalized
multipole densities ρ" φ ρ' on scales > 2k are not affected by the renormalization of
ρ'.

Mathematically, the renormalization by integration described above cor-
responds to taking a conditional expectation. One might view this procedure as a
"block spin transformation": the "spin" φ(ρ) is replaced by a "spin" φ(ρ% where ρ is
a new charge density - in general not integer-valued - with suppρCdΩ(ρ, Jί).

However, it appears that explicit integration over the variables φ(j\ je Ω(ρ, Jί\
is an inconvenient way of carrying out the renormalization. Instead, we extract the
main contribution to the integrals described above by using electrostatic in-
equalities, in the form of complex translations [14, 5].
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4.2. Electrostatics for a Single Charge

For the proof of Theorem 4.1 we need the following lemma.

Lemma 4.2. // G(φ) is a functional independent of φ(j0) then

j eiqΦUo)G{φ)dμβ{φ) = e~βq2/8 J eiqΦUo)G{φ)dμβ{φ), (4.8)

where φ(jQ) = 1/4 Σ Φ(k)

Proof. The proof follows by explicit integration of the φ(j0) variable:

j ^ θ o ) e χ p r ^ £ ^φ(jo)-φ(k))2/2βUφ(jo)

= ̂ ^ 2 / 8 ^ O o ) ί e x p [ - Σ (Φ(Jo)-Φ(k))2/2β dφ(j0). D (4.9)
\k-jo\ = ί

-=eβqzίSeί

For the purpose of applying our methods to models other than the Coulomb
gas, e.g. the solid-on-solid model, or the Zn-models, we need a slight generalization
of Lemma 4.2 which we now describe. We consider functions Iβ(φ), (replacing the
Gaussian g-ί 1/ 2^ 2^ which satisfy the following

Condition (4.10). i) Iβ(φ) is an even, positive integrable function of φeΊSL

ii) Iβ(z) is analytic in z in a strip Σε = {C |IIϊiCI<:e} wound the real axis, for

some large constant ε. (When ε= oo, Iβ is entire.)

iiϊ) Iβ satisfies the inequality

\Iβ(φ + ia)/Iβ(φ)\^ec{β)a2, (4.10)

for all a with \a\<ε, all φeΊSλ, where c{β) is some φ- and a-independent constant
which tends to 0, as β-*co (c(β) may depend on the choice of s).

Note that by i) and ii)

Iβ(φ + id) — Iβ(φ — id). (4.11)

Remark. Clearly, the Gaussian

satisfies Condition (4.10), with ε=oo and c(β) = l/2β.
We define

β β )Iβ(φΓ1e c{β)a2. (4.12)

By Condition (4.10), iii), \\iβ(a; ήW^^l. Let dμIβ be any measure satisfying
Dobrushin-Lanford-Ruelle (DLR) equations [16] with Hamiltonian

βHΛ=- Σ \nlβ(φ(ϊ)-φ(j)), (4.13)
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and a priori measure Y[ dφ(k\ e.g.
ksΛ

(4.14)

where NΛ is the obvious normalization factor, and φ(j) = O9 for all jφΛ.

Lemma 4.3. Let Iβ satisfy Condition (4.10), let dμIβ and iβ be as above, joeΛ and
G(φ) independent of φ(j0). Then, for all a with |α |<ε

J e*φ™G(φ)dμIβ(φ) = e-*******2 J e1^ f l iβ(a I Φ(jo) ~ Φ(k))] G(φ)dμIβ(φ).
Ll*-Jol = i J

Proof Since dμIβ satisfies the DLR equations corresponding to (4.13), it suffices to
consider the integral

J = J e**™ Π h(ΦUo) ~ ΦW) dφijo)
|fe-iol = i

By Condition (4.10), we may shift the contour of integration: φ(jo)^φ(jo

with |α|<ε. This yields

\k-jo\

(4.15)

[Since \iβ(a;φ)\ g 1, the integral on the right side of (4.15) converges absolutely, by
Condition (4.10), i).] D

Remarks. 1) If c(β) is independent of ε, the factor

is minimized by setting a = qβc{β\ provided \q/Sc(β)\<ε, in which case the value at
the minimum is given by exp[ — q2/16c(β)'].

If \qβc(β)\ ̂  ε we set a = ε sign f̂. If the constant c{β) depends on the choice of ε,
c(β) = c{β, ε) - as the case may be, e.g. in the solid-on-solid (s-o-s) and the Z^-models
- the minimum is obtained by minimizing —qa-\-Ac(β, \a\)a2. In all cases we define

E(β,q)= max {qa-4c(β)a2}, (4.16)
α

and a{β, q) to be the maximizing choice for a.
2) The above proof is based on the fact that integrals of analytic functions of

finitely many variables, φ(j), can be estimated by means of complex translations of
the φiffs, [14]. This is the principle which we shall apply to renormalize multipole
densities and activities and establish Theorem 4.1. (When Iβ is the Gaussian, the
complex translation method is essentially equivalent to using electrostatic in-
equalities to estimate the integrals.)
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Next, we decompose the support of a charge density ρeJV into two disjoint
subsets Ωv Ω2 such that no two sites in Ωx are nearest neighbors. Let ρ^(j) = ρij\
for jeΩ^ ρ//) = 0, otherwise, af = l,2. Clearly ρ 1 + ρ 2 = ρ. We define

ROQU) = Q2(J)+W Σ Qi(k). (4.17)
\k-j\ = ί

By iterated application of Lemma 4.2 we have

J Π (l+K(ρ)cosφ(ρ))dμβ(φ) = $ Π (1 + K(ρ)e-βE^ cos φ(Roρ))dμβ(φ),
ρejV ρejV

(4.18)

where E0(ρ1) = lβYjρ1(J)2. By an appropriate choice of Ωί we have

E0(Qi)^iE0(ρ). (4.19)

In the proof of (4.18), (4.19) we have used the fact that for M > 1 dist(ρ, ρ') ̂  3, for
all ρ φ ρ ' in Jf, so that supp(JRoρ)nsupp(Roρ

/) = 0) for any choice of Ω (̂ρ), Ω,(ρ'),
£ = 1,2. Thus Ω^ρ), ^=1,2, can be chosen to be independent of ρ'e Jf, ρ' Φ ρ, and
such that (4.19) holds, for all ρe Jί. Identity (4.18) then follows by iteration of (4.9).

We may think of K(ρ)e~βEo{Qι\ Roρ, respectively, as the renormalization of the
bare activity and charge distribution on a scale of 2° (whence the symbol "Ro")
Note that Q(ROQ) = Q(Q), for all ρ.

Let Iβ be some function satisfying Condition (4.10). Let E(β,q) and a(β,q) be
given by (4.16), and

•i(/)) (4-20)

By a suitable choice of Ω l 5

E(β>Qι)^ΊE(β,Q) (4.21)

We define

eβ(φ9ρ) = eiM Π { Π ίX^ρ^/cW φW-φϋ))!, (4.22)

and

φ 9 ρ) = Ree/φ, ρ), sβ(φ, ρ) - lmeβ{φ9 ρ). (4.23)

By the same reasoning as above we deduce from Lemma 4.3 that

j Y\ (l+K(ρ)cosφ(ρ))dμIβ(φ) = j f| (1 + K(ρ)e~E{β'Qi)cβ(φ,ρ))dμIβ(φ), (4.24)
qeJί ρejf

and we have used that

φ 9 ρ) = l/2(^(φ, ρ) + eβ{φ9 - ρ)), (4.25)

an immediate consequence of (4.11). Let ρ be an arbitrary charge density of
compact support. Then

β ) = eir^eβ(φ,ρ), (4.26)

for any function b on Έ2 taking the constant value r on {j:dist(/, suppρ)^ 1}.
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43. The Basic Lemma Electrostatics for General Charge Densities

Next, we generalize Lemmas 4.2 and 4.3 in a way suitable for extracting the self-
energy of charged constituents of some charge density ρeJί on scales 2k,
fc= 1,2,3,.... We introduce some additional notation. For any function ρ of
compact support on Z 2 , let D(ρ) be all those sites of Ί? contained in a disc in R 2 of
radius 2d(ρ) centered at a point x(ρ) such that suppρCD(ρ), and

dist(supp ρ, dD(ρ)) = d(ρ)

[here δD(ρ) is the outer boundary of D(ρ)]. Now let us fix a particular charge
density ρ*eJf, with β(ρ*) = 0. We define

^ * = {ρ:ρG^,ρ(ρ) = 0,d(ρ)^2d(ρ*),ρ + ρ*}. (4.27)

[If Jf contains a charged element, ρc, ρcφJf*, for any choice of ρ*eJf. The factor
K(ρc)cos(φ(ρc)-\-σ(ρc)) can be renormalized to 0, after all factors indexed by
ρe Jf\{ρc} have been renormalized.] We consider a mapping, G, from Jf* into
functions of the variables {φ(j)},

with the properties
i) G(φ,ρ) only depends on the variables {φ{j):jeD(ρ)},

ii) G(φ + b9ρ) = G(φ,ρ), (4.28)
for any function b on 7L2 taking an arbitrary, constant value, r, on D(ρ).

We should think of G(φ,ρ) as the renormalized version, or "block spin
transform" of l + K(ρ)cos(φ(ρ) + σ(ρ)), ρeJf*. In the Gaussian case, i.e. Iβ(φ)
= exp[-(l/2β)</>2], dμIβ = dμβi G has the form

G(φ, ρ) = 1 + z(β, ρ) cos (φ(ρ) + σ(ρ))9 or = 1 + K{ρ) cos (φ(ρ) + σ(ρ)), (4.29)

where ρ is some linear function of ρ, and

[The motivation for the generality of our presentation lies in the circumstance that
in many interesting models, e.g. in the s-o-s and the Zn-models, Iβ is not Gaussian
and, as a consequence, the renormalized version of 1 + K(ρ) cos(φ(ρ) + σ(ρ)) is not
of the form (4.29).] We now define

FAΦ)= Π G(Φ>Q) Π [l + K(ρ)cos(φ(ρ) + σ(ρ))]. (4.30)

Let Ωv be the set of all sites contained in a disc of radius Rx in IR2 centered at some
point x l 5 with

ΩxCD{ρ*\ and suppρ*πΩ 1 Φ0. (4.31)

Let Ω2 be some other subset of D(ρ*), disjoint from Ωv such that

K ĵ/2. (4.31r)

Let C^φ.ρ*) be some bounded function only depending on {φ(j)\jeΩ^, ΐ = l,2.
We further assume that C^φ, ρ*) has the properties

*) = β£ίΓC1(φ,ρ*), (4.32)
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for any function b taking the constant value r on Ωv where q= Σ Q*(j), and

C1((/),ρ*) = C1((/),-ρ*). (4.33)

Example. In the Gaussian case,

where /and σ(ρ*) are linear functions of ρ*, supp/£Ω1? and £ /O)^ Σ Q*(j)
— q jeΩi jeΩί

Lemma 4.4. Let Jf be as in Theorem 4.1, and let a and M be the constants introduced
in Sect. 2, Theorem 2.1, (2.4) and (2.5). Lei «>f *, ρ*, i7^*, C1 ? and C 2 fee as specified
above. Let ε be the width of the strip on which Iβ satisfies Condition (4.10). Then, for
a > 3/2 and M sufficiently large.

f C^φ, ρ*)C2(φ, Q*)Fjr*dμIp(φ) = β(C l9 j8) j (ΛCJ (φ,

a) e is α numerical factor satisfying

) < min {exp[ - lnR(yq - c(β)y2d(M))-]}, (4.34)
fcΛ)

for some constants d(M) and kiRJ, with d(M)->2π-f 1, αsM->oo, fe(jR.1) = min(lnR,
K'R^la)~ί), where K only depends on M and R, and

b) RC1 is a function, defined in (4.40) below, only depending on the variables
J, with RΩ1 = {j:άist(j,x1)SRR1 + l}, with the properties

for any function b taking the constant value r on RΩlf and

(fcQ*) = (RCί){φ,-ρ*). D

Remark. RCX should be thought of as the renormalization of Cv The lemma will
enable us to renormalize l+K(ρ*)cos(φ(ρ*) + σ(ρ*)) inductively, the induction
extending over all scales of 2fc, fe = 2,3,... .

More precisely, in the proof of Theorem 4.1, Lemma 4.4 is needed to carry out
the induction step, 2k->2k+1. The purpose of the renormalization transformations
is to replace l + K(ρ*)cos(φ(ρ*) + σ(ρ*)) by a positive function of φ, close to the
identity.

Proof of Lemma 4.4. For notational simplicity we suppose that Ωι is centered at the
origin, i.e., x1=0. Let b(j) be a real-valued function on IR2 defined by

flnR, IJl^R,
btf^hnlRR^Γ1], RimSRR1 (4.35)

[0, \mRR,-

We make the following change of variables:

Φ(j)^Ψ(j) + ia(j), (4.36)

where a is a real-valued function defined in terms of b as follows:
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Let Cf be the connected components of (J D(ρ). We express each Ct as a
ρeJT*

union of D(ρ), QEStCJ^*. For each St we shall show that there is a unique ^ f eS f of
maximal diameter. We now define

( 4 3 7 )

where xf is a point of Cf chosen so that if Cf meets |/c|^jR1? α(/) = );ln.R and if Ct

meets |fc| ^RRγ a(j) = 0, for allje Ct. Otherwise we set χ ί = χ(ρ.), the center of D(ρt ).
In Appendix E we establish two properties of Q

a)
b) β
The uniqueness of ρ follows immediately from a) and (2.4). Note that since Rί

ύd(ς>*\ (2.4) together with a) imply that άvamCi<R1 hence for R^ ]/ΐ, C{ cannot

meet both |fe|^jRt and \k\^RRx hence a(j) is well defined.

The constant y is chosen such that

where ε is the width of the strip of analyticity of the function Iβ. Thus, by
Condition (4.10), the change of variables (4.36) is permitted. It follows from
Theorem 2.1, b), (2.4) and the properties a) and b) that

γ~1 max \a(j)-a{k)\ ^min(ln#, KR[lfa)-1),
\j k\ — 1

\

with A: = max(l,const(^/M)1/α), so that γ^εkiRJ'1 suffices.
Note that F\* is unaffected by the change of variables. This is seen as follows:

By property (4.28) of G(φ,ρ), ρeJf*, and definition (4.37)

*, d(ρ)>2d(ρ*). Thus

dist(ρ, ρ*) ^ Md(ρ*Y

provided M is large enough and α > l . [Note that RRλ ^diam(D(ρ*)) — d(ρ*)
5g3d(ρ*), so M > 3 suffices.] Hence a(j) = 0, for all jesuppρ, all ρeJf\Jf*, ρφρ*.
Thus, only C^φ.ρ*) and dμIβ{φ) are affected by the change of variables (4.36);

dμJβ{φ + id) = ί Π */?(αO") - Φ) Φ(j) - Φ(k)) exp[c(j8) (a(j) - a{k))2~]λdμIβ{φ),

HWΛΛI J (4.38)

as follows from (4.12) and (4.13). By (4.32) and the definition of α, (4.35), (4.37),

Cx(φ + ia, ρ*) = e-yilnR)qC1(φ, ρ*). (4.39)

We set

(RCJ ((/>, ρ*) = ί Π hW) ~ <k)' ΦW ~ ΦWΆ C i ^ ' β*)» (4 4°)
11*̂ 1 = 1 J
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and

e(Cί9 β) = e~^R)« exp[c(jB)|| Va\\ 2 ] . (4.41)

Since, by (4.12), \\ίβ(a; ήW^ύh

Next, if b is a function which is constant on RΩX then

Π ίβ(a(j)-a(k);φ(j)-φ(k) + b(j)-b(k))= Π bW) ~ <*k) φ(j) - φ (k)),
1 * - J Ί = I I Λ — J | = I

so that

(ΛC1)(0 + ft,ρ*) = β

where r is the value of b on RΩί. Finally,

(RC,) (φ, ρ*) = Π i/ϊW) - Φ) ΦO") - 0W) Cx(φ9 ρ*

= Π //-αO

if — a is chosen as a translation function when ρ* is replaced by — ρ* which is what
will be required henceforth.

It remains to prove estimate (4.34) on e(Cv β) which is really the essential part
of Lemma 4.4

By definition (4.37)

Σ Σ Σ ( 4 4 2 )
j jΦ^D(ρ) i

QSJV*

where
B, = V2 Σ (b(Xi)-b(j))2 • (4.43)

jedCi

The first term on the right side of (4.42) is bounded above by

(4.44)
j

as can be seen by comparing the finite difference gradient with the continuum

gradient, i.e. by estimating ^(P6)2(j) in terms of J (Vb)2(x)d2x.
j Ri^

By (4.43) and b), Bt is bounded above by

,)max

) [ln|x£| - lnflxj - 3d(6 i))]2

(4.45)

Note that ^ = 0, unless

R, -3d(ρi)^\xi\^RR1 + 3d(Qi) (4.46)
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otherwise Q lies entirely outside the annulus Rι^\j\^RRi hence b{x^ = b(j),

In order to bound the sum of the Bt we first show that d(ρ^ is small compared
to Rv By (2.4)

Mda < dist(ρί9 ρ*), with d = min[φ;), φ * ) ] .

By a simple, geometric argument and (4.46)

distfe, ρ*) S R, + W + d(Qί) ^ 2\xt\ + 4 φ •).

Using the upper bound in (4.46) we thus get

Mda < 2\xt\ + 4d{Qi) ^ 2 ^ ^ ! + Sd{Qi)

S 2RRX + 16d(ρ*) g 24d(ρ*), (4.47)

since d(ρ)^2d(ρ*), for all ρeJί*, and

Thus, for α ̂  1 and M large enough, d = d(ρf). We then get from (4.47)

M - 4
- ^ - d ( ρ i ) β < W , (4.48)

and

^ ^ (4.49)

From (4.48) and (4.46) we conclude that for M large enough, α > 1, and for all ρf for
which β φO,

(4.50)

for some <5 = <5(M,α) which tends to 0, as M->oo. Moreover, (4.48) yields

i (4.51)

for M large enough.
Next, let Jf£ be the class of all those ρ e«yΓ* satisfying (4.50) and whose

diameters lie in the interval

1. (4.52)

Note that, by inequality (4.49),

We now insert inequality (4.51) into the upper bound (4.45) for B{. This yields

Σ^gconsty2 Σj(Qt)3xΓ2

>3 < f c + 1 ) V \χΓ2. (4.53)
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The first inequality in (4.47) gives

M—4 M—4
\Xi\^-y-d(QiY^ck, with q Ξ - y - 2 α f c , for all QieJT*. (4.54)

Applying part b) of Theorem 2.1, (2.4), once more we see that

\x(ρ1)-x(ρ2)\^άist(ρvρ2)-d(ρ1)-d(ρ2)

>(M-4)2α / c, for α > l ,

for arbitrary ρ t and ρ 2 in Jf£ with ρ t + ρ 2 . This inequality and a simple, geometric
consideration show that the number of elements ρ^Jf^ for which

is bounded by Kλr, for some constant Kλ independent of ρt, α, and M, provided M
is sufficiently large. By (4.54) and (4.50) the range of values of r is given by

where

m1 = ck

1 max((l - δ)Rv ck)

m2 = ck~
1 max((l + δ)RRv ck).

Recalling the definition (4.54) of ck, we therefore obtain

Σ \Xι\-2^κlC;
2 Σ r-1

Combining this inequality with (4.53) we get

Hence, for a > 3/2 and M sufficiently large

00

2 ( 3 ^ 2 α ) f t (4.55)
0

(4.56)

for some finite constant K{M) which tends to 0, as M—>oo. If we now combine
expression (4.41) for e(Cvβ) with estimates (4.42), (4.44), and (4.56) we obtain
inequality (4.34) of Lemma 4.4, under the condition that α>3/2. This completes
the proof. D

4.4. Proof of Theorem 4.1

The proof is based on an induction in the size of the diameters of the multipole
densities ρeJf. We define the diameter of the charged multipole to be infinite.
[This is permitted by Theorem 2.1, c).]
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Let

The induction hypothesis is

J Π
QeJί

where z(β,ρ) satisfies (4.6) and ρ has properties a) and b) stated in Theorem 4.1.
The step p = 1 -»p = 2 follows from Lemma 4.2. Now let ρ* e Jί be such that 2P

<d{ρ*)S2p+1. (If there is no such element we proceed to the next scale.) In order
to establish Theorem 4.1, we need only show

K(Q) j eiφ^F^(φ)dμβ(φ) = z(ρ, β) J eiφ^F^(φ)dμβ(φ), (4.57)

where i v* is given by (4.30), with Iβ(φ) = exp[-{ί/2β)φ2], and E l o c(ρ*,^0

The proof of (4.57) again proceeds by induction. First, we apply (4.18) and
(4.19). It then suffices to show

ElOG{ρ*9jr)^E0(ρ*)^D £ |^ ' (ρ*) | . (4.58)
fc=l

Let fe0 be the smallest integer such that ^ ( ρ * ) is non-empty. Let se^0(Q*) Recall,
ρ*/s is charged and isolated in the sense of (3.3). We suppose, to simplify notation,
that the square is centered at the origin. Let 5 = 2se^ f c o + 1(ρ*). [Often s is also in
5^0+xίρ*), but this need not always be so.] We define

and

g = R0(ρ*)-f.

In (4.32), (4.33), set

C1(φ,ρ*) = e ^ ω , and C2(φ,ρ*) = eiφiβK

Circumscribe s by a disc Ωx of radius JRX = |/2(2ko -1) . In (4.31), (4.31') and Lemma
4.4, set R = γl. When Iβ(φ) - exp[ - {\/2β)φ2\ ε = oo and c((β) = ί/2β, in Condition
(4.10). Furthermore d(M) = 2(π + l), for M large enough, in inequality (4.34),
Lemma 4.4. Hence

e(Cvβ) = e-(ln2)iβl4{π+1))ίl\ (4.59)

with \q\ ^min(^, 1 - ξ'\ when ρ* = ρ see Condition (2.28), and \q\ ^ 1, for all ρ* φρ.
When Cί(φ,ρ*) = eίφif) is renormalized, it is replaced by (jRC^ί^ρ*), defined

in (4.40), which in the Gaussian case is given by

for some function / depending linearly on /, with supp/£se<9^0 + 1(ρ*).
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This procedure clearly assigns every se^0(ρ*) a factor e βDq2, with
) = (ln2)/4(π + l), and

and if se5^'o+1(ρ*), the procedure can be iterated, since supp/gs.
Thus (4.57) follows by induction, and the proof of the theorem is complete. D
The following Fig. 1 shows the geometric situation.

2 P - 1

Fig. 1

5. Kosterlitz-Thouless Transition in the Two-Dimensional Coulomb Gas and Villain
Model

In this section we first complete our proofs of Theorems A and B (Sect. 1.3) for the
hard core Coulomb gas. We then show how to extend our methods to general two-
dimensional Coulomb gases with a priori charge distribution dλ(q) satisfying
Condition λ, Sect. 1.2. As corollaries we obtain proofs of Theorems B-D (Sect. 1.4)
for the Villain model and the dual discrete Gaussian model. The general ideas
underlying our proofs are the ones described in Sect. 1.5, all principal tools have
been constructed in Sects. 2-4.

5.1. The Hard Core Coulomb Gas

As in Sects. 2-4, we start by considering the simplest system exhibiting a
Kosterlitz-Thouless transition, the two-dimensional hard core Coulomb (lattice)
gas. For this gas

λ(±ί) = z/2, otherwise,

and

= (l+zcosφ). (5.1)
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Let

O ^ / U ^ O ^ J M ) (5.2)

be the Gibbs state of the hard core gas in a finite volume Λ, with free (or periodic)

b.c. at dΛ, in the sine-Gordon representation.

The first main result is

Theorem 5.1. Let f be a real valued function such that

Σ/(/) = 0. (5.3)

For each δ>0 there is a β0 independent of A such that for all β>β0 and O^z

. D (5.4)

Remark. To prove Theorem A we first note that the right and left side of (5.4) are
analytic functions in ε and using the φ-^ — φ symmetry of < > (β, z) we obtain

2 2

l+8

ϊ<φ(f)2>(β,z) + O(ε*m-~(l-δ)β<fA-'fy + O(ε*). (5.5)

Subtracting 1 from both sides, dividing by ε2 and letting ε-^0 one obtains
Theorem A.

In order to prove (5.4), we consider

φ). (5.6)
JeΛ

We define

σβ(J) = εβΣC(J-WV), (5-7)

where C is the Green's function of A σβ is well defined since /(0) = 0 and
s u p p / £ A In (5.6) we now change variables,

Φ(j)-+φ(j) + σβ(j), for all j . (5.8)

Under this change of variables,

7/>>dμβ(φ), (5.10)

. 0), (5-11)

where by (5.7)

(l/βKφ,Aσβ}=-εφ(f),

and

(ίββ)<σfi, Δσp)=- ε2β/2(f, ( - Δ)~ V>
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Thus

ZA{εf) = eiε2βί2)<f-<-Λ)-lf>

•f Π ίl+zcos(φ(j) + σβ(jmdμβ(Φ). (5.12)

One sees that the "observable", eεφ{f\ can be eliminated by the change of
variables (5.8).

Next, we apply Theorem 2.1, [replacing 1 + z cosφ(j) by 1 + z cos φ'(j), with φ'(j)

= φ(j) + σ β(jY\> t o obtain

Σ cΛ Π ll+K(ρ)cos(φ(ρ) + σβ(ρ))-]dμβ(φ)), (5.13)

see Sect. 2.1, (2.3)-(2.8). To all terms on the right side of (5.13) we then apply
Theorem 4.1, i.e.

Z ^ K ) = ί Π ίί+K(ρ)cos(φ(ρ) + σβ(ρmdμβ(φ)

= 1 Π ίί+z(β,ρ)cos(φ(ρ) + σβ(ρmdμβ(φ), (5.14)
ρejV

with

z(j8, ρ) g exp[ - (c^ - b) In φ ) ] , (5.15)

for some constants c > 0 and b<co, provided β>b/c [see (4.4), (4.5)].
We now choose β so large that z(β,ρ)<l, for all ρeJί. Then

0 < 1 + z(β9 ρ) cos(φ(ρ) + σβ(ρ))

= exp\n\-l + z(β,ρ)cos(φ(ρ) + σβ(ρ))~]. (5.16)

We define

X = z(β,ρ)cosφ(ρ),

and

Y = z(β, ρ) {cos φ(ρ) (cos σ (̂ρ) - 1) - sin φ(ρ) sin σ^ρ)} .

By a trigonometric identity, (5.16) and Taylor's theorem with remainder,

1 + z(β, ρ) cos(φ{ρ) + σβ(ρ)) = exp In [1 +X + 7]

-( l+X)exp[7/( l+X)-( l/2)y 2 /( l4-X + θ 7 ) 2 ] , (5.17)

for some 0e(0,1). Let zί(ρ) = z(β,ρ) {l-z(β,ρ)y\ and [ x ] 2 π the value of xmod2π
between — π and π.

Then

z(ft ρ) cosφ(ρ) (cosσ/ρ) - 1) (1 +X)~ι ^ - (Zl(ρ)/2) [ σ / ρ ) ] ^ . (5.18)

We set

\ (5.19)
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and note that, for z(β,ρ)<ί, S(ρ;φ) is bounded and is an odd function of φ.
Finally, if β is so large that z(β, ρ) < 1/4, for all ρeJί,

Y2/(l +X + ΘY)2<z2{ρ) lσβ(ρ)¥2π, (5.20)

where

We now insert (5.17)-(5.20) into (5.14). This yields the lower bound

{

•j Π es^H+z(β,ρ)coSφ(ρndμβ(Φ)
ρeJί

(5-21)

with Z J Ξ Z ^ O ) . Recalling that S(ρ;φ) is odd in φ, one sees that the second

inequality in (5.21) follows from Jensen's inequality and the evenness in φ of the

measure fj [1 +z(β, ρ) cos φ(ρ)~]dμβ{φ) which by (5.15) is positive for β sufficiently

large.
In order to prove a lower bound on the functional ZΛ{εf), it now suffices to

exhibit a lower bound on

exp/-(l/2) Σ (^(ρ) +
I

which is independent of the ensemble Jf, i.e. uniform in J
This is done as follows: Since all charge densities ρeJ^ are neutral,

(5-22)

where pμe {j:ρ(j) = 1}, nμe {j:ρ(j) = — 1}, and there are Λ0(ρ)/2 terms in the sum on
the right side of (5.22). Clearly

σβ(Pμ)-°β(nμ)= Σ
m = 0

j o = ρμJ; = nμ9 for some Λ and \jm-jm+1\ = 1, for all m= 1,. . . ,/- 1. Since pμ

and nμ belong to suppρ, <?^2d(ρ). We thus get

\ ̂  max |(Fσ,)(/)| 2d(ρ)

for some jQeD(ρ). (Here P is the finite difference gradient.) Thus

\σβ{ρ)\£A0(ρ)d{ρ)\{Vσβ)(jQ)\. (5.23)
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By the definitions of zx and z2, we see that for β sufficiently large there is a K such
that

2(ρ)g const z(β,ρ)

for all ρeJί and all JfeϊF. Thus for β^> 1

/ρ/

Note that

Σ K^O'ρ)!2^)""1 = Σ 2~k Σ

In the last sum we have used the fact that j ρ are distinct by (2.4). We therefore obtain

exp{-(l/2) Σ (zM + ̂ (Q))^β(QΏ22π}^e-'δ/2^v^K (5.24)
QeJf

By definition of σβ, see (5.7),

WVσ^ε^XfΛ-Δ)-1/}. (5.25)

Now, Eqs. (5.6), (5.13), and (5.14) yield

so that, using (5.21), (5.24), and (5.25), we get

Z>/)^exp[(εV2)(l-<5)/K/,(-^Γ7>] Σ < V ^ (5.26)

? Σ c^Z^-^Z^, so that

which completes the proof. •

Remarks. If we set f(j) = δj0 — δjx we get from Theorem 5.1

) - φ(x))2}Λ {β, z)^2(l~δ) j8[C(0,0) - C(0, x)]

for large |x|, for all β>β(δ,z). This proves Theorem A, Sect. 1.3.
By polarization, inequality (5.4), Theorem 5.1, extends to complex-valued

functions, / Thus, in each translation-invariant thermodynamic limit, we obtain
from (5.4) by Fourier transformation

\ for /cφO small,
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for all β>β(δ,z). As explained in Sect. 1.3, this implies that the Stillinger-Lovett
sum rule is violated for sufficiently large β.

Next, we turn to our proof of Theorem B, Sect. 1.3. We propose to show that
the fractional charge two-point correlation function Gξ(0,x), with 0 < ξ < l ,
satisfies the upper bound

Gξ{0, x) ̂  const (1 + \x\Γδ{β ξ), (5.27)

for some constant δ(β,ξ) which is positive for all β>β(ξ,z), and β(ξ,z) is a finite
constant, provided ξe(091) and z^consteεβ, with ε<l/16. The analogous lower
bound (1.24) has been proven in [5, Sect. 3], and holds for all β and z^O.

From (1.22), Sect. 1.3, we recall that, in a finite region Λ9

= (cos[ξ(φ(0) - φ(x)mΛ (β, z), (5.28)

by the φ-> — φ symmetry of <( — }Λ (β, z).
By Theorem 2.3, Sect. 2.5,

Gξ(0, x) = Z^1YJcjr§ (cos φ(ξρ0) + Kiρ^) cos φ(ξρ0 + ρ^))

• Y\{l+K(ρ)cosφ(ρ))dμβ(φ), (5.29)

where ρ o O l ^ ^ Ό " " ^ - ^ ^s obvious that ρ 0 satisfies Condition (2.28), Sect. 2.5.
Thus, for 0 < ξ < l , we can apply Theorem 4.1, see also (4.57), and conclude

Gξ(0, x) = Z ; 1 X Cjr I (z(β9 ξρ0) cos φ(ξρ0) + z{β9 ξρ0 + ρ^)

cosφ(£ρ0-f ρ '̂)) Π {l+z(β9ρ)cosφ(ρ))dμβ(φ). (5.30)

By (4.2) and (4.4)

z(/?, ρ) S exp[ - (cj8 - b) l n φ ) ] , (5.31)

if z gconsteε/?, with ε< 1/16, and β>b/c, for some constants e > 0 and fo<oo
(depending on z). Furthermore,

] , (5.32)

for some positive constant c < l/2π.

Let ?7 = min(ξ, 1 —ξ), and let c and ί? be the same constants as in (5.31). The
bounds on z(/?, ξρ0 + ρ x ) are

^ ) ] , (5.33)
for β>b/cη2.

The proof of (5.32) is really a simpler variant of the one of Lemma 4.4. The
bound (5.33), proven in Theorem 4.1, see (4.58), is quite crude. In the form given
here, it requires β>0(η~2) which is a somewhat awkward condition. It can be
improved by going through the renormalization of cosφ(ξρ0 + ρ^) more carefully;
see Lemma 4.4. However, our methods only prove that

for some constant c">0, if β>0(η~2).
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By (5.31),

z(β,ρ)<ί, for all ρ&Jί and all Jf,

if β > b/c, so that

Y\(ί+z(β,ρ)cosφ(ρ))dμβ(Φ)

is a positive measure. Since z(β, ξρ0) and z(β, ξρ0 + ρ^) are positive, for all β, ξ and
z > 0, we therefore obtain from (5.30) and from the trivial inequality \zcosα| S z, for
z>0,

0, x) £

l

S max [z(j8, ξρ0) + z(β, ξρ0 + ρ "̂)]

•ZΛ'ΣCA Π (l+z(i5,e)cos0©)(i^), (5.34)
Jf ρeJf

provided β>b/c. By Corollary 2.4, Sect. 2.5, and Theorem 4.1

Z Λ = Σ^ί(l+i^)cos</>(ρ^)) Π a + K(ρ)cosφ(ρ))dμβ(φ)
Jf ρeJf

= Σ^ί(l+z(jβ,ρ >")cosφ(^) Π (ί+z(β,ρ)cosφ(ρj)dμβ(φ),
Jf ρeJf

where the renormalized charge densities ρ, and the renormalized activities, z(β, ρ),
are identical to the ones in Eqs. (5.30), for all ρeJί. This last assertion follows from
the simple fact that, by Theorem 2.3 and Corollary 2.4, the renormalization
transformation of \\ (l+K(ρ)cosφ(ρ)) may be chosen to be independent of ξ.

ρeJf

Since the characteristic functional, (i.e. the Fourier transform) of dμβ(φ) is positive,

$(l+z(β,ρr)cosφ(ρ~*)) Π (ί+z(β,ρ)cosφ(ρ))dμp(ψ)
QEJf

l

ρeJf

for all Jf. Thus, using (5.34),

Gζ(0, x) g max [z(β, ξρ0) + z(β, ξρ0

β
ρeJf

= max lz(β, ξρQ) + z(β, ξρ0 + ρ^)]. (5.35)
Jί

Finally, we note that

d(ξρ0 + ρ^) ̂  d(ξρ0) = d(ρ0) = \x\,
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for 0<ξ<ί. It follows therefore from (5.32) and (5.33) that for β>b/cη2

Gξ{0, x) < 2 exp [ - {cη2β - b) In |χ|]

which yields (5.27).

5.2. General Coulomb Gases, Villain Model and Discrete Gaussian

We now extend the arguments in Sect. 5.1 to general Coulomb gases with charge
distributions dλ{q) satisfying Condition λ, Sect. 1.2. As we already noticed in Sect.
1.4, the dual of the Villain model, identical to the discrete Gaussian, is included in
that class. For this model we prove Theorems C, D stated in Sect. 1.4. Our first task
is to extend Theorem 2.1 to the general class of Coulomb gases characterized by
Condition λ, Sect. 1.2. Thus we consider a general a priori distribution dλ(q) with
suppλQΈ and λ(q) = λ( — q). It is not necessary to assume that λ is a positive
measure, but the growth condition

\λ(q)\ S conste ( α + ε / ^ 2 , β < 1/16, (5.36)

is essential. Fourier transformation yields
00

λ(φ) = l+ £ 2λ(q)cos(qφ).

We now choose a sequence, {ζq}™=1, of positive numbers with

! £ , = !, and i q - ^ c o n s t e ^ 2 , (5.37)

for some finite, positive α'. (An explicit choice of {ζq} is made later.) We then get

h Σ (5.38)

where z(q) = 2ζ~1λ(q). Hence

Π λ(ΦiJ)) ύ Σ CteΛ Π P + <<lj) costa/K/))], (5-39)
jeΛ qΛ jeΛ

with

iΛ = {<lj}jeΛ> C(qΛ)= Ylζqj'
jeΛ

For each term on the right side of (5.39) the following result closely related to
Theorem 2.1 holds.

Theorem 5.2. There exists a family ^qΛ, of ensembles, Jf, such that

Π [1 + <qj) cos(qjφUm = Σ <rΓK 1 + K(β)cos<Kc)).
jeΛ jTe^qA ς>eJf '

where c/

jr>0i and ρ is a charge density with the property that Q(J)= iiq^for all jeΛ,
for all ^ t ^ ^ and each J^e^qΛ has properties a)-c) stated in Theorem 2.1, for all
qΛ. Moreover,

*(<?)= Π 2(|ρ(/)|)es<*\
jesuppρ

n(ρ)

with S(ρ)^CA{ρ), A{ρ)= Σ Λk(ρ), where C, n(ρ) and Ak(ρ) are as in Theorem 2.1.
k=0
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Remark. The proof of Theorem 5.2 is identical to the one of Theorem 2.1, except
that, in the last step of the recursion (2.21), (2.22), zAo{Q) must be replaced by the
factor Y\ z(\ρ(j)\). From (5.39) and Theorem 5.2 we now obtain

jesuppρ

Σ c^U(
jeΛ qΛ Jre^qΛ ρeJί

= Σ c^Y\{\+K{ρ)Cosφ{ρ)), (5.40)

with

^-U^^/^y4 for

It is clear that Theorem 2.3 and Corollary 2.4 extend to the more general
situation considered here, as well.

Next, we rephrase the results of Sects. 3 and 4 for the models studied here. By
Theorem 4.1 and its proof, see Sect. 4.4,

= J Π [1 + *(A Q) oos(φ(ρ) + σ(ρ))]dμβ(φ), (5.41)

where

z(β, ρ) = K(ρ) exp [ - βEl0C{ρ, JT)Λ , (5.42)

and by inequality (4.58), Sect. 4.4,

00

E]oc(ρ,^mi/2)E0(ρ) + D £ \^{Q)\, (5.43)
k= 1

with

E0(ρ) = (1/8) ̂  ρ(j)2 (5.44)
j

[see (4.17)-(4.19), Sect. 4.2]. By Theorem 5.1,

In Sect. 3 we have shown that

A(ρ) g EA0(ρ) + F J |^ ' (ρ) | , (5.45)

for some finite constants £ and F\ see inequality (3.17). Thus

\z(β, Q)\ ^ Π b(lβϋ)l)l exp [ - (c']8 - 6') ρ(j)2l
j

-cxpl-{cβ-b)A{ρ)l, (5.46)

for some constants d > 0, b' < oo, c > 0 and ft < oo, provided /? > max(ί?7c', b/c). The
constant c'<l/16 can be chosen arbitrarily close to 1/16. If

\λ{q)\^ const exp [(α + εjff)g2], with ε<l/16, (5.47)
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we conclude that

Me(/)l)l exp C - ic'β - V) ρθ")2] ̂  exp [ - (c"β- b") ρ(/)2] ,

for some c" >Q and b'\ by choosing for example ζq = const e~δq2 and optimizing in
δ.

We have now proven

Theorem 5.3. Ifdλ satisfies (5.47), then there exists a finite constant β{λ) such that for
all β^β{λ)

|z(j8, ρ)| Sexp[-(c" j8- b") ||ρHI] e x p [ - ( c β - fc) A(ρ)] ,

wΛerβ || ρ || 2= Σ^(/)2»' fln^ ^l(ρ)^ const In rf(ρ).
j

This result also applies to the situation described in Theorem 2.3 and Corollary
2.4, (i.e. in the presence of fractional charges), and yields upper bounds on z(β, ξρ0)
and z(jS, ξρ0 + ρ^): It suffices to replace c by cη2, η = min(ξ, 1 — ξ) see (5.30)—(5.33).
In conclusion, the proofs of Theorems A and B and the lower bound (5.5) on
(eεφ(f))φ(β,λ) for the general Coulomb gases considered here are completely
analogous to the case of the hard core gas, Sect. 5.1, if one uses Theorems 5.2 and
5.3. [The only estimate that requires some additional thought in the proof of (5.5)
is (5.23) which we reconsider below.]

From (1.22) and (1.38) we see that Theorem D for the Villain model is a special
case of Theorem B for a general Coulomb gas. We are thus left with proving
Theorem C for the Villain model. Recall from Sect. 1.4 that

(5-48)

where

Dt = ̂ pίβ~1ξφ(d2n-(2βΓ1ξ2\xn, (5.49)

with

fl, l g j ^ x , j2 = 0
fX{Jl'J2) |o , otherwise,

and <3α, α = 1, 2, is the αth component of the finite difference gradient [see (1.36) and
(1.37) in Sect. 1.4]. In particular,

<S0 .S,) 08) = <β*<°o-eχ>> {β) = < D ^ > * (β). (5.50)

We propose to prove

Theorem 5.4. For the Villain model there exists some finite constant β0 such that for

β>βo

ΦOxy (β) £ const exp [ - (ξ2f2πβ') ln(l + |x|)], ξeZ,

for some positive β' = β'(β)-+co, as β^-oo.

Remarks. 1. Theorem C, Sect. 1.4, is the special case of Theorem 5.4 in which ξ = 1.
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2. If λ is the a priori distribution of a general Coulomb gas satisfying the
growth condition (5.36) then there exists some finite β(λ) such that for all β> β(λ)

p ( ξ 2 / 2 ^ ) l n ( l + W)], (5.51)

for ξ e 2πZ, for some β' = β'(β, λ)>0.
(The modified condition on ξ, ξe2πΈ, corresponds to the rescaling φ-+φf

= 2πφ which relates the dual of the Villain model to a Coulomb gas; see
Sect. 1.4.) Clearly Theorem 5.4 is a special case of (5.51).

Proof o/(5.51). By (5.40) and the definition of <->$(jM)

φ%xy+A 08, λ)=z-11 DUΦ) Π λ(Φ(j)Wβ(Φ)
jeA

= ZΆλ Σ cJ,β
ξ

0x(φ)Y[(^K{ρ)cosφ(ρ))dμβ(φ). (5.52)
Jίe&Λ qeJί

In each term on the right side of (5.52) we now make the following real change of
variables:

Φ(j)ΦU) + σ(j), } .....
where \ (5.53)

σ{j) = ξ(C*d2fx) (/) = <*£ C(j-k) {d2f
x)(k),

k >

and fx has been defined in (5.49). Using identities (5.9)—(5.11) and the definition
(5.49) of DQX we see that, after the change of variables (5.53), DQX is cancelled, and
we get

ZA<Hx>1ϊ<β>λ) = eGix)Σcjr! Π ll + K(ρ)cos(φ(ρ) + σ(Q))-]dμp(φ)9 (5.54)

where eG{x) represents the spin wave or Gaussian contribution to (DOX}A (A
{ = (eiξ{θo~θχ)yΛ(β)9 in the case of the Villain model). More explicitly

By definition of fx and σ,

-<σ,Δσ> = ξ\d2f\C*δ2Γ}

=ξ\f\d*d2c*fxy
=ξ2<fxjx>-ξ2<dιf

x,c*dj*y

= ξ2\x\-2ξ2{C(0)-C(x)},

where we have used that

(dJx)(j) = δj0-δjx. (5.55)

Thus

G(x)= -β-ιξ\C{<S)-C{x)]π-{ξη2πβ)\κ\x\, (5.56)
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for |x| large. Next, we apply the renormalization transformation (5.41) and obtain

ZΛ<*)=! Π

QSJV

By Theorem 5.3, there exists some finite β^λ) such that

max \z(β, ρ)| < 1/4, for all Jίe^Λ, (5.57)

provided β>β1(λ). As in (5.21) we then obtain the lower bound

for β>β1{λ), where

and

z2(ρ) = (l + π)|z(jβ,ρ)l2(l -4|z(jβ, ρ)|)~2 .

The proof of (5.58) is identical to the one of (5.21), see (5.16)-(5.20). We are thus left

with estimating Σ (z1(ρ) + z2(ρ)) [σ(ρ)]|π. For this purpose we rewrite σ(ρ),

using the neutrality of ρ, as in (5.22):

Φ)=Σ^W-Φ^ ( 5 5 9 )
μ

for some sites pμ and nμ in suppρ. There are i l |ρ | | i= |^ |ρθ) l terms in the sum
j

on the right side of (5.59). We now claim that

σ(Pμ) - Φμ)= Σ KO') (3χ σ) 0) + ε2θ) (δjσ) 0)}

i ίCOVO/'-x))]} , (5.60)

where / is the neighbor of j in the positive 1-direction, εκ(j) = O, ± 1 ,
supp εκ Q £>(ρ), for K = 1,2, and

Σ{lεi0')l + lε20')l} =2d(ρ). (5.61)

The second equation in (5.60) follows from the identities

(5.62)

and we have used (5.55).
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Combining (5.60) and (5.61) yields

\lσ(Pμ)-σ(nμ)-]2π\<2d(ρ)ξ .max |
jesuppiί?

We choose j ^ e s u p p ^ so that

\V(C(jρ)-C(jρ-x))\= max \V{C(j)-C{j-x))\.

jesuppiρ

Thus

\ίΦ)']2n\^\\β\\ΛQ)ξ\V(C(je)-C{je-x))\. (5.63)

By Theorem 5.3 and (5.63) there exists a finite β(λ,δ) such that for all β>β{λ,δ)

^ξ2(δ/β)\V(C(jρ)-C(jQ-x)\\ (5.64)

for all ρeJf and all Jfe<FA.
Thus

Σ Wβ)+^(β))[σte)]L^ί2(δ/j8)iiF(c(.)-c(.-x))iι|

= ξ2(δ/β)2lC(0)-C(x)-].

By (5.58) we therefore have

ZAσ) ^ exp [ - β ~ x <f <5(C(0) - C(x))]Z^

which, together with (5.54) and (5.56) completes the proof of (5.51), for δ < 1 and
β > β(λ, δ). This completes our analysis of lattice Coulomb gases, the Villain model
and the discrete Gaussian.

6. Kosterlitz-Thouless Transition in the Two-Dimensional Plane Rotator

In this section we complete our analysis of the Kosterlitz-Thouless transition in
the two-dimensional plane rotator model. In particular we prove Theorem C, Sect.
1.4. Definitions and notation are as in Sect. 1.4. Our purpose is to prove that there
exists some finite β0 such that, for all β > βφ

<eiξ(θ0-θx)y {β) = φ0χy {β)^const e χ p £ _ ( ξ 2 / 2 π β ' ) i n ( i + M ) ] 9 (6.1)

OΦξeZ, for some β' = β'(β)>0 tending to oo, as β-+oo. It is known from a
standard high temperature expansion that for sufficiently small β

(eίξiθ°-θχ)y(β)ScoΏStQxpl-m(β)\x\~], (6.2)

for some m(β)>0.
Thus, the lower bound (6.1) establishes the existence of a transition in this

model. For ξ = l
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see (1.50) and (1.58), Sect. 1.4. Therefore Theorem C, Sect. 1.4, is really a special
case of (6.1).

Proof of (6.1). Our proof is closely related to the one given for the Villain model in
Sect. 5.2; see Theorem 5.4. The first step consists in passing to the dual model and
rewriting it as a perturbation of a zero-mass measure by "irrelevant (for large β)
operators", For this purpose we introduce a function Iβ(φ) which is complex
analytic and non-zero in the strip \lmφ\ ^ β/2 and satisfies the following conditions
[see also Condition (4.10), Sect. 4.2]:

a) For integer n

Iβ{n)=~(eβcosθeinθdθ.

(b) Iβ(φ) is even and positive on the real axis and integrable.

(c) \

where

(d)

for m = l , 2 , and \a\^β/2, uniformly in
The existence of such a function is proven in Appendix B.
Let A be some finite, rectangular array of sites. Let dμIβ(φ) be a measure with

the following properties:

βφ) = 0, (6.3)

for all real functions f on A with £ /(/") Φ 0.
j

ii) Let σ be a complex function on A with HImσH^^/J/2. Then

dμIβ(Φ)

where

ieΛ

Remark. A measure dμIβ(φ) with properties i) and ii) can be obtained from the
family of measures

Π Iβ(Φ®-Φ(J))Ildφ(j)9
\ί-j\=l jeΩ

ieΩ

with 0(/) = O, for jφΩ, in the limit Ω/Έ2, by means of a weak compactness
argument. In this case we shall speak of free b.c. at dΛ. Alternatively, we may
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choose dμIβ{φ) to be given by the measure dμIβtΛ{φ), but with periodic b.c. imposed
at dA. The Gibbs state in the region A (with free or periodic b.c. at dA) of the model
dual to the plane rotator model is given by the measure

^ (6.5)
jeΛ [qeZ J

We recall that for small β the Gibbs state of the plane rotator model in the
thermodynamic limit is independent of b.c. In order to establish the existence of a
Kosterlitz-Thouless transition we are therefore free to impose some b.c. at dA
which are technically convenient for large β. The Fourier transformation of the
measure (6.5) with free or periodic b.c. at dA is a Gibbs state of the rotator model
with b.c. that are technically convenient for large β. More natural would be
Dirίchlet (i.e. zero) b.c. at dA which our methods permit, in principle, to analyze,
too (see Appendix D).

Next, we recall from Sect. 1.4 that, for x = (n,0),

where ψ = {ψvψ2\ with ip1 =0 and

fξ, for j = {i,θχi^i^ΐ
2 [0, otherwise.

By (6.1) and (6.6)

Clearly,

Σ eι2κqφ^\^β(Vφ,ψ)dμIβ(φ). (6.7)
jeΛ iq = — oo J

Σ ei2πqφij) = 1 + 2 X cos(2πqφ(j)).
q= — oo q = 1

oo

Let {(g}̂ = t be a sequence of positive numbers such that £ ζβ = 1. We set z(2π#)

= 2C;1. Then
oo oo

1 + 2 Σ cos(2πqφ)= Σ Cί
q = l ί = l

Hence, by Theorem 5.2 and (5.40), Sect. 5.2

1 + 2 Σcos(2π#(/)) = Σ c^Π(l+^to)cos0(ρ)),c^>O, (6.Π

where each J^eϊFχ satisfies properties a)-c) stated in Theorem 2.1 and

\ Π

with S(ρ) as in Theorems 2.1 and 5.2; finally ρ(j)e2πZ, for all j .
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Thus

φ). (6.9)

By property a), Theorem 2.1, and (6.3) we may assume that each ρeJί is neutral,
i.e. Σρ(/) = 0, for all Λ ^ e ^ .

As in the Villain model [see (5.53), Sect. 5.2] we shall make the change of
variables

where > (6.10)
σ(j) = ξ(C*d2f

x)(j)J

fx is the function defined in (5.49), and C is the Green's function of -{d\ + d2

2).
By Eq. (5.55),

ξ-1(d1σ)(j) = d2(C'(j)-C(j-x)) (6.11)

and

x)). (6.12)

We now define

θ 2 O ) ^ 1 ( C Ό ) C Ό x ) ) , [ (6.13)
and

In each term on the right side of (6.9) we now make the change of variables (6.10).
By (6.4), (6.6), and (6.12)

σ), ψ)Jβ(Vφ, Vσ)dμIβ{φ)

= .fβ{Vφ,θ)dμIβ{φ), (6.14)

since the term — ξfx in d2σ cancels ψ; see (6.11)—(6.13) and (6.6).
Thus

<eiίieo-ex)yΛiβ) = z-i £ CjrZ'Ja), (6.15)

where

Z'A°)= ί Π U+K(ρ)cos(φ(ρ) + σ(ρ))-] Jβ(Vφ, θ)dμIβ(φ). (6.16)
qeJί

Our main task is now to prove a lower bound on Z ^ (σ): For all β>β0, for some
finite β0

Z>(σ)^exp[-(1/2^X0, θ > ] Z ^ 0 ) , (6.17)

for some positive β'{β) which tends to + oo when β-^> oo. In order to prove (6.17) we
must first renormalize the factors 1 + K(ρ) cos(φ(ρ) -f σ(ρ)) under the integral on the
right side of (6.16), using the techniques of Sect. 4. The result is the following
variant of Theorem 4.1.
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Theorem 6.1. Let Iβ(φ) be a function satisfying properties (a) through (d), let dμIβ be a
measure satisfying (6.3) and (6.4). Finally let Jί be an ensemble of charge densities
with the properties described in Theorems 2.1 and 5.2. Then

Z'M = l Π H+z(β,Q)Fuβ(ρ;Vφ + θ)sm{φ{ρ) + σ(ρ))
qeJί

+ z(β,ρ)F2tβ(ρ Vφ + θ)cos(φ(ρ) + σ(ρ))] Jβ(Vφ + θ)dμίβ(φ),

where

z(β,ρ) = K(ρ)exp[-L(β)Ei0C(ρ)-],

as in (3.3), Sect. 3 (see also (4.58), Sect. 4). Here L(β) is some function ofβ
which tends to oo, as β-* GO (one may choose L(β)^ const In β). Moreover, the
functionals Fitβ{ρ; •) have the following properties:

(1) F t (ρ Vφ) depends only on

where D(ρ) is the disc defined at the beginning of Sect. 4.3, i.e. D(ρ)D suppρ,
dist(suppρ, dD{ρ)) = d(ρ).

(2) Fx is odd, F2 is even in the variables Vφ(j).

(3) HF^ρ; )lloo = l> for real φ.
(4) For ί= 1,2, for arbitrary real φ and for m— 1,2,

Sconstd(ρ)2m max |0(/)[m,

provided β is sufficiently large. Here \θ\= ]/&\-\-Q\ D

Proo/ The structure of the proof of Theorem 6.1 is identical to the one of Theorem
4.1 which was given in Sect. 4.4. The renormalization transformation is carried out
by induction in the size of ρ and in the scale size, 2e, *f = 0,1,2,..., of the charged
constituents of ρ. On scale 2° the renormalization is obtained by applying Lemma
4.3 and (4.22)-(4.24)/The renormalization on scales 2\ ^ 1, is carried out with the
help of Lemma 4.4, Sect. 4.3. In order to verify properties (2) and (4) of Ff(ρ •) we
shall need the explicit expression for the renormalization RC 1 of the functional
CΊ(0,ρ) given in Eq. (4.40). Equations (4.15), (4.22), (4.24), Sect. 4.2, and Eqs. (4.39),
(4.40), Sect. 4.3, show that F1 and F2 have the following general form:

α = l , 2

+ ( - ! ) " . Π ifi(-daa(j);d^(J)), (6.18)

α = l , 2

where n=l,2 and

\)Iβ{φT1e'Mlβ\ (6.19)



580 J. Frδhlich and T. Spencer

see (4.12), Sect. 4.2, and property (c) of Iβ. The "translation function" a is of the
form

where £ labels the scale size and m labels elements of 5 '̂(ρ). [The functions α O m

come from applying Lemma 4.3, and a^m is the translation function introduced in
the renormalization of the mth square in <9̂ (ρ), using Lemma 4.4.] Clearly a£m

depends on ρ, suppα^m£D(ρ), for all *?, m, and

supp Pα Λ m n supp Fα,,>M, = (3 (6.20)

unless (/, m) = (/', m')
Properties (l)-(3) stated in Theorem 6.1 follow from these properties of a and

from Eq. (6.18) by taking into account that

[see (4.12), Sect. 4.2].
Our lower bound on Eloc(ρ) and L(β) is proven as follows: The renormalization

on scale 2° contributes an amount constlnβHρl^ to L{β)Eίoc(ρ). This follows from
(4.16), (4.20), (4.21), and (4.24) by choosing αo?w(j) = const sign ρ(m) (ln/?)5im, for
some sufficiently small constant. By property (c) of the function Iβ9 this is an

00

allowed choice for α0. The term D £ |^(ρ) | in £ loc(ρ) is obtained by inductive

renormalization, as in Theorem 4.1, each induction step being carried out with the
help of Lemma 4.4. By (6.20) and property (c) of Iβ the translation functions ae m

can be chosen as in (4.37), Sect. 4.3, with γ = const Inβ9 for some sufficiently small
constant. We set R= ]/l in (4.34) and (4.35), as in the proof of Theorem 4.1. For
/^O(lπjδ) we can in fact choose y = constβ [see (4.34)]. It follows now from (4.34)
that L{β)^ const In β. [By improving the inequality in property (c) of Iβ one might
be able to show that L(β) grows like a small power of /?.] This completes the proof
of the lower bounds on £ loc(ρ) and L(β). The bound on z(β, ρ) follows from the
bound on L(β)Eloc(ρ) and Theorem 5.2.

Thus, we are left with proving property (4) of F (ρ; •)• We make use of the
explicit expressions for F{ and F2 given in Eq. (6.18) and of property (d) of Iβ. We
first note that for each jeD(ρ) and τc=l,2,

γχ iβ(dκa(j) dκφ(j) + λθκ(j)) = e ~ g{d^))lβ A (Iβ(r(λ) + ίdκa(j))/Iβ(r(λ)))

= θκ(j) ί(\oglβ)' (r(λ) + ίdκa(j)) - (\oglβy (Kλ))] ψκa{j) dκφ(j) + λθκ(j)), (6.22)

where r(λ) = dκφ(j) + λθκ(j) which is real. Now from properties (c) and (d) of Iβ we
see that the absolute value of the expression in (6.22) is bounded by

1

κ 0 ' ) | . (6.23)

Similarly the second derivative of iβ(dκa(j);dκφ(j)-\-λθκ(j)) in λ is bounded in
absolute value by

6Cβ~ 1[exp2π|δκα(/)|] \θκ(j)\2 (6-24)
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By (6.18), (6.22), and (6.23) the first derivative of F1 or F2 in λ produces no more
than constd(ρ)2 terms, each term bounded by

Cβ~ι max ([exp2π|3lcα(/)|] \θκ(j)\)-
jeD(ρ)

The bound on the second derivatives is obtained by similar arguments.
The proof of (4) is completed by requiring that

jβ-1exp2π|dκα(j)|^ const. (6.25)

Thanks to property (6.20), (6.25) holds if

/Γ 1 exp2π|δ κ α Λ m (j)l^ const,

for all £ and m, i.e.

This bound is fulfilled by the functions a^ m used in the proof of the lower bound
on L(β)EloM •

Remark. As in Theorem 5.3, Sect. 5.2, one convinces oneself that Theorem 6.1
yields the following bound on z(β, ρ):

0 < z(β, ρ) < exp[ - {c"Uβ) - b") \\ρ|| J exp( - (cL(β) - b) Λ(ρ)] , (6.26)

for some positive constants c", c and finite b" and b, provided L(β) is large enough,
i.e. for sufficiently large β.

We now complete our proof of the basic lower bound on <elξ(0o~0χ)>(j8), 0Φ
ξeΈ, stated in (6.1). Our arguments are very similar to the ones used in the proof of
Theorem 5.4, Sect. 5.2, concerning the Villain model. We recall identity (6.15), i.e.

where Z ^ (σ) is given in Theorem 6.1. In order to establish (6.1) it suffices to show
that

Zχ<τ) ̂  const exp [ - (2j8') ~11| θ \\ | ] Z ^ , (6.27)

for some positive β\ provided β is large enough [see (6.17)]. For, since

= 2ξ2{C(0)-C(x)}

« ζ2(n)~x In|x|, for large

and

A

inequality (6.27) yields (6.1).

We prove (6.27) by using Theorem 6.1 and Jensen's inequality, as in the proof
of Theorem 5.1, (5.12)-(5.21).
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First we consider the factor Jβ(Vφ + θ) under the integral expressing Z'(σ). By
property (d) of lβ(φ) and Taylor's theorem with remainder,

\(ΓR\ J
h(dκΦ(J) + ΘM Iβ(dκΦ(J)y ^exp / {dκφ(j))θκ(j)-Cβ~ \θκ(j)) , (6.28)

L\V J
where Γβ(φ) =(——/„) (φ). By property (b) of Iβ, ϊβΠ

ι is an odd function of φ. Thus,

\oφ J
by (6.4), (6.13), and (6.14)

φ)-Cβ'1\\θ\\2

2], (6.29)

where Ho is an odd function of φ. The factor exp[ — Cβ'1 \\θ\\l~] is the analogue of
the spin wave contribution, expG(x), in the Villain model; see (5.54), (5.56). We
define

+ F2<β{ρ Vφ + θ) cos(φ(ρ) + [σ(ρ)] 2 π ) . (6.30)

Thanks to the periodicity of sin and cos we now have

Z'(σ)^exp[-C/Γ 1 II011 Π ί Π V+M,Q)Fβ^Q\Vφ)-\eP«»dμh{φ), (6.31)
QeJί

and we emphasize that the renormalized activites, z{β, ρ), are independent of σ and
θ. As in (5.17), Sect. 5.1, we write

tβ ], (6.32)

where

(6.33)

By (6.26) we may choose β so large that z(/?,ρ)<l/8. Then, by Theorem 6.1, (3)

( 1 + x Γ ^ ,
and (6.34)

( l + X + ί y ) - 1 < 2 , for all ίe(0,l).

Taylor's theorem with remainder then gives

Y j Y Y
z(β,ρ)Fθ -1L . J..JΊ (6-35)

ί+X 2\l+X + tY

for some ίe(0,1). Abbreviating

Fλθ,β(ρ;Vφ)-F0<β(ρ,Vφ),

by Fλ(φ) we obtain from Taylor's theorem

for some λ0e(0,1).
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We now define
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(6.36)

By Theorem 6.1, (2) and the definition of X and Fλ, Hx ρ is an odd function of φ.
Next, let

/ϊ, x(Φ) -*(r/i ; , (6.37)

and

|JΪ2J=
φ,λo,t

Then, by (6.31) and (6.32)-(6.37),

•ί Π {ίί+z(β,ρ)FOtβ(ρ;Vφ)-]eH^we-^^}eH''^dμIβ(φ). (6.38)
ρeJT

Since, by Theorem 6.1, (2), for large β

is positive and even in φ9 whereas H0(φ) and J] Hx Q(φ) are real-valued, odd

functions of φ, Jensen's inequality yields ρejr

qeJf
(6-39)

where

= ί Π
ρe.V

We proceed to proving a bound on \H2>ρ\. We use Theorem 6.1, (4) and the
following equations for [σ(ρ)]2π,

(6.40)

and there are no more than l/2||(2π)~1ρ||1 terms on the right side of (6.40).
Furthermore

[2π(σ(pμ)-σ(nμ))]2 π= \Σ2φ1{j)θί{j (6.41)

where / is some nearest neighbor of j , and εκ(j) = 0, ± 1, supp εκ Q D(ρ), for K = 1,2,
and

Σ (6.42)

The proof of these equations is identical to the one of Eqs. (5.59), (5.60), Sect. 5.2
[replacing C by C, σ by 2πσ and taking into account the definition (6.13) of 0],
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If we recall the definition (6.37) of H2 ρ and (6.33) and use Theorem 6.1, (4) and
(6.40)-(6.42) we conclude

\H2J^constz(β,ρ)d(Q)*U2πΓ1Q\\2

1 max \θ(j)\\ (6.43)
jeD(ρ)

provided β is so large that

[see (6.34)]. It now suffices to note that

max |β(/) l 2 ^constφ) 2 max \θ(j)\2.
jeD(ρ) jesuppρ

It now follows from the upper bound (6.26) on z(β, ρ) that

\H2J^c{β) max \θ(j)\\ (6.44)
jesuppρ

where c(β) tends to 0, as j8-+oo (like some power of 1/β). Since suppρnsuppρ' = 0,
for two distinct charge densities ρ and ρ' in Jf

Σ max
ρeJr jesuppρ

hence

provided β is sufficiently large.
This completes the proof of inequality (6.27), with 2β' = (Cβ~1+c(β))~ί. Since

the basic lower bound (6.1) on (eίξ{θo~θχ))Λ(β) follows from (6.27) - as explained -
the proof of existence of a Kosterlitz-Thouless transition in the rotator model is
complete.

7. Massless Phase in Two-Dimensional TLn Models and Roughening Transition
in the Solid-on-Solid Model

In this section we first establish the existence of a massless, intermediate phase in
the two-dimensional ^-models. (We prove Theorem E, Sect. 1.4.) We then exhibit
a Kosterlitz-Thouless, or roughening transition for the solid-on-solid model,
defined in (1.21) (see Theorem A, Sect. 1.3).

7.1. TheΈn-Models

Let dμβ(θ) denote the unique Gibbs measure of the two-dimensional rotator model
in the'thermodynamic limit. The Gibbs measure, dμ{β]

Λ(Θ) of the 2^-model in a
finite domain AcΊL2 with "free" boundary conditions is given in terms of dμβ(θ) by
the equation

dμ^M^^ίr' Π (l+2 Σ cos(«n0;)W(0), (7.1)
jeΛ \ q=ί I
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where Z ( n ) is the usual partition function, and

GO \ /n-ί \

1 + 2 X cos{qnθ))dθ=[ £ δ{nθ-2πk)\dθ (7.2)
q=\ I \fc=O /

is the Dirac measure with support on {θ:θ = 2πk/n, fc = 0,1, ...,n—1}.
Let < >5}(j8) denote the expectation with respect to dμ$Λ{θ); see Sect. 1.4,

(1.38). The thermodynamic limit, < >(n)(β), (as Λ/Z2) exists by Ginibre's in-
equalities [11].

Our main result for the ̂ -models is

Theorem 7.1. For all ξ = 1,..., n — 1,
(1) ( e ^ 0 0 - ^ ) ^ (β) ̂  ( e ^ 0 " ^ ) (β).
(2) Given β and qe (0,1), £/ιer exists some n0 = no(β, q)<co such that for all n^n0

and all ξ with min(ξ/n, 1 — ξ/n) ̂  q

for some β" = β"(β, n, q) < oo. Moreover, no(β, q)-> oo when jβ-> oo or q-*0. Π

Remarks. 1. It suffices to prove Theorem 7.1 for ieiξ{βo'θχ)yί(β) for arbitrary, finite
domains A. The states < >^} (/?) are the limits of the states < >̂ ° (/?,/*), defined in
Sect. 1.4, as ft->oo. By Ginibre's inequality, <^ ( θ o~ θ χ )>y(ft^) is monotone
increasing in /I and h. This proves part (1) of Theorem 7.1 and shows that Theorem
7.1 holds for all h, 0<hS oo, assuming it holds for h=co.

2. Let βc be the critical temperature of the plane rotator model. For β > βc

for some /?' = /?'(/?) (->oo, as /?->oo), as shown in Sect. 6. Thus, for β>βc>

(eiξiθo~θχ)}in) {β)^const{l + \x\y[ξ2l2πβΊ. (7.3)

Furthermore, for n ̂  no{β, q) and min(ξ/n, 1 — ξ/n) ̂  g,

< ^ ( θ o - **>>£> ̂  const(l + |x|) - [ ξ 2 / 2 π / ?" ], (7.4)

for some finite β". Let no(β)= min no{β,q). [We shall see that no(/J)

= no(Aw~1Cw/2]) ] Inequalities (7.3) and (7.4) thus prove that, for β>βc and
n^no(β), the inverse correlation length (mass gap), m(β,n), of the ZΠ-model
vanishes, i.e. there is a massless, intermediate phase for βe\_^c,"β^ where §c^βc

and βc = βc(n) (>βc, for n large enough) is such that no(βc)^n. For β>/?c, the TLn-
symmetry of the model is spontaneously broken. That βc is finite is seen by a
standard Peierls argument.

3. By methods closely related to the ones used in Sect. 6 one can show that for
each β there exists some positive integer nλ(β) such that for all n^n^β)

<Dξ

0xy
n)(β)^comt(l + \x\Γξ2β"Ί2\ (7.5)

for some finite β'" = β'"(β, n). Moreover n^β^co, as β-^oo. Here Dξ

Ox is the
disorder operator of the TLn model, defined as in (1.31). The proof of (7.5) is almost
identical to the one of inequality (6.1), after replacing φ by θ, Iβ(φ) by expβcos(θ)



586 J. Frohlich and T. Spencer

and άμ1 (φ) by dμβ(θ) in the formulas of Sect. 6. The necessary estimates will follow
from our subsequent analysis.

4. Instead of studying the TLn models which correspond to the rotator model, we
could also study TLn models obtained from the Villain model by constraining θj to
Έn, for all j . These models are self-dual, and a partial result concerning the
existence of a massless, intermediate phase for n large enough has previously been
obtained in [15]. Our methods permit us to establish Theorem 7.1 and (7.5) for
these models, as well.

We now turn to the proof of Theorem 7.1, (2). The basic ideas are
straightforward variants of the ones developed in Sect. 5.1, in the proof of
(5.27), i.e. of Theorem B, Sect. 1.2, for the hard core Coulomb gas, and of the ones
in Sect. 6.

First, we choose a sequence of positive numbers, ζ such that
00

X, ζq = l and 0<z(q) = 2ζq

 1^e

const^t (76)

As in Sect. 5.2, (5.39) we have

with

Π (l + 2 Σ cosiqnθβ) = Σ C(qΛ) Π (1 + M) cos(«y^,)), (7.7)
jeΛ \ q=l j qΛ jeΛ

^ ^ W Λ ΠCz
jeΛ

We now rename nθj = φ{j\ e

iξiθ°-θχ) = eiξ'mo)~φix)\ with ξ' = ξ/n. Clearly

<etwo -θ^ {β) = < c o s φ{ξQo)yn) {β);

with ρ 0 = δj0 — δjx. In our new notations it is obvious that we may apply Theorem
2.3, Sect. 2.5, which yields the identity

cosφ(ξ'ρ0) Π [1 +z(qj)cos(qjφ(jm
JεΛ

S Σ c'Λcosφiξ'QonKiQ^cosφiξ'ρo + ρ")) fl {ί + K{ρ)cosφ{ρ))9

and, by summing over all configurations, qΛ,

cosφ(ξ'ρ0) 1 + 2 Σ cos (#0))
j

(7.8)

where each JfetFA(ρ0) corresponds to some configuration qΛ and some
Jf'e^qΛ{ρ0\ and ci/r = ζ(gil)c>, [see also Sect. 5.2, (5.39) and Theorem 5.2].

The estimates on the entropies of multipoles, i.e., the bare activities K(ρ\ are as
in Theorem 2.1 and 2.3, except that the factor zΛoiQ) must be replaced by

Π *(le(/)l)
jesuppρ

The remainder of the proof of Theorem 7.1, (2) is very similar to the proof of
the analogous result (5.27), Sect. 5.1, for the hard core Coulomb gas, but the
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renormalization transformation in the present model is somewhat more com-
plicated. It is similar to the one used in Sect. 6, Theorem 6.1. Again, the feature of
the model which permits us to apply the renormalization method of Sect. 4 is the
analyticity of the underlying measure, here dμβ{θ) = dμβ{φ/n\ in φ. We shall follow
closely the notations of Sect. 6. Let

Iβ(φ) = expβ cos(fl) = expβ cos(φ/n).

This function has the following properties:
(b) ϊj(φ) is even and positive on the interval [ — πn,πή].
(c) \Iβ(φ + ia)/ϊβ(φ)\Sem,φel-πn,πή],

where

const/π-

constβe lal/n, n^\a\< oo.

(d) -loglβ(φ + ia) χ-m^a\ln

(7.9)

for m = l,2 and |α|<oo, uniformly in φ e [ —πn, πn].

Properties (b)-(d) follow by inspection from the formula

ϊβ(φ + id) = ϊβ{φ) exp{β cos(φ/n){cosh(a/n) — 1)} exp{iβ sin(φ/n) smh(a/n)},

see (7.9).

We now note that, with θ = φ/n,

o-</>(/))Πdφd),
j |

ieΩ

φ(j)e\_ — πn, πn], i.e. the properties of the measure dμjβ Ω(φ) are very similar to the
ones of dμIβΩ(φ) considered in Sect. 6. Let dμiβ(φ) = dμβ(θ) denote the limiting
measure, as Ω/Z2. We now prove

Theorem 7.2. Given β< oo and qe(0,1), there exists some finite no(β, q) such that for
all n^no{β,q) and all ξ, with min(ξ/n, ί — ξ/n)^q,

where

[1 + z(β, Q)Fβ(ρ (7.9)
qejf

; Vφ)cosφ(ρ),Fβ(ρ; Vφ) = Fuβ(ρ; Vφ)s

and the functions Flίβ and F2iβ have properties (1) through (3) listed in Theorem 6.1,
in particular | |F f^(ρ OIL = ̂

Moreover,

z(β, ρ) = K(ρ) exp [ - L(β, π)£loc(ρ)] (7.10)



588 J. Frohlich and T. Spencer

with

EUQ^CWQ^+D
fc=l

for some positive constants C and D (with notations as in Theorem 6.1). The
function L(β, n) satisfies

L(β,n)^Kn-Lβ (7.11)

for some positive constants K and L.
The estimates on z(β,ξ'ρ0) and z(/J, ξ'ρ0 + ρ^) are identical, but with L(β,ή)

replaced by

Lq(β,n)^Kqn-Lβ. Q (7.12)

The Proof of Theorem 7.2 is very similar to the one of Theorem 4.1, see
Sect. 4.4. It follows inductively from Lemmas 4.3 and 4.4. By property (c) of Iβ, the
parameter ε in Condition (4.10), Sect. 4.2, and Lemmas 4.3, 4.4 can be chosen to be
e.g., ε = n, and the constant c(β) in Condition (4.10) satisfies, in the present model,

c(β)ύβ/n2. (7.13)

Lemma 4.4 can now be used to show that each square in <9 '̂(ρ), k= 1,2,3,...,
contributes an amount of at least

constn —const'c(β)n2^cxn — c2-β (7.14)

for some positive constants cι and c2, to L(β, ή)El0C(ρ). (The inductive proof follows
the one of Theorem 4.1.)

From Lemma 4.3 it follows that there is a contribution of at least

Σ {cin-c2β)\ρ(j)\
jesuppρ

to L(β, n)ElQC(ρ) coming from the renormalization of cosφ(ρ) on scale 2°. From our
estimates on K(ρ), see Theorems 2.1, 2.3, (7.6) and (7.10) follows, as usual, the upper
bound

z(β9 ρ) £ exp [ - (c'LOS, n) - V) \\ ρ \\ J exp [ - (cL(β, n) - b)A(ρ)] , (7.15)

provided L(j8, n) ̂ max(b/c, b'/c'). See Theorem 5.3, Sect. 5.2, and Sect. 3. If ρ = ξ'ρ0,
or = ξ'ρ0 + ρ^ the function L{β9 ή) must be replaced by Lq(β, ή) [since squares in
c9̂ (ρ) cover constituents of ρ whose total charge is only known to be ^ q, rather
than ^ 1 . See Theorem 2.3]. This completes the outline of the proof of
Theorem 7.2. •

We now turn to our proof of part (2) of Theorem 7.1. Since exp β cos θ is of
positive type for all β>0, the measure dμβ(θ) = dμj (φ) is of positive type in φ = nθ.
This property together with Theorem 7.2 permits us to complete the proof of
Theorem 7.1, (2) by repeating the arguments described in Sect. 5.1, between (5.30)
and (5.35) (upper bound on the fractional charge two-point correlation in the hard
core Coulomb gas). It suffices to choose n so large, depending on β and q, that
c'LSβ, n)-bf>0 and cLJβ, ή) - b > 0, and notice that L(/?, n) ̂  Uβ, n). •
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Remarks. 1. Because of properties (b) through (d) of ϊβ and the behavior of the
function L(β, n\ see (7.11), the proof of the lower bound (7.5) on the expectation of
the disorder operator is almost identical to the proof of the analogous estimate
(6.1) in the rotator model.

2. Our basic identity (7.9) stated in Theorem 7.2 exhibits a remarkable
invariance property: It follows from the properties of the renormalization
transformation outlined in the proof of Theorem 7.2 that the effective activity
z(j85 ρ) vanishes, unless the total charge, Q(ρ), of a multipole density ρ vanishes.
Thus, from the explicit expression for the renormalized functions Fβ(ρ Vφ) it is
easily seen that they are all invariant under the substitution

i.e.,

where α is an arbitrary angle. This U(l)-invariance is obviously shared by dμ^ (φ).
The same [/(l)-invariance appears in the renormalized expression for {Dξ

Ox}^n)(β)
[see (6.15), (6.16) and Theorem 6.1, and replace dμIβ by dμϊβ\. Thus, in the
massless, intermediate phase of the 2ζn-models, an effective, continuous symmetry
group, [/(I), appears, and suitably chosen correlations behave indeed like corre-
sponding correlations in the low-temperature phase of the rotator model. This
behavior contrasts the one for β<βc (unbroken Zn-symmetry) or β>βc (broken
Zπ-symmetry), where connected correlations have exponential fall-off.

In renormalization group language, a fixed point of our renormalization
transformations, for §c < β < βc, has a continuous symmetry group, (7(1), not found
in the original model.

Similar phenomena are observed in the three- and four-dimensional TLn lattice
gauge theories, where one analyzes the expectations of the Wilson loop and the
disorder operator. An analysis of these theories will appear in [17].

7.2. The Solίd-on-Solid Model

This final section contains the proof that the order parameter, φ, in the two-
dimensional solid-on-solid model has, at high temperatures, logarithmically
divergent fluctuations. The main result is a variant of Theorem 5.1, and its proof
consists of a combination of the arguments in the proof of Theorem 5.1 and in
Sect. 6, involving just one additional, technical idea which we discuss below.

As in Sects. 5, 6 for the dual Villain and rotator models, we start by expressing
the solid-on-solid model as a perturbation of a zero-mass measure by operators
which, for small β, are "irrelevant". The construction of the zero-mass measure
requires looking for a function lβ(φ) which is analytic and nonzero in the strip
\lmφ\<constβ'1/3 and fulfills the following four conditions [see also Condition
(4.10), Sect. 4.2, Sect. 6, conditions (a)-(d), Sect. 7.1 conditions (b)-(d)]:

(a) Iβ{φ = n) = e~βW, for all neZ.
(b) Ie is even and real on the real axis.



590 J. Frδhlich and T. Spencer

(c) \lβ(φ + ίa)/lβ(φ)\Seβl/3g{a\ for all a with |α|^const7 1 / 3

(d)
dm

^ Cβ1/3g(a) for some constant C independent of φ

and β, all a with |α|^const'jβ 1 / 3, and m = l , 2 . Here g(a) is as in Sect. 6 and
Appendix B. The existence of a function, lβ, with properties (a) through (d) is
established in Appendix C.

We now construct an "unperturbed, zero-mass" measure, dμlβ(φ), as a vague
limit of the measures

dμlβ,Ω(Φ) = ̂ Ω

1 Π lβ{φ{ϊ)-φ(j))Y\dφ{k),
\i-j\ = l . keΩ

ieΩ

when Ω/Z2 [_φ(j) = O, ϊoτ jφΩ~].

The measure dμlβ can be shown to have properties (6.3) and (6.4) (with 1̂
replacing the function Iβ used in Sect. 6).

The equilibrium measure of the s-o-s model in a finite region ΛcZ2 with free
boundary conditions at dΛ is given by

[ cos(2πqφ(j))]dμlp(φ). (7.16)

Let < >°(β) denote the expectation in this measure. (The results and proofs which
follow could be extended to Dirichlet and periodic b.c, as well.) Our main result
for the s-o-s model is

Theorem 7.3. For β sufficiently small,

/eε[φ(0)-φix)]\0ϊβ\>e(ε2lβ')ln{l+\x\) (7.17)

where β' = β'(β) tends to 0, as β tends to 0. •

Remarks. 1) By expanding to second order in s one deduces from Theorem 7.3

Y ° i + \χ\), (7.18)

if β is small enough.
2) It follows from a standard low-temperature (Peierls contour) expansion that

<[</>(0) — φ(xj]2y2iβ) is bounded uniformly in A and in xeA, provided β is large.
This and (7.18) establish the existence of a roughening transition, as β is varied.

3) The interest in the s-o-s model is motivated by a heuristic argument
suggesting that φ(-) behaves like the graph of some type of interface in a three-
dimensional Ising model (with "plus-minus" b.c.) [10] or the random surface
bounded by a planar Wilson loop in a lattice gauge theory [18].

Outline of Proof of Theorem 7.3. The first step in the proof consists again in
Γ oo I

applying Theorem 2.1 to [ ] 1 + 2 ^ cos(2πqφ(j))\. As in Sects. 5 and 6 this
j e Λ l q = l J

yields

Γ oo

JΊ l-f2 Σ cos(2πί/</>(/)) = Σ CJV 0 (1 + ^ ( ^ ) c o s Φto))' (7.19)
jeΛ I q=l Jfe&Λ ρejV
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where each charge density ρ takes values in 2πZ,

Π z(\ρ(j)\)\eS{ρ\
[jesuppρ J

with S as in Theorem 2.1 and

and cjr>0, for all Jίe^Λ. Thus

where

Z^(ε;0,x) = ί e β W O > - ^ Π (l + X(ρ)cosφ(ρ))rfμI/3((/)). (7.21)
ρeJί

Next, we make the change of variables

where

σβ(j) = σ(β)ε[C(j) - C(j - *)] , (7.22)

σ(β) is some function of β to be chosen later, and C is the Green's function of the
finite difference Laplacian; see Sect. 5, (5.7), (5.8). We then find

Z > 0, x) = exp [_2ε2 σ(β)(C(0) - C(x))]Z>(^), (7.23)

where

β β β φ ) , (7.24)

and

Λ C 7 ^ + σβ^ = dlhp(Φ + σβ)/dμϊβ{Φ)

The derivation of (7.24) is as in Sect. 5, (5.12) and Sect. 6, (6.15) and (6.16).
Next, we carry out the renormalization of Z[/Γ(σjg) by applying Lemmas 4.3 and

4.4 inductively, as in the proof of Theorem 4.1, Sect. 4.4. All renormalization
transformations are done by means of complex translations,

Φ(j)^ψ(j) + iaeJ(j), (7.25)

where f labels charged constituents of a charge density ρe Jί on all possible length
scales. As remarked in Sect. 6, the supports of the functions VaQ j are pairwise
disjoint, and \aQ Jj)\ S const'β~1/3, for all j , qeJί and /. Moreover they are chosen
to be independent of the observable, e

ε[φi0)~φix)\ i.e. of ε and σβ. We set

By Lemmas 4.3 and 4.4

suppαρgD(ρ), (7.26)
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where D{ρ) is the disk of radius at most 2d(ρ) + l containing suppρ which was
introduced in Sect. 4.

Let JfOiXQJf be the sub-ensemble of all those charge densities, ρ, with the
property that

D(ρ)n{O,x}Φ0. (7.27)

After renormalization, corresponding to the change of variables (7.25), e

ε[φ{0)~φ{x)]

is replaced by

e*Φ(0)-Φ(χ)i J-] ^ « e ? (728)

where ocQ = ε(aβ(0)-ae(x)). For, by (7.27), aρ(0) = aQ(x) = 0, for all ρejr\jVQtX. After
having carried out all the renormalization transformations we obtain

Π [1 + z(β, ρ)Fβ(ρ V(φ + σβ))]*β(V(φ + σβ))dμlβ(φ), (7.29)
QeJί\Jro,x

where

Fβiε(ρ; Vφ) = ίFuβ!ε(ρ; Vφ)smφ(ρ) + F2>β>ε(ρ; Vφ)cosφ(ρ),

Fβ = Fβ,O> Fn,β — Fn,β,Q>>

and
2FnJJρ,Vφ)^e^ f\ iβ{dκae{j);dκφ{j))

JeD(ρ)
κ = l , 2

+ (-!)"<,-** Π iP(-dκaQ{j);dκφ{j))
jeD(ρ)
κ = 1,2

and the functions F x β ε and F 2 ^ ε have the same properties (1) through (4),
Theorem 6.1, as the ones introduced for the rotator model in Sect. 6, in particular

ll^.βto ^ l l c o ^ i . (7 3°)

Moreover, Theorem 6.1 holds for Z'jr(σβ) if β is replaced by β~ι. Since the
functions aQ are independent of ε and σβ, Fβ(ρ ) and z(β9 ρ) are independent of ε, as
well. Finally, one may show that, for β small enough,

0<z(β,ρ)<Qχp[-(cfXo(β)-bff)\\ρ\\ί-]oxpl-(cLo(β)-b)Λ(ρ^, (7.31)

where L0{β) is some function which tends to oo, as β tends to 0 \_L0(β) behaves like
the function L{β~% defined in Sect. 6].

Now notice that, by (7.31),

ρejr\jro,

is positive, and by (7.30)

(7.32)
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We define

β β l β φ ) . (7.33)

From (7.20H7.24), (7.29), and (7.32), (7.33) we conclude that

*nyA(β) > e X p [2ε2σ(i?)(C(0) - C(x))]

Σ cj Π ϊ = ^ ) W (7-34)

Thus, it remains to exhibit uniform (in Jf, A, and xeΛ) lower bounds on the last
two factors in {•} on the right hand side of (7.34).

Since ε[φ(O) - φ(x)] is odd in φ, while

is even [see property (b) of 1 ]̂, the arguments used in the proof of the lower bound
(6.27) on Z'jr(σ) in the rotator model, see Sect. 6, can be repeated in the present
situation and yield

Zjy(σp) ^ const exp {- (εσ(β))2c(β)LC(0) - C(x)] }Zjr, (7.35)

with Zjr = ZJ/(σβ = 0)9 for β small enough [so that c"Lo(β)-b">0, cLo(β)-b>0,
see (7.31), and z{β; ρ) < 1/4, for all ρ]. Here c{β) is some function of β which tends to
0, as β-^0. For details, see Sects. 6 and 5.1, (5.13) through (5.26).

We now choose

(7.36)

In order to complete the proof we must finally prove a lower bound on

κ(Λ>,J= Π \~iί'ρ\- (7 37)
Clearly,

n— 1 {ρejVo^x'.

By Theorem 2.1, (2.4)

and by (7.31)

Γ*β), (7.38)

if 2n^d(ρ)<2n+\ for some number p(β) which tends to oo, as β tends to 0. This
follows from the divergence of L0{β), as β-+0, and the standard lower bound,
^ const In d(ρ).
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Thus, for β small enough,

(7.39)

uniformly in Jίe^A, A, and xeA. Combination of (7.34) through (7.39) yields

>o ( j 8 ) ^ c o n s t κ e x p ί £ 2 c { β ) ~ i ( c ( 0 ) _ c ( χ ) ) ] Z ; x { Y c / L x } . (7.40)

Since the product of the last two factors on the right hand side of (7.40) is = 1, the
proof of Theorem 7.3 is now complete, with β' = c(β)-^0, as β-+0.

Appendix A. The Duality Transformation

In this appendix we verify relation (1.37) for a system in a finite region A with
boundary conditions at dA which are invariant under the symmetry transfor-
mation θj-+θj + a, 0rgα^2π, of the Hamilton function. This is no loss of
generality, since in two dimensions all infinite volume equilibrium states can be
obtained from such b.c. Included in that class of boundary conditions are the ones
corresponding to what we called "free b.c." in the dual models which were imposed
in Sects. 5 and 6.

For simplicity, we only consider rotator models in a rectangular box A, with
free (ΞΞO Dirichlet) b.c. imposed at dA, but as noted at the end, our arguments
extend to a general class of b.c. in a straightforward manner. With each ordered
nearest neighbor pair <zj>, i and; in AJ = i + eί or j = i + e2, where ex and e2 are
the lattice basis vectors, we associate a function /fj-(0) which is smooth and periodic
in 0, with period 2π. We then consider the generalized partition function

M Π fifβ-θ)Y\dθk. (A.1)
(i,j>eΛ keΛ

Next, we represent each ft by its Fourier series

Hθi - ΘJ) = Σ fM e χ p V"tβi ~ θfi •
ΠijeΈ

Here the nf/s are integer-valued bond variables, and we adopt the convention that

We abbreviate ij by b, b denoting the oriented bond corresponding to <zj> and
substitute the Fourier series of ftj into (A.I). This yields

Z.= Σ Π ΛK)ί exp [i Σ nb(θt - θj)] Π dθk
{nb} bcΛ [ b \keΛ

{nb} bcΛ keΛ

= Σ ΓUK)
{nb:δn = 0} bcΛ

The symbol δn, the divergence of n, is defined by

(5«)k= Σ nki>
i:\i-k\ = l

with i and k in A.
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Now we claim that there is a 1 — 1, onto correspondence between bond
variables {n:δn = 0} and variables {mp}, where {mp} is a family of integer-valued
variables indexed by the plaquettes (oriented unit squares) p C A, oriented clock-
wise. This correspondence is given by

nij = nb = rnp-mp>, (A3)

where p and p' are neighboring plaquettes which have b = <z, j ) as a common bond.
Moreover, p is the plaquette whose orientation agrees with the one of b9 whereas
the orientation of p' agrees with the one of —b. If p is not contained in Λ, we set
mp = 0.

We recall that the plaquettes p form the sites of the dual lattice Λ*^Λ
+ (1/2,1/2). By (A.2) and (A.3) we have

ZΛ= Σ Ylfb(mp-mp')> P<^p'=b
{mp} bcΛ

= Σ Π fM-mj), (A.4)
{nip} i,jeΛ*

where <zj) is a pair of nearest neighbors in A* and b the bond in A dual to <(/J).
The condition mj = 0,jφΛt corresponds to Dirichlet boundary conditions at dΛ*.

In order to obtain the partition function of the Villain or rotator model one
sets

where

) = »β(0) or rβ(θ).

Next, we choose a path ω from 0 to x. The unnormalized correlation
ZΛ(eiξ{θo~θχ)}βΛ is obtained by setting

with xtj = 1 if (ij) is a pair of nearest neighbors contained in ω, oriented according
to ω, and &,• = (), otherwise. Here we are using the simple fact that, with this
definition of χip

Let Xij = h (— 1) if (ijy, (<j, z» is an ordered nearest neighbor pair in A* dual to a
bond in the path ω, i.e. crossing ω, and χi} = 0, otherwise. Then

Thus (1.37) follows.
Finally we verify that the correspondence given by (A.3) is one to one and onto.

Let b be a bond belonging to dA, such that b = pr\p' with pcA and p'§.A. Since
mp,=0, (A3) shows that mp= ±nb. The plus (minus) sign is chosen if the
orientation of p agrees (disagrees) with that of b. Proceeding inductively (A.3)
allows us to successively determine mp, given {nb}, provided that the equations are
consistent. Consider a site je/L, there are four bonds and four plaquettes
containing j as shown below.
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Assume e.g. that mpι has already been determined, and nbί, ...,nb4 are given.
Then by (A.3)

(A.5)

We must check that there is a consistent choice for mp 3, i.e. that

or, using (A.5),

i.e.

This completes the construction of {mp}. Clearly, {mp} is unique, given {nb} and
the b.c. mp = 0, for all p§.Λ. Conversely, given any such {mp}, it determines a
unique {nb}, by setting

nb = mp-mpf,

with p, p7, and b as shown above. It is obvious that <5n = 0.
We conclude this section with a comment on general boundary conditions

invariant under the symmetry transformation βj-^βj + oί. Let

Let ρ{θdΛ) be a function of {θj'.jedΛ} with the property that

)9 (A.6)

where α7 = α = const, for aΆjedΛ. Let ρ denote the Fourier transform of ρ. By (A.6),

S(tyW) = 0, (A.7)
unless
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We now consider the generalized partition function

<ί,j)cΛ_ keΛ

Given jedΛ, let b(j) be the bond containing j and a site ieΛ. Fourier transfor-
mation yields v π 7

ZA,Q = L 11 /bK)β({w b ( j ) } j e d Λ ) •
{nb:δn = O} bcΛ

We leave it to the reader to check that, thanks to (A.7), there exists, given {nb}, a
unique integer-valued function {mp} such that

with b compatible with the orientation of p, and

for some arbitrary, but fixed p0 C Λ\Λ.

Appendix B. An Analytic Interpolation of Iβ(ή)9

and Estimates on Bessel Functions

In this appendix we establish the existence of a function, Iβ(φ), with properties (a)
through (d) required in Sect. 6 [between (6.2) and (6.3)]. For φ = n, an integer,

Iβ(n)=~ f eβcosθeinθdθ

= i_ J e/)cosVn^ ( β l )

Z71 —π

is the nth modified Bessel function evaluated at the point /?eIR+.
We propose to construct a suitable analytic interpolation, Iβ(φ\ defined for all

φ in the strip \Imφ\^β/2, which is given by (B.I) when φ is an integer. Our first
task is to evaluate Iβ(n) asymptotically for large β. We do this by using the method
of steepest descent. Let θc be the critical point of β cos θ -f in 0, i.e. θc is the solution
of the equation

i.e. (B.2)

Θc = zsinh"1(-J =ir.

We change variables,
θ->θ + ir (B.3)

in Eq. (B.I). This change of variables corresponds to a deformation of the
integration contour. The contributions of the vertical sides of the contour cancel
by periodicity. Thus we obtain

-nr π
I (n)=- f eβ^osθ'coshre-iβsinhr θ3h(θ)^Q

Zτι —π
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where h(θ) = θ~3(sinθ — θ). The range of integration is now broken up into two
pieces,

[-f,f] and [-π, - f ] u [ f , π ] .

This yields
-nr π/2

- π / 2

Since cosβ^O, for 0 e [ - π , - f ]u[$,π],

(B.5)

We set
2\ l/2

θ2

(B.6)

If we change variables, θ-+σ~~1θ, we get

2πσ
(B.7)

_ π σ / 2

Next, we extract the leading contribution to the first term on the right side of (B.7)
by using Taylor's theorem with remainder,

jesXiθ\l-s)X(θ)2ds.
o

It is straightforward to show that

πσ/2

f e~βlt2{\+X{θ))dθ=]/ϊπ{l+O{σ-2)),
-πσ/2

because g and h are bounded. Moreover, since

θ2 θ2

y > τ ?

(B.8

(B.9)

for

Thus

0e[-σπ/2, σπ/2], for all 0 < s < l ,
(B.10)

-πσ/2

4=̂
J/2πσ

β σ 2 (l + O(σ~ 2 )),



Kosterlitz-Thouless Transition 599

by (B.5). We define

m ~m \ ln\ ί n2\ll2

By (B.2), (B.6), and (B.I 1)

Iβ(n) = Lβ(n)(l + O(σ-2)),

for all neZ. We note that Lβ(ή) is the restriction of the function

. ,.. 1 LΛ Φ2Vl2r112

which is analytic in the strip \lmφ\^β/2, to the integers. Using Taylor's theorem
one verifies that

for real 0 and \a\^β/2.
We now define

Iβ(φ) = Lβ(φ)Eβ(φ),

where

The proof of properties (a)-(d) follows easily from (B.12)-(B.14).

Appendix C. An Analytic Interpolation of e~β^

Here we construct an analytic interpolation of the function e~^n\ neΈ. The basic
idea is as in Appendix B, but the present construction is considerably simpler than
the one in Appendix B, so that we only sketch it. We define

^-ni+w»)=^j. (CD

I,(0) = L,(0)E,(0).

Note that lβ(φ) is real and even, for φelR, and analytic in the strip \lmφ\
^l/2β~ί/3. Moreover,

Properties (c) and (d) of 1̂  required in Sect. 7.2 then follow directly from (C.I), (C.2)
and Taylor's theorem with remainder.
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Appendix D. Boundary Conditions

For simplicity we have proved our main theorems for the case of free boundary
conditions in models dual to the Villain or classical rotator. In this appendix we
briefly indicate how to deal with Dirichlet conditions on the boundary of a large
square A. First we must modify our construction of the ensembles Jί appearing in
Sect. 2. This is because a long dipole of length i both of whose charges are near the
boundary of A has small energy ^O(l) compared to its entropy ^ ln/ . In order to
avoid forming such a dipole we shall imagine that a charged ρ is "neutral" by
associating opposite image charges via reflection through one of the boundaries of
A. Our ensemble Jί may now have many ρ's localized near the boundary oϊA for
which Q(ρ)φO.

We make the above idea more precise as follows. Let us define

Λ ω = [ m a x [ d i s t ( ρ , y i α Φ ) ] , if β(ρ)Φ0

if

Note that the (Dirichlet) electrostatic energy of ρ is at least as large as lndΛ{ρ). The
revised version of Theorem 2.1 reads as before except that Jf now satisfies:

a) If ρ,ρ'ejr, ρΦρ' then dist{ρ,ρr)^Mlmin(dA(ρ)9dΛ(ρf)y]\
b) If ρίCρeJr satisfies dist(ρ1,ρ — ρ1)^2Md(ρ1Y,
then QteJφO and

2M dist(ρ1? A
cf ^ dist(ρ l5 ρ - ρx).

The bound on K given by (2.6) and (2.7) holds with

n(ρ) = smallest integer^\n2(MdΛ(ρf).

The proof of Theorem 2.1 proceeds as before. We iterate our application of
Lemma 2.2 to subensembles &n until conditions a) and b) are met. The ensembles
Sn are rc-ensembles with ρe&nit and only if for some ρ'^Qn, ρΦρ'

dist (ρ, ρ') ̂  M[min (dΛ(ρ)9 dΛ(ρf))Y .

Conditions a) and b) above follow in a straightforward manner from this
condition. The proof of our entropy estimate requires only small alterations.

In order to estimate the electrostatic energy (Sects. 3 and 4), for charged
configurations we define £fk'{ρ, A) C £fk(ρ) to be the subcollection of 2k x 2k squares
which satisfy (3.3) and dist(s,Ac)^2k + 2;when <7k{ρ) consists of a single square we
set 6fk{ρ,Λ) = fl unless β(ρ)φθ and 2k + 3^dist(ρ,/Lc) in which case ^{ρ)
The statement of Theorem 4.1 reads as before except condition b) becomes

Our proofs of the theorems in Sects. 5 and 6 are nearly the same except we must
deal with a possible ρ, with Q(ρ) Φ 0 and ρ localized in some neighborhood of our
observable. If we take A very large in comparison to the support of our observable
then it is easy to see that the effective activity of such a ρ is exp [_ —β' ln(dist(ρ, dΛjj]
which is negligible. In general for β sufficiently large it can be shown as in Sect. 3
that

|z(^ρ

where β'(β)-*co as β->oo.
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We conclude with a comment concerning the proof of Theorem 4.1. If
sθ£^(ρ*,Λ) and ρnsφθ then by our definition of £?' and conditions a) and b)
above, Q(ρ) = 0. Thus the renormalization of charges explained in Sect. 4 proceeds
with only minor changes since the ρ's which interfere with the renormalization of
ρ* are still sparse and neutral.

Appendix E. Properties of Components C

We shall establish properties a) and b) of the components C{ [following (4.37)] by
induction on d(ρ.). Clearly both a) and b) are valid if d{ρ^ S 2. We first establish a).
Let

and define Ctj to be the components of

U
ρeSι-Jί

By induction, d i a m C ^ f ί i ^ 7 ). Since Cf</ intersects D(ρ) for some ρeJί we
conclude by (2.4) that

Thus, for M large, d(ρ^) > ^(ρ^), for all j . If Jt has more than one element then,
since Cf is connected, there are two elements, ρx and ρ2, of M such that D(ρ{)
and D(ρ2) are connected by some Ctj. Hence, by (2.4),

which contradicts the above inequality, for M > 1 and α> 1. Thus M has exactly
one element, and

diamQ g 2d(ρf) + 2 max d(ρit) ^ f
j

In order to establish b) assume

Hence

J

By property a) and (2.4) we know that there are at most

components Ctj of diameter 2k~ι [which intersect 3D(ρ)]. Therefore the last term
in the sum over j is bounded above by

for M sufficiently large.
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