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Abstract. We rigorously establish the existence of a Kosterlitz-Thouless
transition in the rotator, the Villain, the solid-on-solid, and the Z, models, for n
large enough, and in the Coulomb lattice gas, in two dimensions. Our proof is
based on an inductive expansion of the Coulomb gas in the sine-Gordon
representation, extending over all possible distance scales, which expresses that
gas as a convex superposition of dilute gases of neutral molecules whose
activities are small if f§ is sufficiently large. Such gases are known not to exhibit
screening. Abelian spin systems are related to a Coulomb gas by means of a
duality transformation.

1. Introduction

1.1. General Remarks

In this paper we rigorously establish the Kosterlitz-Thouless transition [1] in a
class of two dimensional models including the plane rotator, the Z,-model for n
sufficiently large and the lattice Coulomb gas. These results and a brief sketch of
the proof have already appeared in [2]. Our methods extend to higher dimen-
sional abelian spin systems, abelian lattice gauge theories and to the one-
dimensional Ising model with 1/r? interaction. Details of these extensions will
appear elsewhere.

All the models we shall analyze are known to have a high temperature phase
with exponentially decaying truncated correlations. For example, the Coulomb
gas has a high temperature, low density plasma phase characterized by exponen-
tial Debye screening [3]. The Kosterlitz-Thouless transition is one from a high
temperature phase’'to a low temperature phase characterized by scaling and a
power law fall-off of correlations. In this paper we shall prove the following
results:
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1. at low temperature, T, the spin-spin correlations in the two-dimensional
plane rotator and Villain model have a power fall-off;

2. in the two-dimensional Coulomb gas, the sum rule! for the two-point
correlation function of the charge density typical for Debye screening is violated,
and the correlation between two opposite, fractional charges in this gas have
power fall-off, i.e. fractional charges are not screened, provided the temperature
and density are sufficiently small;

3. at high temperature, the expectation of (¢(0)—¢(x))* in the discrete
Gaussian model, (the dual of the Villain model) and in the solid-on-solid model
diverges like In|x|, as |x|—=o0;

4. for n large enough, there exist temperatures T, >0 and T,> T, such that, for
T.<T<T, the Z,-model has a massless, intermediate phase.

Although we shall only consider lattice models, our methods extend e.g. to the
regularized continuum Coulomb gas in two dimensions.

In order to heuristically describe the mechanism behind the Kosterlitz-
Thouless transition, let us consider the two-dimensional Coulomb gas. In two
dimensions the Coulomb potential behaves like (27) ~* log(1/r), for large distances,
r. This potential tends to bind oppositely charged particles into dipoles or more
generally into neutral multipoles. More concretely, consider two oppositely
charged particles separated by a distance 7. The Boltzmann factor at temperature
T for such a configuration, in the absence of other particles, is

Bocexp | — £1
p n(/+1)
2n

. B=@kD)" )

However, if f is not sufficiently large, the dipole can break up due to entropy
effects. The entropy of such a dipole configuration is roughly

S =1In(/A)+ const, (2)

where / estimates the number of possible positions of the negative charge, given
the position of the positive charge, and A is the area over which the positive charge
may range, namely 4~/2. Thus we have

eSBz/3e—(ﬁ/2n)ln(t’+ 1). (3)

When f> 8, the right side of (3) is summable in Z, so that the probability that a
dipole will break up is zero. Thus we conclude that, for large f, the Coulomb gas
looks like a dilute gas of dipoles where long dipoles are unlikely. In Sects. 2-4 of
this paper we derive a mathematical identity which expresses the Coulomb gas as a
convex combination of neutral multipole gases with small effective activities when
B is large. This identity is formulated in the sine-Gordon representation. In this
representation neutral multipole gases are formally invariant under the con-
tinuous symmetry ¢— ¢ +const, and a Mermin type argument can be applied to
prove the absence of exponential screening for such dilute gases. See [5] for a
detailed analysis of dipole gases.

The plane rotator and other models analyzed in this paper can be expressed, by
a duality transformation, as gases of particles interacting with Coulomb-like

1 We refer here to the Stillinger-Lovett sum rule, see [4]
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forces. Our analysis of these models will follow quite closely that of the Coulomb
gas.

Our paper is organized as follows: In Sects. 1.2 and 1.3 the Coulomb gas is
described and expressed in the sine-Gordon variables. Our main results on the
Coulomb gas and the solid-on-solid model are stated in Sect. 1.3. In Sect. 1.4, we
present our results for the plane rotator and the Z -models. A brief outline of our
methods is given in Sect. 1.5. Sections 2—4 form the technical core of our paper. In
these sections we establish an identity expressing Coulomb gases as a convex
combination of neutral multipole gases. We obtain bounds on the entropy of
neutral multipoles (Sect. 2) by a purely combinatorial argument. Our bounds on
the effective activity, proved in Sects. 3 and 4, follow from a kind of generalized
electrostatic inequality. These identities and estimates are applied in Sects. 5-7 to
the various models discussed above. Section 5 is devoted to the Coulomb gas and
to the Villain approximation of the plane rotator. Sections 6 and 7 provide a
technical refinement of the arguments presented in Sect. 5. We treat the plane
rotator in Sect. 6 and the Z,- and solid-on-solid models in Sect. 7.

1.2. The Coulomb Gas

We consider a system of classical particles with electric charge +1 whose possible
positions range over a finite array of sites, 4, contained in the simple square lattice
Z?, (respectively in the lattice Z")%. These particles interact via a two-body
Coulomb potential defined as the Green’s function, C(i, j), of the finite difference
Laplacian, 4, with some boundary conditions (b.c.) at 04, the outer boundary of A.
We can analyze the following b.c.:

1) “Free” b.c., i.e. C(i, j)= C(i—j) is the Green’s function of the finite difference
Laplacian on Z2, but i and j are confined to the region A.

ii) Dirichlet b.c., i.e. 4 is the finite difference Laplacian with 0 Dirichlet data at
04, and C(i, j) its Green’s function. Thus

CGi,j)=0 if i¢gA or jéA.

iti) Periodic b.c.; see Sect. 1.3.

Free b.c. correspond, physically, to putting the particles into a container A with
perfectly insulating walls, whereas Dirichlet b.c. correspond to perfectly conduct-
ing walls. Usually free or periodic b.c. will be imposed, as they are somewhat
simpler technically. (With some technical complications, our methods could be
extended to include Dirichlet b.c. as well; see Appendix D.)

A configuration of the gas is given by a function q,= {q(j)} ;. , with values in Z.
Namely, with each site je A, one associates the total electric charge, q()),
concentrated at j. The energy, E, of a configuration g, is the total electrostatic
energy of q,, self-energies included, i.e.

E(g)=1/2 ). a()q()CG. j)

i,jed

=1/2(q.0 (=) "q,). (1.4)

2 The following general remarks apply, of course, to classical Coulomb gases on a lattice of arbitrary
dimension v=1, but the main results of this paper concern the two-dimensional gas
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The Boltzmann factor for a configuration g, is

exp[—BE(q)], B=(kT)"". (L.5)
The a priori weight of g, is given by
E Ma(j), (1.6)

where dA(g) is a positive (not necessarily finite) measure on Z. The equilibrium
state of the system is defined by the usual Gibbs measure, du, on the space of all
configurations

du(q ) =Z; " exp[ — BE(q )] HA dMq(j), (1.7)
where
Z 4= [exp[—BE(q,)] Hdi(q(i)) (1.8)

is the partition function. The finite volume correlations of the charge density are
given by
CFL{aU)}D> 4= § FL{g()} ) du(g.)- (19)

A thermodynamic limit A1Z* can always be constructed by a compactness
argument.

Examples. 1) The hard core gas:

1, q=0
l(q)={z/2, g=+1 (1.10)
0, otherwise.

In this gas at most one particle can occupy a lattice site, and the bare activity of the
particle is z/2.

2) The standard gas:
2n

Mg)= % (j) exp(z cos ) cos(qh)do (1.11)

for ge Z,and z/2 is the bare activity. Note that, as z— o0, A(g)/A(0)—1,and we obtain

3) The “Villain gas”:
Mg)=1 for all geZ. (1.12)

In the case of Examples 2 or 3 the thermodynamic limit is known to be
independent of the subsequence, as A1Z>2. See [6] for details.

All the a priori measures we shall study will be assumed to satisfy Condition A:
Condition A holds if and only if for all geZ,

a) Mg)=AM—q); (charge conjugation invariance).

b) |A(q)| = const exp [(x+¢f)g*], e<1/16; (low density condition).
Remark. If our low density condition b) fails, then the gas may be in a crystalline

phase. The existence of such a phase for high density and low temperature was
proved in [7].
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1.3. The Sine-Gordon Representation of the Coulomb Gas

In this section we discuss the Fourier transform of the Gibbs measure we defined
in (1.7) with respect to the charge variables {q(j)}. This provides a technically
extremely useful representation of the Coulomb gas, known as sine-Gordon, or
Siegert representation [5, 8, 9]. We denote by du, , the Gaussian measure with
mean 0 and covariance ff(— 4,) !, where 4, is the finite difference Laplacian with
0-Dirichlet data at the boundary dQ of some finite region Q.

Clearly

[ 9du, o @) =expl~(B2) (0. (— 40) "), (113)

where ¢(0)= Y #(j)o(j), and ¢ is a function of finite support in €. It is easy to see

J
that, for a fixed function ¢ of finite support,

Jim [ b o) = {;fp [-BE(@)], E‘ gfs))ige(i) =0

Here E(p) is the electrostatic energy of ¢ corresponding to free boundary
conditions. Note that if Y o(j)%0, Eq(0)— 0 as Q1Z? because — A(p)~'~p~? is
not integrable about p=0. Formula (1.14) also holds for the case where periodic
boundary conditions are imposed on the boundary of the rectangles Q. Let du,
=limdu, o, as Q172> :

By (1.8) and (1.14) the partition function Z, of the Coulomb gas is given by

Z,= fexpl—BE(g,)] H dAq(j))
— j H {y e"b(”q(’)dl(q(] ) dﬂp(¢

jea

= [ TT A duy(4), (1.15)

jed

(1.14)

where 1 is the Fourier transform of dA.
Let (- >%(B, ) be the expectation with respect to the measure (not necessarily
positive)

Z 3 TT () duy(). (1.16)

jea

By definition of 4 and (- the charge density correlations are given by

(T, N)—<Hl(¢(1)) - djl)) }(</>u>>> (6.9).

If no confusion results we set {->%={-)>. By integration by parts in a periodic box
one can easily establish (see [5])

PR (B, 2) = BC(k) = B2 C1) (R (B, ) (1.17)

for k=0. If - »? is a positive measure, the left hand side of (1.17) is positive, and we

conclude that .
gk (B =B~ 1Clk) ™
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Now let
M@B=— 3 <g0)q()> (B, A)-(i3+j3)

Ji=G1J2)
— 62 82 ],. k |2 /1 1 18
- (5 + 52) 0P .20 w1

If exponential Debye screening holds, then <|G(k)|*) is analytic in k near 0, and a
well-known A-independent sum rule [4, 5] asserts that M(f)=2f"". By expanding
the right side of (1.17) in a power series in k we see that {|¢(k)|*> is bounded at
k=0 if M(B)=28"".

In Sect. 5 we prove the following theorem.

Theorem A. If dA satisfies condition A then for B sufficiently large there exists a

constant ¢, >0 such that for ()= ¢(j) ()

APy zZ e {fi =47 (1.19)
whenever Y. f(j)=0.

Remarks. Theorem A implies that for k40 <|@(k)|>>=c, k™2, which is singular
near k=0. Thus the sum rule for Debye screening must be violated.
If Mg)=1, for all geZ, we see that A(¢(j))= Y. 8(P(j)—2nn), and {-)? is, by

definition, the discrete Gaussian model. If we now let f(j)=0, ;—6, , Theorem A

asserts that

b

Lpx)—p(1*>zn" ‘e log(x—yl+1) (1.20)

for large B, which proves the existence of a roughening transition for the discrete
Gaussian model.

In Sect. 7 we extend these results to the solid-on-solid model [10]. In this
model the Gibbs measure is given by

oxpf= X o) -4 ] A )deb; (121)
B J
where the sum is over nearest neighbors. The single spin distribution is again A(¢)
=) 5(2nn—¢).
We also determine the behavior of the fractional charge correlation defined by
G(x) = Cexp(i&(¢(0) — p(x))), (1.22)

where ¢ is the strength of the fractional charge. Using the sine-Gordon repre-
sentation (Sect. 1.3) it is easy to see that the log of

G (X)=2} ! jexp[ —BE(q4+E0;0—9;))] 1—11 dMq(j)) (1.23)

measures the average energy required to pump two opposite fractional charges
located at 0 and x into the system. Using Jensen’s inequality in the g variables we

can show that
Gx) Zexp(— BLC(0,0) — C(0, x)]) = |x| ~1#/*7 (1.24)
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(see [5] for details). If screening occurs (e.g. at high temperatures) then it has been
shown [3] that

Gx)—~>L>0
exponentially fast. We prove

Theorem B. For f3 sufficiently large and 2 satisfying condition A we have for 0 <& <1
0= G (x)=const|x| ", (1.25)

where ' =p'(B, )~ co, as f— 00, and G, is given by (1.23).

1.4. The Two-Dimensional Villain — and Rotator Model

The equilibrium states of the Villain and the plane rotator models in zero magnetic
field, in a finite region A CZ?, are given, respectively, by

Z/Il H Uﬁ(ei_ej) Hdej’

@ijycA jed
—1 (1.26)
Z,U IT ry0,—0,) [ a0;,
@inca . jea
where |] extends over all nearest neighbor pairs in A, and
(ijjca
vp(0)= Y exp[ —(B/2)(6+2nm)?] (1.27)
meZ
is the periodized Gaussian, and
r5(0)=exp(B cosb). (1.28)

The variables 0, je A, are angulér variables in terms of which the original spin
variables are expressed by
S;=(cos0,sin0)).

The expectation in the measures defined in (1.26) is denoted by {:) ,(f). The
thermodynamic limit, {—)>(f), of the states {{->,(f)} is known to exist, a
consequence of correlation inequalities [11], and to be the unique translation-
invariant Gibbs state of the system [12], for all values of . It is invariant under the
continuous symmetry 0;—0;+ o, mod2n, where a is an arbitrary constant. By the
60— — 0 symmetry.

(S;:S,> (B)=<cos(0;—0,)> (B)=<e"" "> (P). (1.29)
By using e.g. a standard high temperature expansion, one shows that
(8;:S,» (f)—0, as |j—/]-o (1.30)

exponentially fast, provided f is small enough. (It is shown in [13] that for the
rotator model (1.30) holds if f<2f_,;, (Ising). Further upper bounds on critical
temperatures are mentioned in [5].) McBryan and Spencer [14] have shown that,
for all f and for every ¢>0, there exists a finite constant K= K(g, ) such that

0SS, (B SK(1+]j— L)~ 1Hem+om, (131)

One of the main results of our paper is
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Theorem C. In the two-dimensional Villain and plane rotator models, for sufficiently

large B, ~ ,
(S;+S,> (B)zconst(l + [j—]) "1,

for some ' = ['(B)>1/4n. Moreover f'(ff)— o0, as f— oco.

The proof appears in Sects. 5 and 6.
Next, we define the usual disorder operator. Let x be the site (n, 0), and define

n 0. —0. o+27E)
Di, = S5O0, 1= 0, 0) , 1.32
° ml;ll fﬁ(e(m, 1) Q(m,O)) ( )

where f;=r,, respectively v, and 56(0, 1). It follows from a high temperature
expansion that

(D5,> (B)=const>0, (1.33)

uniformly in |x|, when f is sufficiently small.
In Sect. 5 we prove the following result for the Villain model.

Theorem D. For each £€(0,1) there exists some finite (&) such that for > (&)
(D5 (B) < const(1 +|x]|) =P,

for some positive " =", f).

Our proofs of Theorems C and D proceed by studying the models dual to the
Villain, respectively the plane rotator models which are obtained by Fourier
transformation in the angular variables. The Fourier coefficients of v; and r, are
given by

by(¢p) =constexp[ —(1/2p)$*],
fp(‘f)) = I¢(ﬂ),

where I,(f) is the ¢ modified Bessel function. Let I s(@)=104() or 74(¢). Let A be
some finite region in the dual lattice. We define a statistical weight of a
configuration {¢(j)};., of integer-valued spins, ¢(j), by

zZ! IAII (D) — (), (1.35)

where || extends over all nearest neighbor pairs (ij) with (i))nA4=0 and $(/)=0,
A

for /¢ A.

Let (- >*(p) be the expectation determined by the weight (1.35), and let - >*(f)
denote its thermodynamic limit. This is the Gibbs state of the model dual to the
Villain, the rotator model, respectively. We define

Bs— T 100 —glm 1+

}(bel, (1.34)

, 1.36
L L @0m, 0)— g, 1) (136
where x=(n,0), and ¢ is some integer. It is well known that

(8000 (B)=(D§.Y*(B). (1.37)

in particular

(Sp S (B)=<e™ %% (B)=<DI.>*(B).
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The relation dual to (1.37) is
(D (B)= (el x5 %(g). (1.38)

These relations can be extended to general correlation functions of products of
spin variables and disorder operators. See Appendix A for a proof of these
identities. We shall see that (1.37) is important for our proof of Theorem C.

We also obtain results for the Z,-models which are defined by the Hamiltonian

H,(0)=— Y. cos(6,—0)—h Y cos(nd)), (1.39)

@ij)ca jed
as h— 0. The corresponding states defined by
Y= fim OB W= lim 7 fem 0~ ] do, (1.40)
are known to have a thermodynamic limit independent of {4}, as A1Z?, by

Ginibre’s correlation inequalities. The spin-spin correlation is also monotone
increasing in h and A. Hence

(E00=09Y () 2 0030, ), (141)
which is bounded below by a power law by Theorem C when > 1. Note that, as
h— o0, 0 is constrained to take discrete value SZn, k=12,...,n

The next theorem establishes the existence of a massless intermediate phase for
large n.

Theorem E. Given f and qe(0,1), there exists no=ny(B,q) <o such that for all
n=ng and all integers & with min(é/n, 1 —¢&/n)=¢q

o0 (By < const(1 + |x|) ~L6*/27" (1.42)
for some "= p"(B, q)< .

A related result was proved by Elitzur et al. [15] for the Villain approximation
using duality and correlation inequalities. Their proof assumed Theorem C.

1.5. Outline of the Proof

We conclude this section with an outline of our proof of Theorem A. For
simplicity we shall consider the special case of the hard core Coulomb gas whose
finite volume expectation is given by

COa=Zi |- T (L +zcosd()) duy(d). (1.43)
jed .
Let us estimate {e**""’), from below where, for example, f(j)=6,;—4,; To do
this we make a change of variables

o(j)=¢() + (), (1.44)

where

a(j)=—Peo, 471 f>. (1.45)
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We then obtain the identity:

<e6¢(f)> e(ﬂ(2)82<f,A U ZA(O)— 1ZA(G) , (1.46)
where
Zo)=] 11 (1+zcos(¢(j) + o(j))) duy(). (1.47)

We would like to apply Jensen’s inequality to obtain a bound from below on
Z~*0)Z(0). The problem is that ¢(j) is not small. However if |j— k| = L, then

1 1
ot~ othl Sconst (A + ). 1.48

TSRS (149
Our first major step is to arrange for differences of this type to occur. In Sect. 2 we
prove the identity

[ [T +zcos((j) +a(j)]
=Yy [] [1+K(o)cos(¢(o) +a(0)], c,>0, (1.49)

geN

where A" is a collection of neutral charge densities, ¢ [ie. Y o(j)=0], and
d(@)=> d(j)alj). More precisely, 4" contains at most one charged density o, which
we shall show has 0 effective activity, since its self-energy is infinite. By (1.48) we
see that o(g) is fairly small if ¢ is neutral and supported away from 0 and x. The
constants K(g) are closely related to the entropy of the charge density ¢ and are
large for a big multipole g. Our next major step is to offset the entropy by extracting
part of the Boltzmann factor. In Sect. 4 we prove that

Z(o)= | [] (1+K(o) cos(¢(e) + o(0)) dpy(p)

oeN

= | T (1 +K(g)e™ 1@ cos(¢(2) + a(0))) duy() » (1.50)
oeN
where g is a new effective neutral charge density corresponding to ¢ and E,_(0) is
roughly the electrostatic energy of ¢. This result follows from elementary, but
lengthy electrostatic identities.
In Sect. 3 we prove the key bound on the effective activity z defined by

2(B, 0)=K(g)e "*r<? exp[(— Bc +b)log(d(e) + 1)1, (1.51)

where ¢ and b are positive constants independent of 8, and d(g) is the diameter of g.
For large f, (1.51) implies large multipoles are unlikely. It is now straightforward
(see Sect. 5) to apply Jensen’s inequality and the double angle formula to show that

ZW(O)‘1Zd,f(a)gexp[—const Y. 2, Q)J(Q)Z]

Zexply(B)e*(f, 47" f)] (1.52)

for each A" appearing in (1.49). The constant y(f)—0, as § becomes large. If we
combine (1.46), (1.50), and (1.52) we see that

(e > expl—2(B2—1(B) .47 /] (1.53)

Theorem A now follows by expanding up to second order in ¢, dividing by ¢* and
taking ¢—0.
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2. An Expansion in Terms of Neutral Multipole Ensembles and Entropy Estimates

In this section we prove our main combinatorial theorem which expresses
expectations in the two-dimensional Coulomb gas as convex combinations of
expectations in dilute gases of neutral multipoles of variable size. Our principal
estimate is on the entropy, respectively bare activity, of the neutral multipoles
which constitute the resulting gases.

First, we derive an expansion for the partition function, see Subsects. 2.1-2.4.
That expansion also serves as a starting point for estimating the expectation of the
disorder parameter (1.36) and of (¢(0)— ¢(x))*; see (1.19). In Subsect. 2.5, we
explain how to modify the expansion in order to obtain a suitable representation
of the fractional charge correlation, G,(x), defined in (1.22).

In Sects. 2-5, we impose free (i.e. insulating) boundary conditions. Our method
extends to periodic b.c., as well, but Dirichlet b.c. require some refinements briefly
sketched in Appendix D. We recommend that the reader try to absorb the
definitions and arguments in this section by representing them graphically.

2.1. Notation

Let ACZ? be a large rectangular array of lattice sites jeZ>. We confine the
positions of the charged particles in the gas to be inside A. A charge density g is an
integer-valued function on A whose value, o(j), at some site je A indicates the
charge concentrated at j. The diameter of the support of ¢ is denoted by d(g), and
dist(g,, 0,) is the minimum distance between the supports of two charge densities
0, and g,.

An ensemble, &, is a collection of charge densities, g, whose supports are
mutually disjoint. A charge density g, is said to be compatible with an ensemble &
if

01= ) &oy, 00 with &(0,,0)=0, 1. 21)

0€é

We say that an ensemble &, is a parent of an ensemble &,, &, —&,, iff every charge
density ge &, is compatible with &,. We say that a density g is a constituent of a

density o4, 0 Coy, iff suppe Csuppe;, ¢(j)=¢,(j) for all je suppo.
The total charge, Q(0), of a density g is defined by

0(0)= Y o())-

Jj

A density g is neutral if Q(9)=0; otherwise it is said to be charged. We define an
area of a density ¢ on various distance scales: Let 4,(¢) be the minimal number of
2" x 2" squares — i.e. squares with sides containing 2" sites — needed to cover suppog.
Clearly A,(¢)=card{suppg}.

An ensemble & =¢&, is called an n-ensemble iff for all ¢,, ¢, in &,, 0, F0,,

dist(o,, 0,)>2". (2.2)
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2.2. Main Result
Theorem 2.1. There exists a family, # =%, of ensembles, N, such that

[T +zcos¢()= 3 cy [T (1+K(@)cosd(e)), (2.3)

jeA NeF peN
(¢(Q)E Zz{)(j)g(j)), where ¢, >0, for all /'€ F, and each N € F has the following
i

properties:

a) all densities ¢ in N~ are neutral, i.e. Q(0)=0, except possibly one, g, which is
charged.

There exist constants M>1 and o, 3/2<wa<2, independent of N such that

b) dist(e,, 0,) 2 M[min(d(e,), d(e,))]*, (2.4)

for all ¢, 0, in N, ¢, F0,. Moreover, if N contains a charge density o, with

0
Qe)* dist(e, ¢,) = Md(0)*,

for all g in N, g%0..
c) If 9, Coe N is such that

dist(e,,0—0,)22Md(¢,)* (2.5)
then g, is charged.
Finally, the constants K(g) on the right side of (2.3) satisfy

0<K(g)=z"@e5®  with S()<C-A(g), (2.6)

for some 9 — and N — independent constant C, where

n(Q)

AlQ)= Y A4le), 2.7
k=0

with
n(e) the smallest integer =1n,(Md(0)"), (2.8)
for all oo, [

Remarks. 1. S(¢) can be thought of as the entropy of a multipole with charge
density o.

2. The constants M and o above will be chosen later. We shall see that 3 <o <2
is the admissible range of . Property b) of the ensembles A4 '€ F, asserted in
Theorem 2.1, ensures that the gases with ensembles 4" are sufficiently dilute to
enable us to extract the selfenergy factor exp[ —const BE(g)] of the neutral charge
density g; («>3 is a sufficient condition for this to be possible). See Sect. 4 and [5]
for the case of dilute dipole gases. One then obtains an effective, or renormalized,
activity

z(B, 0)=K(o)-exp[ —const BE(g)]

which is very small, for large f.

3. The key assertion of Theorem 2.1 is contained in (2.6)~2.8). The number
K(0) =295 ig the “bare activity” of the multipole with charge density ¢. The
constant C in (2.6) satisfies C <225-1n3.

In order to motivate interpreting S(g) as an entropy we consider the example of
a dipole of length L. In this case g(j)=0,,—0d,, with [k—/|=L,6,,=1,i=}, 6 ,=0,

> Vi
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otherwise. Then, since A4,(¢)=2, for n<In,L—1, and A4,(¢)=1, for n(@)=n=In, L,
A(0)=(1+a)In, L+const, so that S(g)<constln, L.

While K(g) grows in L like e®™!"2L this is offset by the factor
exp[ —const fE(p)], where E(o)~(InL)/2x is the self-energy of the dipole, provided
p is large enough.

4. It turns out that the magnitude of the coefficients ¢, is unimportant. Only
their sign, i.e. ¢, >0, is crucial. If we define

< [T (1+K) cos¢(a)>>ﬂ

oeN

<ﬂ (1+zcos¢(j))>ﬂ '

jeA

Ap=cy

where (- ), denotes the expectation in the Gaussian measure du,, with mean 0 and
covariance fC, we clearly have

D (B2)= Ngy_ A<D (B), (2.9)
with 0<i,, ) A,=L
Here (-3 () is the state with Gibbs measure
zy! Qg/ (1 + K(e)cosd(@))dpy(e). (2.10)

Thus, Theorem 2.1 provides us with a representation of the state of the Coulomb
gas as a convex combination of states describing dilute gases of neutral multipoles
(“dipole gases”).

5. As noted in Sect. 1, the factor (14 K(g,) cos¢(g,)), 0.€ A", Qo) %0, can be
replaced by 1 in (2.10) if duy(¢) is the infinite volume, zero-mass Gaussian measure,
because the self-energy, E(g,), of ¢, is infinite if Q(¢.) % 0. This is not true if Dirichlet
boundary conditions are imposed at 04, in which case the expansion established in
this section must be modified (see Appendix D).

6. The proof of Theorem 2.1 consists of an inductive construction of the
ensembles A/,

2.3. The Basic Lemma

Lemma 2.2. Let &=4&, be an n-ensemble. Then there is a family {&,} of (n+1)-
ensembles, labelled by a parameter v, such that &— &, for all y, and

]_L(l +K(e)cos(o)= Y. ¢, [] (1+K'(@)cosh(e). (211)
e v e'Eby
For all y, ¢,>0, and for each ¢'e &,

a) ¢'= ) &, 0, ie ¢ is compatible with & ;

0eé
b) if there is a charge density ¢’y Co’ which is compatible with & then

dist(¢}, ' —0})=2""".
c) 0<K'(g) e [T K(g)#e-2!. (2.12)

Qs
The constant C, is independent of ¢’ and n.
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Proof. The lemma follows from iterated application of the identity

(1+K,cosg(,) (1+ K,z cosd(ep))
=1/3(1+ 3K, cos p(e,) +1/3(1 + 3K ; cos pley))
+1/6(1+3K,K;cosple, —ap))

+1/6(1 +3K,K zcos o, +0p)) - (2.13)

Note, all densities on the right side of (2.13) are compatible with {g,,0,} and all
coefficients are positive. Identity (2.13) is only applied to a pair {g,,0,} C& if

dist(0,, 05)<2"* . (2.14)

We start by applying (2.13) to any two factors on the left side of (2.11)
corresponding to two charge densities g,, 05 in & for which (2.14) holds. (If there
are no such factors the lemma holds trivially.) The right side of identity (2.13) is
then inserted on the left side of (2.11), replacing the two factors labelled by g,, 0, by
a sum of four terms, and by expanding we obtain a sum of four products. If one of
the resulting products contains two factors labelled by densities g}, ¢} satisfying
(2.14), we apply identity (2.13) again and expand the resulting expression into a sum
of products. We repeat this operation until we obtain a sum over products indexed
by ensembles &, with the property that, for arbitrary ¢, ¢, in &, dist(g,,0,)> PANES

As noted already, each application of (2.13) replaces charge densities which are
compatible with & by other charge densities compatible with &. Thus ¢

= ) &0, 0)0, for all @'eé, and all y. Moreover, all coefficients ¢, are clearly
0eE

positive, [since by (2.13) each ¢, =(1/3)"(1/6)", for some positive integers n, and
m,]. This completes the proof of (2.11) and a). Part b) of the lemma then follows
directly from (2.14). Thus we are left with proving c).

At intermediate stages of our operations we have identities

[T(1+K(@)cosd(e)=Y.c, [] (1+K,cos(e,),
0eé 52 0uEF

with &= .4, (i.e. & is a parent of each .#), and ¢, >0, for all intermediate ensembles
#. In order to prove (2.12) we now consider some density ¢'€&, and an
intermediate ensemble .# such that o' is compatible with #. (If ¢’ is not compatible
with .#, further operations on the factors indexed by densities in .# can never
produce ¢, as is immediate to see.) We must keep track of all applications of
identity (2.13) necessary to produce the given ¢, starting from .#, ie. we must
consider all possible applications of (2.13) to pairs {g,, 05} C.# for which either

1) £0,C00;n0' =0, or

1) +0,C0',0,n0'=0, or

iil) +0,C0’, £0,C0"

In case i) the term on the right side of identity (2.13) is chosen in which g is
eliminated. (Suppose not; then ¢, and ¢, would have been combined to g, + g, At
later stages, either g, +0, would have been eliminated, or it would have been kept,
so that either o,(¢’, or +0;Co") The term in which g, is eliminated is
oc(1 43K, cosd(g,)), so the coefficient, 3K, of cos(g,) is independent of K, and

9

o
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Since (2.14) has been imposed, g, contains at least one density ge & with the
property that dist(g, ¢') <2"* 1. Thus, the total number of applications of identity
(2.13) of type 1) necessary to produce ¢ is at most

card{ge &:0ng'=0, dist(g,0)<2""'}.

Case 1i) is the same as case 1) with « and f interchanged.

In case iii) a term on the right side of identity (2.13) is chosen in which g, and g,
are combined to g, + ¢, or ¢, — 0, The coefficient of cosp(g, +o ,;) is 3K ,K . Given
o', there are precisely card{pe &:0Co'} — 1 apphcatlons of (2.13) in which a term of
type iii) is kept which are needed to form @', independently of the order in which
the constituents, ge &, of ¢’ got paired. (The proof of this is an easy combinatorial
exercise.)

From the discussion of cases i)-iii) above, we now conclude that

K'(Q')é‘jng(e’) n K(Q)la(e’,e)l , (2.15)
€&
where ng(¢) =card{ge & :dist(o, 0') £2"*'}. Next, we make use of the fact that &
was assumed to be an n-ensemble, i.e. for any two densities ¢,, ¢, in &, ¢, F0,,
dist(g,,0,)>2". From this property it follows immediately that a 2" x 2" square
cannot intersect more than three different charge densities in &. Let 4,(¢) be the
minimal number of 2" x 2" squares needed to cover {je A :dist(j, suppg) <2"1}. It
is easy to check that 4,(0)<254,(¢). Thus

né’(gl) g CZAH(Q/) )

for some constant C, <75.
From this and inequality (2.15) we obtain part c¢) of the lemma, with
C,=C,In3. OO

2.4. Proof of Theorem 2.1

The theorem follows by an induction in distance scales 2", n=0,1,2,.... Each
induction step is carried out by applying Lemma 2.2 to appropriately chosen
n-ensembles, &,. The initial ensemble is given by &, = {¢*} . 1, 0*(j) =0, Clearly, &,

isa n= —1 ensemble. By Lemma 2.2, (2.11) we have
[T(t+zcosp(=Yc, [1 (1+K()cosd(o), (2.16)
JjeAaA y 0eéy,y

where each &, , is a 1-ensemble. Next, we apply (2.11) again to each term in the
sum on the rlght side of (2.16), with £ =&, , for each y. We end up with a sum over
2-ensembles. For n2n,, with 1 <n, <In, M, we must however choose the ensemble
& on the left side of identity (2.11) to be a sub-ensemble of some &, , obtained in
previous applications of (2.11), in order to avoid generating unnecessarily large
charge densities and combinatorial factors, K(g). Roughly speaking, we shall apply
the lemma to sub-ensembles which do not satisfy the assertions of Theorem 2.1.
More precisely, those sub-ensembles, &,=Q,— ./, are chosen inductively as
follows:
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Let Qo =6 ={0"},c o Vo =4 Let Q, be one of the ensembles obtained after the
n'™ induction step. The induction hypotheses for Q, are as follows:

Qu=&,0N,,  ENN,=0.

&, is an n-ensemble, and ¥, is a maximal sub-ensemble of Q, defined by
o) N, 24,_,, for some ./, _,; a charge density g€ Q, belongs to 1, iff

B) ¢ is neutral, i.e. Q(0)=0;
y) if ¢, is some other, neutral charge density in Q,,

dist(g,, 0) = M[min(d(e,), d(0))]* ; (2.17)
d) dist(e,, 0) = Md(e)*, (2.18)

for all 0,€Q,— A4,
It is not hard to see that ./, =8, for m <n,. In order to carry out the induction
step, we apply identity (2.11), Lemma 2.2, with & =6,:

[T 1 +K(@cosd(@)=Yc, [] (1+K(e)cosd(c). (2.19)
0€6n v 0€6n+ 1,y

By Lemma 2.2, a) §,— ¢, , ,, for all y, and each &, , , is an (n+ 1)-ensemble. We
set Qn+ 1 EQn+ 1,yEéan+ 1,vUJV;|' Since %mgn=ﬂ’ and gn_-)gn+ 1,y /V;lmg)nw‘- l,y:ﬂ7
for all y. We now choose A ., =4, , to consist of .#, and of a maximal subset,
Fpit,p of 6,1, In such a way that 4, U, satisfies ®)-0), above (with n

replaced by n+1). Clearly
gn+1Egn+ 1,y~—fn+ 1,7

is an (n+ 1)-ensemble, since &,,,<48,., ,, and &, , is an (n+ 1)-ensemble, by
Lemma 2.2. This completes the induction step.

Remark. One may define ¥}, constructively as follows:
oy N, 2M,_4, for some A, _;
") foreach pe Q,— A4, _,let B(o) be the set of sites within distance < Md(g)* of
suppo.Let 8! be the family of pe Q, — .4/, _, for which Q(¢)=0and B(g)nsuppe,=0,
forallg,€Q,—AN,_1,0, Fo. Let 8P =Q,— (N, _,uBLU...u%") and define B +!
to be the family of all those ge &® for which Q(¢)=0 and B(g)nsuppo,=0,
forall o, e &Y, 0, F0, k=1,2,3,.... We define

No=N,_ (U ﬂ’,ﬁ)
1

For bounded 4, &, clearly converges, as n— oo, either to the empty set, or to an
ensemble consisting of a single, charged element, so that Lemma 2.2 cannot be
applied anymore.

Thus, by induction in n, we obtain identity (2.3) of Theorem 2.1, and by (2.17)
and (2.18), [respectively o), B')] each ensemble, .4, on the right side of (2.3)
satisfies parts a) and b) of Theorem 2.1. In order to prove part c) of Theorem 2.1,
let ¢ be some charge density in one of the ensembles, /", and suppose ¢, Co
satisfies

dist(0,,0—0,) =R, =2Md(9,). (2.20)
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In the course of building up ¢ out of some collection of densities, {g,}, with which ¢
is compatible, it must have happened that some g, C o, got paired with some +¢,,
0,S0—0, to form g, +o,. Since dist(g,, 0,)= R, this happened on scale 2* of the
inductive construction, with 2"'>R,. Since R,=2Md(g,)"Z2Md(g,)", ¢, is
charged. For, if g, is neutral, o€/}, as 2*2(1/2)R, 2 Md(g,)*.

Suppose now that g,& ¢,. Then at a later induction step some ¢'2¢,+0, got
combined with some non-empty ¢, <o, —0,. But

dist(o', ;) Sdist(e,, 0,) < d(e,),
and
d(o)=(R,2M)* " <(M 120" " <2k,

for o> 1, M > 1. However, the expansion on scales <2* was already terminated at
this point. Thus g, =g, and therefore g, is charged. This completes the proof of
part c) of Theorem 2.1, (2.5).

Now we turn to the proof of (2.6)—(2.8). We choose some A", Let g be some
neutral density in /", and let n(p) satisfy 2"@ > Md(o)* as required in (2.8). Let
m>n(p), and suppose ¢ was produced during the induction step on scale 2. Since,
for arbitrary constituents g,, ¢, of o, dist(g,, 0,) S d(g) <2*" MM for M>1, 00> 1,
o must have been paired with some 9" % at distance at least 2" from g, and ¢" got
eliminated, i.e. the first term on the right side of identity (2.13) was chosen, (with g,
=0, 0;=0"; see cases i), ii) in the proof of Lemma 2.2). However, since g is neutral,
and 2™>2"®@ > Md(g)* this would violate the rules for choosing .4, namely N o
would not have been chosen to be a maximal subset of Q Thus, for some
m=nlg), o€V, By Lemma 2.2, (2.12)

K(o) ¢S4 [] K(g, e,
Qy

n(e)

where o= ¢lg, 0,)0,, and all densities ¢, belong to some (m— 1)-ensemble.
Applying (2.12) again, we obtain
K(Q)éexp{c 1 [Am(@)+ > Am-l(Qy)]} [T K., 221)
+o,Co teosCe

for densities g, in some (m— 2)-ensemble.
Next, we make use of the inequality: If dist(g,, ¢,,)>2", for all y+y’ then

Y Ade,) S C3440), (2.22)

for some constant Cy <3. (The proof is straightforward ; see also end of proof of
Lemma 2.2.) By combining (2.21) and (2.22) and a recursion, (2.6) and (2.7) follow,
with CSC,C,<2251n3;(the upper bound on C is vastly larger than what one
could presumably obtain by more detailed, combinatorial arguments). This
completes the proof of Theorem 2.1. [

2.5. The Fractional Charge Observable

Next, we make a minor modification in the above arguments to include, in the
inductive construction of the ensembles, .4, an observable

A(¢)=cosP(o,), (2.23)
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where ¢, is some charge density of compact support, and &£e(0,1). These
modifications are not needed for the proof of Theorems A and C. As an example

we mention
Qozéjo—éjxa Ix|=L,

so that &g, ££0, 1, is the charge density of a dipole consisting of two fractional
charges, +¢, separated by a distance L.
We wish to derive an expansion for cosd(£g,) [ | (14 zcos¢(j)) for which the
jea
analogue of Theorem 2.1 holds. First, we note the identity

cosp(éeq) [] (1+zcos()

= 2, ccosp(Eeo)+z,008h(S0q +0,)), (2.24)

a=1

no
with ¢, >0, for all o, and Z ¢,=1;0,())=0, £1, for jesuppo,, and ¢,(j)=0, for
a=1
jésuppo,; 0<z, < oo, with z,oc z40(e),
Identity (2.24) follows by induction from the identities

cosP(¢0,) (1+ K, cosd(e,))
=1/2(cosp(Ego) + K cosp(Eoo+04))
+1/2(cos p(Sgo) + Ky cos (o —24)), (2.25)
and
(cos () + K cosd(o,)) (1 + K, cosg(e,))
=1/3(cosPp(Coo) + 3K cosple,))
+ 1/6(cos p(Ce,) + 3K, cos (&g, +0,))
+1/6(cos p(Eg,) + 3K, cosp(Eg, — 2,))
+1/6(cosp(Eo,) +3K K, cosdl(e, +05))
+1/6(cos ¢(E0o) + 3K, K, cosdle; —5)), (2.26)
with o, =&p,+0), in (2.26). Identities (2.13) and (2.26) are our basic tools to
expand each term in the sum

no

Y c,(cos(ége)+z,cosp(Eoo+0,) [ (1+zcose()) (2.27)

a=1 JjeA\supp eo

into a sum of terms, as in Theorem 2.1, (2.3).
In order to estimate the terms produced by that expansion, (Sects.3 and 4) we
will need the following condition on g,,.

Condition (2.28). If ¢, can be decomposed as
00=0+(o—0), with ¢*0+0,—¢", (2.28)

and ¢ satisfies dist(¢', 0 — ') Z2Md(0')*, then Q(¢)e[m~+&, m+1—L"], for some
integer m, 0<& <1/2, i.e. Q(EQ') is fractional.
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In the example of the dipole, o' =46, Q(¢¢')=¢, so Condition (2.28) is fulfilled if
0< &<1, ie. the charges in the dipole are fractional. We now prove

Theorem 2.3. There exists a family, F,(0,), of ensembles, A", such that

cosp(8,) [T (1+2zcosé(j)

jed

= ) cylcosd(Coe)+ Klo)cosd(Eoo+0™)) ] (1+Kle)cosd(o), (2:29)

N eF aleo) el
where each A~ satisfies properties a)—c) stated in Theorem 2.1, /" U{fg,} and
N U{gy+0”} satisfy a) and b), and if Condition (2.28) is imposed on @, then c)
holds, too, in particular, if 0, C&oy+0” is such that dist(g,, oo+ 0" —0,)
=2Md(g,) then g, is charged, with Q(¢,)e[m+&, m+ 17, for some integer m.
The coefficients K(p), o€ A", satisfy (2.6)~(2.8), and

K(Q“V) < JAo(eo) ;Ao ) ,C-Als(eo, ) , (2.30)

where k is some constant, s(0q,0”")=suppo,usuppe”’, and C and A are as in
(2.6)-(2.8). Moreover, the coefficients c,, K(g"), K(g), o€ A, are independent of
&g

Remark. It is not hard to also prove a variant of Theorem 2.3 with cos$(&g,)

replaced by [] cos¢(Ce;), where each g; satisfies Condition (2.28). The proof of
Jj=1
this is an easy generalization of the one given below.

Proof of Theorem 2.3. We closely follow the proof of Theorem 2.1. In order to do
the induction step we need a slight generalization of Lemma 2.2: We consider
n-ensembles of the form .

&=60{a},
corresponding to a product

(cosP(&eo) + K(@) cosp(éeo +2) [ ] (1+K(e)cos (o)) (2.31)

0eé

The definition of an n-ensemble is as before, but it is required that

dist(s(o, 0), 0)>2", for all 0eé,
with
$(@o, @) =supp@oUsuppQ.
In the pairing step of the proof of Lemma 2.2, see (2.14), we treat the factor
cosP(Eo,) + K(0) cos (&g, +0) as if it were =14 K(9) cos¢(g), where ¢ is a fake
charge density with suppg=s(g,,0), d(0)=diam(s(g,,0)), Q(0)=Q(0) and K(Q)

=K(@). Thus, the factor (cos@(Eg,)+ K(3) cosp(Eg,+ 0)) may be paired with a
factor (1 + K(g) cos ¢(p)) iff

dist(,0)=2""".
If this condition is verified, the product

(cos p(£0o) + K(9) cos p(Seo +0)) (1 + K(e) cos p(e))
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is replaced by the right side of identity (2.26), which is inserted in (2.31) and
expanded, etc. The combinatorial aspects of identity (2.26), in particular the
multiplication of the coefficients K,, K, and K, K, by factors of 3, are identical to
the ones of identity (2.13). Thus, the identity

(cosp(£o) + K (@) cosp(Eeo +0)) [ (1+ K(e) cos o))

0eé

=Y c,(cosd(Eop) +K'(@) cosp(éeo +0) [] (1+K'(e)cosd(e) (232)

0'eéy

replaces (2.11), and parts a)-c) of Lemma 2.2 hold, with &, replaced by g”yu{@’}, In
particular, &, is an (n+ 1)-ensemble, and

dist(s(ge, '), 0)>2""1,
for all ¢o'e g’y, and all y.
With the above modifications, the proof of Theorem 2.3 is virtually identical to
the one of Theorem 2.1, in particular, the above generalization of Lemma 2.2
permits us to carry out the induction steps. The initial ensembles are

g(()at) = {Qx}xeA\supp Qo Y {Qa} ’

where g, is one of the charge densities appearing on the right side of (2.24).
Inequality (2.30) is proven in the same way as (2.6)—(2.8) if one uses the simple fact
that z, < k“eteolz40(e=) s gee (2.24). The last point to be checked is that part c) of
Theorem 2.1 holds in the present situation, provided Condition (2.28) is imposed :
If pe A" the proof of c) is as before. If g =<Eg, Condition (2.28) just says that c)
holds. Hence we must only consider the case 9= &g, +¢". Let ¢, Co be such that
dist(e,, 0—0,)Z2Md(0,)*. If 9,nsuppg,+¥ then Q(g,)=*0, since, by Condition
(2.28), Q(loo/suppe,) is fractional. If o, Nnsuppg, =@ the proof that Q(g,)+0 is as
before. [

Corollary 2.4.
[T(t+zeosdp(D)= Y c(1+K(@")cospe”) [T (1+K(e)cosd(e)), (233)

jead NeFa(eo) oeN
where F ,(0,), ¢y, K(0") and K(o) are as in Theorem 2.3.

Proof. Follows from Theorem 2.3, in particular the fact that Z,(o,), ¢, K(¢”), and
K(p) are independent of &, by letting & tend to 0. [0

3. Charged Constituents and Bounds on the Effective Activity of Charge Densities

In this section we estimate the total number of isolated, charged constituents of a
given charge density g in one of the ensembles .4/ constructed in Theorems 2.1-2.3
in terms of its entropy. In order to accomplish this, we use (2.5), part c) of
Theorems 2.1 and 2.3. We show that sufficiently many constituents g, of ¢ are far
from ¢ —g;, in the sense of inequality (2.5), and hence are charged, so as to permit
us to renormalize the bare activity K(g) by electrostatic inequalities, see Sect. 4, in
such a way that if § is large enough the renormalized activity is bounded above by
1.
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More precisely, we shall show in Sect. 4 that the renormalized activity, z(f, 0),
of some ge A" is bounded by
z(B, 0) =K(e) exp[ — BE,, (0, /)]

loc

<exp[(c—Bd) A(0)] (3.1)

for some positive, finite constants, ¢, d. Here E, (o, 4") is a (local) portion of the
electrostatic self-energy of ¢ in the ensemble 4. Clearly, inequality (3.1) requires
proving a lower bound on E, (g, /") in terms of A(g). We state this lower bound
below and then prove a combinatorial lemma needed to establish-it. We now need
some definitions:
Let %,(0) be a minimal collection of 2¥ x 2* squares covering the support of g.
By minimal we mean that (o) is chosen such that its cardinality, |%(o)|, is
minimal, i.e.
%40 =A440). (3.2)

(the area of suppg on scale 2%).
Now, we define ¥(g) to be the sub-collection of those squares s’ in %,(0) which
are far separated from other squares in #(g), in the sense that

dist(s', s) = 2M 2% =27k b (3.3)

for all se %(0), s#s". [If F(o) consists of only one square and Q(0)=0 we set
S,(0)=10.] Here we have set 2M =2, for some b> 1. We define ¥'(0) = %(0)\%;(0)
and set F(0)=F5(0), so that | ()l =Ay(e). We note that, by (2.5), respectively
Theorem 2.3, ¢), s'ng is charged, for each s'e #/(0), k=0,1,2,.... Let

A(o)= k; %) + Aol0) - G4

Note that, for k>1In,d(g), ¥(0) consists of a single square covering all of suppo.
Hence ¥, (0) =0, |%,(0)l =0, so that the sum on the right side of (3.4) terminates at
some k=k(p)<1In,d(g) [unless g is charged, in which case k(g)= o, | (0)|=1, for
all k>1n,d(0)]. In Sect. 4 we prove that each constituent of a charge density ge A~
covered by some square s'€ (o), k=0,1,2, ..., contributes at least a positive
constant D,, independent of ¢ and ./, to the electrostatic self-energy E, (0, ).
Thus

E (0, /)2D,A(0). (3.5)
The main result of this section is

Lemma 3.1.
Al@)=D,A4'(9), (3.6)

for some finite constant D, independent of ¢ and A". [

Remark. By combining inequalities (3.5) and (3.6) we conclude

Eloc(Q’ '/V) g(Dl/Dz)A(Q) )
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and, using Theorem 2.1, (2.6)~2.8), we obtain
2B, 0) = K(g)e™ "Froe(®
=exp[(C+Inz—fD,/D,)A,(e)]
-exp[(C—fD,/D,)(Al) — Ao()]- (3.7)

For z=conste”, ¢<D,/D,, this yields (3.1). A similar estimate follows from
Theorem 2.3, (2.30).

Proof of Lemma 3.1. We define a function y by
y(k)=[o"'(k—b—2)],

where [x] denotes the integer part of x.

We now fix some k, with 2% <d(g), so that &,,,(¢) contains at least two
squares. Let s; be some square in ¥ (o). [1t is assumed, here, that F,,(0) =+ 0.
Hence |#(0)|=2.] Then, by the definition of ¥, (e), there exists some square
5,€ ¥ ,(0) such that

dist(s,, 5,) <2M27® < 2pok—b=2 k=2
Since d(s,)=d(s,)=]/22"®,
d(s,)+d(s,) +dist(s,, s,) S 2102 4 k72 < k=1

provided 0 = y(k) =k —4 which holds for b>1, «>1. Thus, s, and s, can be covered
by a single square se #(0). Next, let s,, ..., s,,, m = 3, be squares in &, (¢) such that

dist(s, s, ) <2M29® /=1 .. m—1.
Then, since
d(s,_ 1) +d(s,) +d(s,, ) +2Q2M297#) < 20%3 4 Jk=1 <ok
s,_ .S, and s, ; can be covered by a single 2% x 2¥square, forany £ =2,3, ...,m— 1.
Therefore %] =< % 2k x 2% squares suffice to cover s,,...,s,, for any m=2,3, ...
From this we easily derive the inequality
AQ) =1L =31 (@) + 1 ()]
S54,00(0) + 1500l (3.8)

provided %, (¢) contains at least two squares. We recall that

- n(@)

Ag)= ;0 4,(0),
with
n(e) = [In,(Md(e))] + 1;

see Theorem 2.1. We therefore need to prove (3.8) only for k <n(g). For such values
of k, 2"® <d(g), (provided o <2). Therefore |, (0)|=2, and the above proof of
(3.8) applies. [For k> n(g), (3.8) would, however, be false.]
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Let 6 =b—2. Clearly, inequality (3.8) can only be applied if
yk)=[o" Y(k—0)]=0, ie k=6.

For each k, we now iterate inequality (3.8) £ =/(k) times, where /(k) is the maximal
number for which

PPR)Z0, e yP k)24, (3.9)

Here y™ denotes the m-fold composition of y with itself. This yields
Z—1
Ao = 2 2_ml‘¢y,m+ 1(k)(Q)|+2_[Ayz(k)(Q)
m=0
‘-1
S X 27" (@)l +27 A00) (3.10)
m=0

with £ =/(k) given by (3.9). We have used that
Aol@)2A0), forall j=0.

We now estimate Z(k). For this purpose we extend the definition of y to the whole
interval [, c0), by setting p(x)=[a~ '(x—98)], for arbitrary x=4. Obviously, y is
monotone increasing, and

yx)y>o (x—8)—1. (3.11)

These two properties yield
P =yy(x) Z e (x—d)—1)>a *x~a 2o 1o—a ! —1,
and, by induction,
y"‘(x)>oc'”'x—5<i oc’j> - miloc_j. (3.12)
j=1 j=0
If we let m— oo in the last two terms on the right side of (3.12) we obtain
PYx) >0 "x— (00— 1) Yo + 5).
For k=(o—1)" '(a+6), we define ¢ (k) to be the maximal integer for which
o o®k —(a—1)" Y (a+8)=0. (3.13)

Then y°®(k)>0 and therefore £(k)=¢ (k).
By taking logarithms in (3.13) we thus obtain

0, 0<k<(@—1)"Ya+9)
Z(k)y= .
R {[(l/lnzoz) In, (k/ky)], otherwise, (3.14)
where ko= (x—1)"Y(a+9).
Next, we estimate the cardinality, |N,, j|, of the sets
N, =y (R)=J}, (3.15)

for given m and j. By the definition of y

a f(x—=0)—1=yx)sa H(x—9).
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Since y is monotone increasing,
a 2x—0 20 —a o —a T = 1=y (x —9) — D= p(r(x) Sy (x—9))

Sa ix—oa"20—a" 14,
and, by induction,

m—1

oc_"‘x—é( Y oc“) - oc“’éy’”(x)goc“mx—é( Y oc“’).
=1 £=0 =1
Next, let k_ be the minimal and k., the maximal integer in N; . Then

oc_'”k+—5<§:oc*"> Z ol Sym(k ) =j=y"(k_) <o "k —5(2&“’).

Thus

2
N, | =k, —k_+1<a" ( f‘l) for o>1. (3.16)
Using (3.10) we have
n(Q)
AlQ= Y. A0
k=0
n(o) f(k)—1
<y {2"”‘>A0(Q)+ Y 2‘"'19;’,"“(,()(@{}
= m=0
. k(o)
SEANQ+F ), 1), (3.17)

j=0
where

Ez
k

8

2=k (3.18)

[l

0
By (3.14) and (3.18)

EZko+ Y (ko/ky'™,
. k=kot+1
with (3.19)
ko=(@—1)"Ya+9).
Therefore E is finite, provided
I<a<?2, ie 1/ln,a>1. (3.20)

Now we turn to our estimate of F. We use

n(e) 4(k)—1

Y Y 2ol
k(@) /n(e) ¢(k)—1

= Z < g 2~m5y""+‘(k),j) I%/(Q),
k(o) 0

= Z ( Z méy””'l(k),j) I%'(QN
k(@) / =

= X[ 5 2wl

k(e)

Sdolo— 1) (1 —a/2)7" .ZO 17l
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where we have used the definition of N ,,, inequality (3.16) and condition (3.20).
Hence
F<8a(30—a?—2)"1, (3.21)

Lemma 3.1 now follows from (3.17), (3.19), and (3.21), by setting
D,=max(E,F). [

Remark. Inequality (3.17) is a somewhat finer version of Lemma 3.1 which can be
used to slightly improve the upper bound (3.7) on z(B, o).

4. Electrostatics and the Renormalization of Multipole Densities and Activities

One of the main issues of this section is to interpret and prove inequalities (3.1) and

(3.5), 1e.
Z(.B’ Q)§K(Q) exp[_ﬁEloc(Q’ '/V)]a} (41)

E (0, /)2D A o),

for some positive constant D,. Here z(f, ¢) is the renormalized, or effective activity
of a (neutral) multipole with charge density o, and E,, (g, /") is a “local” portion of
the electrostatic self-energy of . Moreover, .4 is a multipole ensemble satisfying
the properties stated in Theorems 2.1 and 2.3. Finally A'(¢) counts the number of
charged constituents of ¢ on all possible scales; see (3.4). In Sect. 3 we have shown
that (4.1) implies

z(B, ¢) =exp[(c—Bd) A(e)] , (4.2)

for some finite, positive constants ¢ and d, provided z<conste.
It is an immediate consequence of the definition of A(g) that

Ale) = (n(e) — [n,d(0)]) +2[In, d(0)]
= (o4 1) [In,d(e)]>31nd(e), 4.3)

hence
2(B, 0) =exp[3(c — fd) Ind(0)], (4.4)

so that z(f, ¢) <1, for B large enough; (a(e) = 2, for all neutral g!).

4.1. Main Result

Let 4" be an ensemble satisfying properties a)-c) of Theorem 2.1. Let §=0, &o,,

oo +o", where &g, satisfies Condition (2.28), (ie. the constituents of &g, are

fractionally charged), and A", g,, 0" satisfy the properties listed in Theorem 2.3.
The main result of this section is

Theorem 4.1. Let A" and g be as above, and N = N"U{g}. For each ge N, let o(g)
be some real number. Then

| g [1+ K(0) cos((0) + a(0))1di,()
= [ [T [1+2(B,0) cos(¢(@)+ a(e)1dy(¢) 4.5)

oeN
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where

p, Q)= K@) exp[ = BE, (0, /)]
and E, (0, A) is some function of ¢ satisfying
Eloc(Qa /V)ngAl(Q)- (46)

Moreover, g is a charge density which depends linearly on ¢ and satisfies

a) Q(@)=0(o), and
b) d(0) =2d() (unless @ is charged in which case d(@)= o, E, (¢, /)=0). [

Remarks. 1. The functional E, (¢, 4 is a “local” portion of the electrostatic self-
energy of ¢ in a sea of multipoles indexed by .4#"\{¢}. The renormalized charge
density ¢ and E, (g, /") will be implicitly defined in the proof of Theorem 4.1.

2. The basic idea behind Theorem 4.1 is as follows : The renormalization of the
charge densities ¢ and activities is done inductively in the scale of ¢. Let

N ep={0:0e N, d(@)£2"}.

Suppose that the induction has reached scale 2%, i.e.

[ T1 [1+K(e) cos(ele) +ale) 1duy($)

geN

= T [t+2(B,0)cos(d(@)+(0))]

0eN <k

[T [1+K(e)cos(d(o)+a(0)duy(d). (4.7)

eeM\N <k

Pick some ¢ with 2¥<d(¢)<2¥*!. One can, in principle, renormalize
1+ K(o") cos(¢(0') + a(@")) by integrating over all variables ¢(j), with j belonging to
some bounded array, Q(¢’,./"), of lattice sites centered around suppg’ and
diam(Q(g’, /")) =2d(¢’), in such a way that the factor

IT'T1 + (B, @) cos(¢(@) + a(@))],

where IT" extends over all those ge A", for which dist(e, ¢) =d(e'), is not affected.
Note that if ¢” satisfies d(¢”)>2* then

dist(o”, 0') = M2*>2¥*2>24(0"), for M=4,

so that factors [14 K(g")cos(¢(0”)+0a(g"))] corresponding to unrenormalized
multipole densities 9" # ¢’ on scales > 2* are not affected by the renormalization of

’

Q.

Mathematically, the renormalization by integration described above cor-
responds to taking a conditional expectation. One might view this procedure as a
“block spin transformation”: the “spin” ¢(g) is replaced by a “spin” ¢(g), where @ is
a new charge density — in general not integer-valued — with suppg C2Q(g, A").

However, it appears that explicit integration over the variables ¢(j), je Q(g, A"),
is an inconvenient way of carrying out the renormalization. Instead, we extract the
main contribution to the integrals described above by using electrostatic in-
equalities, in the form of complex translations [14, 5].
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4.2. Electrostatics for a Single Charge

For the proof of Theorem 4.1 we need the following lemma.

Lemma 4.2. If G(¢) is a functional independent of ¢(j,) then
[ OG(B)dpy(p)=e ™ [ HHIG($)duy(@), (48)

where p(jo)=1/4 Y.  P(k).
Jk—jol=1
Proof. The proof follows by explicit integration of the ¢(j,) variable:
f ettt exp[— | Z, (¢Uo)‘¢(k))2/2ﬁ]d¢(io)
k—jol=1

= Fa%8iadlio) | exp[— Y, (¢Uo)—¢(k))2/2ﬁ]d¢(io)- 0 @9

[k=Jjol=1

For the purpose of applying our methods to models other than the Coulomb
gas, e.g. the solid-on-solid model, or the Z,-models, we need a slight generalization
of Lemma 4.2 which we now describe. We consider functions I(¢), (replacing the
Gaussian e~ 1/29%%) which satisfy the following
Condition (4.10). i) I4(¢) is an even, positive integrable function of peR.

i) I,(z) is analytic in z in a strip Ye={C:[Im{|<¢} around the real axis, for
some large constant ¢. (When ¢= oo, 1 is entire.)
iii) I, satisfies the inequality

[I,(¢+ia)/Iy(p)| < e P, (4.10)

Sor all a with |a|<e, all peR, where c(f) is some ¢- and a-independent constant
which tends to 0, as f— o0 ; (c(f) may depend on the choice of €).
Note that by i) and ii)
I(§+ia)=1,(¢—ia). (4.11)
Remark. Clearly, the Gaussian

I(¢)=exp[ —(1/2p)¢?]

satisfies Condition (4.10), with ¢= oo and c(f)=1/2p.
We define

ifla; p)=14P+ia)Iyp) e cBaz (4.12)

By Condition (4.10), iii), |ligla;-)ll,,<1. Let du;, be any measure satisfying
Dobrushin-Lanford-Ruelle (DLR) equations [16] with Hamiltonian

BH, == % InI(é()—(), (4.13)

(i, jrc4a
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and a priori measure [[ do(k), e.g.

ke A

dp(@)=Nz' [T 160 —¢G) [ ddk), (4.14)

ji—jl=1 ked
ied
where N , is the obvious normalization factor, and ¢(j)=0, for all j¢ A.

Lemma 4.3. Let I, satisfy Condition (4.10), let du;, and iy be as above, j,€ A and
G(¢) independent of ¢(j,). Then, for all a with |a]<e

§ 9P0G(d)dpy () =€t P ei““"""’[ [T iga;d(o)— (k)| G(d)duy,(¢).

Jk=jol=1

Proof. Since dy, , satisfies the DLR equations corresponding to (4.13), it suffices to
consider the integral

F=[e 0T 1y(jo) — k) d(jo)-

[k=jol=1

By Condition (4.10), we may shift the contour of integration: ¢(j,)—¢(j,) +ia,
with |a| <e. This yields

F=e [t T 1 (o) — dlk)+ia)de(jo)

[k~ jol=1
=ermet e 1 Aiglas dlo) = (k)
19 (o) = $(K))} d (o). (“.15)

[Since lig(a; ¢)| =1, the integral on the right side of (4.15) converges absolutely, by
Condition (4.10),1).] O

Remarks. 1) If ¢() is independent of &, the factor

e~ +4c(p)a?
is minimized by setting a = q/8¢(p), provided |q/8c(B)| <e, in which case the value at
the minimum is given by exp[ —¢2/16¢(f)].

If |g/8c(f)| = € we set a=esigng. If the constant ¢(f) depends on the choice of ¢,
c(B)=c(B, €) - as the case may be, e.g. in the solid-on-solid (s-0-s) and the Z, -models
— the minimum is obtained by minimizing — ga+4c(B, |al)a®. In all cases we define

E(,9)= max {qa—4c(pla}, (4.16)

and a(f, q) to be the maximizing choice for a.

2) The above proof is based on the fact that integrals of analytic functions of
finitely many variables, ¢(j), can be estimated by means of complex translations of
the ¢(j)’s, [14]. This is the principle which we shall apply to renormalize multipole
densities and activities and establish Theorem 4.1. (When I, is the Gaussian, the
complex translation method is essentially equivalent to using electrostatic in-
equalities to estimate the integrals.)
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Next, we decompose the support of a charge density ge 4" into two disjoint
subsets Q,, 2, such that no two sites in £, are nearest neighbors. Let g,(j) = 0()),
for jeQ,, 0,(j)=0, otherwise, /=1, 2. Clearly ¢, + ¢, =0. We define

Roo()=0,(N+1/4 3 o,(k). (4.17)

lk=jl=1

By iterated application of Lemma 4.2 we have

§TT (1+K(o) cos dle)dpy(d) = H (1+K(e)e™ " cos p(Ro0))dpy(h)

oeN
(4.18)
where Eq(0,)=1/8) 0,(j)*. By an appropriate choice of Q, we have

Eo(e1)Z 3Eo(0).- (4.19)

In the proof of (4.18), (4.19) we have used the fact that for M >1 dist(g, ¢') =3, for
all p#¢" in A, so that supp(Ry0)nsupp(Ry0) =9, for any choice of Q,(e), 2,(¢),
/=1,2. Thus Q,(g), /=1,2, can be chosen to be independent of ¢'e A", ¢’ * 0, and
such that (4.19) holds, for all ge A" Identity (4.18) then follows by iteration of (4.9).

We may think of K(g)e PEo@) R o, respectively, as the renormalization of the
bare activity and charge distribution on a scale of 2° (whence the symbol “R,”).
Note that Q(R,0)=Q(0), for all g.

Let I, be some function satisfying Condition (4.10). Let E(,q) and a(B, q) be
given by (4.16), and

E(B,0,)= Y. E(B,0,(j)). (4.20)
By a suitable choice of Q,
E(B,0,)Z3E(B, 0). (4.21)
We define
ey(¢,0)=e® kﬂg {1 ._l;[: 1 ig(a(B, 0,(k)); p(k)— ¢(J’))}, (4.22)
and
Cﬁ(¢> Q)=Reep(¢a Q)’ Sﬁ(d)a Q)-__Ime[}(qs’ Q) (423)

By the same reasoning as above we deduce from Lemma 4.3 that

J T (1 +K(o)cosdl)dp, (#)=] ﬂ (1 +K(ee *"®ey(d, 0))dpy (4), (4.24)

eeN

and we have used that
C/;(¢a 0)=1/2( e/;(d) 0) +eﬁ(¢ —0)), (4.25)

an immediate consequence of (4.11). Let ¢ be an arbitrary charge density of
compact support. Then

e(p+b,0)=e"ey(,0), (4.26)

for any function b on Z?* taking the constant value r on {j:dist(j,suppo) <1}.
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4.3. The Basic Lemma Electrostatics for General Charge Densities

Next, we generalize Lemmas 4.2 and 4.3 in a way suitable for extracting the self-
energy of charged constituents of some charge density ge.#" on scales 2%
k=1,2,3,.... We introduce some additional notation. For any function ¢ of
compact support on Z2, let D(g) be all those sites of Z? contained in a disc in IR? of
radius 2d(g) centered at a point x(g) such that suppo C D(g), and

dist(supp o, dD())=d(g);

[here dD(p) is the outer boundary of D(g)]. Now let us fix a particular charge
density g*e A", with Q(¢*)=0. We define

N*={0:0e /,Q(0)=0,d(0) =2d(0*),0 0%} . (4.27)

[If 4" contains a charged element, g , 0.¢ A#"*, for any choice of o*e 4. The factor
K(p,) cos(¢(o,)+a(g.)) can be renormalized to 0, after all factors indexed by
g€ /\{o,.} have been renormalized.] We consider a mapping, G, from A™* into
functions of the variables {4(j)},
Qe N * =G4, 0),

with the properties

i) G(¢, ) only depends on the variables {¢4(j):je D(0)},

i) G(¢ +b,0)=G(d,0), (4.28)
for any function b on Z? taking an arbitrary, constant value, r, on D(g).

We should think of G(¢4,9) as the renormalized version, or “block spin
transform” of 1+ K(g)cos(¢(g)+0(0)), o€ A *. In the Gaussian case, ie. Iy(¢)
=exp[ —(1/2B)¢?], du;, = du,, G has the form

G(, 9)=1+2z(B, ¢)cos(p(0) +a(e)), or =1+K(g)cos(p(e)+a(e)), (4.29)

where o is some linear function of ¢, and
2(B.0)=K(g)e™ Fhrete .

[The motivation for the generality of our presentation lies in the circumstance that
in many interesting models, e.g. in the s-0-s and the Z,-models, I is not Gaussian
and, as a consequence, the renormalized version of 1+ K(g) cos(¢(g) + a(g)) is not
of the form (4.29).] We now define

Fu(@)= [] G(¢,00 [l [1+K(e)cos(¢(e)+a(o)]. (4.30)

QEN* o*F ge N\ N*

Let Q,, be the set of all sites contained in a disc of radius R, in R? centered at some
point x,, with
Q,CD(o*), and suppo*nQ,+0. (4.31)

Let ©, be some other subset of D(¢*), disjoint from Q,, such that
dist(x,,09,)=RR,, R=]/2. (4.31)

Let C{(¢,0%) be some bounded function only depending on {¢(j):jeQ,}, i=1,2.
We further assume that C,(¢, ¢*) has the properties

C(¢p+Db,0*)=€"C,($,0%), (4.32)
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for any function b taking the constant value r on Q,, where g= ) ¢*(j), and
Jje2y

Ci(¢,0")=C,(d, —0%). (4.33)
Example. In the Gaussian case,
C1(¢» Q*) = pi?(N)pio(e*) ,

where f and o(¢*) are linear functions of o*, supp fSQ,, and Y, f(j)= Y, 0*(j)

=q. Jjes Jjey

Lemma 4.4. Let A be as in Theorem 4.1, and let o and M be the constants introduced
in Sect. 2, Theorem 2.1,(2.4) and (2.5). Let V¥, o*, F ,., C,, and C, be as specified
above. Let ¢ be the width of the strip on which 1 satisfies Condition (4.10). Then, for
o>3/2 and M sufficiently large.

§ C1(#,0%)Co(¢, 0 F ity () = e(Cy, B) [ (RC ) ($, 0%) C o, 0¥V F ol P) ity (¢),
where

a) e is a numerical factor satisfying
0<e(C,,f)s min {exp[~InR(yq—c(B)y*dM))1}, (4.34)

yiv-k(Ry) e

for some constants d(M) and k(R ), with d(M)—2n+1, as M— 0, k(R,)=min(InR,
K-RY™1) where K only depends on M and R, and
b) RC, is a function, defined in (4.40) below, only depending on the variables
{¢(j):jeRQ}, with RQ ={j:dist(j,x,) SRR, + 1}, with the properties
IRC) (0" =NC (0",
(RC,) (¢ +b,0%)=eT(RC,) (¢, 0%),
for any function b taking the constant value r on RQ,, and
 (RC)($,0%)=(RCy)(p, —0"). U
Remark. RC, should be thought of as the renormalization of C;. The lemma will
enable us to renormalize 1+ K(0*)cos(¢(0*)+o(0*)) inductively, the induction
extending over all scales of 2X, k=2,3, ....
More precisely, in the proof of Theorem 4.1, Lemma 4.4 is needed to carry out
the induction step, 2¥—2*" 1. The purpose of the renormalization transformations

is to replace 1+ K(g*) cos(¢(0*)+ a(0*)) by a positive function of ¢, close to the
identity.

Proof of Lemma 4.4. For notational simplicity we suppose that Q, is centered at the
origin, i.e., x, =0. Let b(j) be a real-valued function on R? defined by

InR, lII=R,
b()=yIn[RR,|jI"'], R, Z[I=RR, (4.35)
We make the following change of variables:

P(j) = P(j) + ialj), (4.36)

where a is a real-valued function defined in terms of b as follows:
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Let C; be the connected components of [ ] D(g). We express each C; as a
QEN*
union of D(g), g€ S;C.A". For each S; we shall show that there is a unique g€ S, of

maximal diameter. We now define
yb(j), if jé | D(o)
o= o

. 4.37
Jbix), i jeCh 4.37)

where X; is a point of C; chosen so that if C; meets |k|< R, a(j)=yInR and if C,
meets |k| = RR a(j) =0, for all je C,. Otherwise we set x; = x(g,), the center of D(g,).
In Appendix E we establish two properties of C;

a) diam C;=3d(o),

b) |0C,| =10d(e)).

The uniqueness of g, follows immediately from a) and (2.4). Note that since R,
=d(g*), (2.4) together with a) imply that diamC; < R, hence for R > lﬁ C; cannot
meet both |k|< R, and |k| = RR hence afj) is well defined.

The constant y is chosen such that

max - a(j)—a(k)| =&,
[j—k[=1
R12|jl£RRy
where ¢ is the width of the strip of analyticity of the function I, Thus, by
Condition (4.10), the change of variables (4.36) is permitted. It follows from
Theorem 2.1, b), (2.4) and the properties a) and b) that

p7' max la()—a(b|Smin(in R KR(27),
leéljléth

with K =max(1,const(R/M)?), so that y<ek(R,)™ " suffices.
Note that F . is unaffected by the change of variables. This is seen as follows:
By property (4.28) of G(¢, ), g€ A*, and definition (4.37)

G(¢ +ia, 0)=G(¢,0).
If ¢ A, d(0)>2d(0*). Thus

dist(g, 0*) = Md(¢*)*> RR,

provided M is large enough and o>1. [Note that RR, <diam(D(¢*))—d(o™*)
<3d(g*), so M >3 suffices.] Hence a(j)=0, for all jesuppp, all g /\N*, g+ 0*.
Thus, only C,(¢,0*) and du, (¢) are affected by the change of variables (4.36);

dpy (d +ia)= { [T ipaG)—atk): ¢(j)— (k) exple(B) (al) — a(k))z]}dufﬁ(@ ;

i ks (4.38)
as follows from (4.12) and (4.13). By (4.32) and the definition of a, (4.35), (4.37),
Cy(p+ia,*)=e 1RIC (¢, 0%). (4.39)
We set

(RCy)(¢,0%)= { [T iga()—alk); ¢>U)~¢(k))} Cy(¢.0%), (4.40)
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and
e(Cy, B)=e """ Mexple(f)|Val3]. (4.41)
Since, by (4.12), lliga; ), =1,
IRC)( 0w 2IC( 0o -

Next, if b is a function which is constant on RQ, then

[T igat)—a(k);¢()—pk)+b()—b(k) =[] ixa()—a(k); $()—(k)),

Hk_jl=1 k—jl=1
SRRy JISRR;
so that

(RC))(¢+b,0%)=e"(RC,)($,0%),

where r is the value of b on RQ,. Finally,

(RC)(. M= [] iya()—alk); () — k) C(4,0%)

k= jl=1

= [T i(—aG)+alk), ()~ p(k) C(¢, —0*)

lk=jl=1
=(RC1)(¢’ _Q*)7

if —ais chosen as a translation function when ¢* is replaced by — ¢* which is what
will be required henceforth.

It remains to prove estimate (4.34) on e(C,, ) which is really the essential part
of Lemma 4.4

By definition (4.37)

Ya?Gy=y* 3 (Wb ()+ 2B, (4.42)
j j#UD(e) i
QEN*
where
Bi=y> ) (b(x)—b())*. (4.43)
jeoC;
The first term on the right side of (4.42) is bounded above by
P2 (Vb)*())<y*2n+1)InR, (4.44)
j

as can be seen by comparing the finite difference gradient with the continuum
gradient, ie. by estimating Y (Vb)?(j) in terms of f (Vb)2(x)d*x.

Jj Ry<|x| SRRy
By (4.43) and b), B, is bounded above by
B, <9*10d(@,) max[b(x,) — b(j)]*
Jeoti
=7?20d(g;) [In]x;| —In(lx,| — 3d(e))]?
<180y%d(e,)* [lx;| —3d(e)]1 2. (4.45)
Note that B;=0, unless

R, —3d(e) =Ix{ =RR, +3d(e,) (4.46)
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otherwise C; lies entirely outside the annulus R, <|j|<RR, hence b(x;)=b()),
je oC;.

In order to bound the sum of the B; we first show that d(p;) is small compared
to R,. By (2.4)

Md* <dist(g;, 0*), with d=min[d(g,),d(0*)].
By a simple, geometric argument and (4.46)
dist(g;, 0*) S R, +|x;] +dle) = 2Ix;| +4d(g,).
Using the upper bound in (4.46) we thus get
Md*<2|x,| +4d(0;)<2RR +8d(;)

<2RR, + 16d(¢*) < 24d(¢%), (4.47)
since d(0)=2d(o*), for all pe A#"*, and
RR, <diam D(p*) =4d(0*).
Thus, for =1 and M large enough, d =d(g;). We then get from (4.47)
M2 oy <Ixd, (4.48)
and
¥7—§ d(e)*<RR,. (4.49)

From (4.48) and (4.46) we conclude that for M large enough, > 1, and for all g, for
which B;=0,

(1-0)R, =Ix|=RR(1+9), (4.50)
for some 0 =3(M,a) which tends to 0, as M — c0. Moreover, (4.48) yields

Ix;| —2d(e;) = Ixil, (4.51)

for M large enough.
Next, let A4* be the class of all those g,e 4™ satisfying (4.50) and whose
diameters lie in the interval
2k<d(g)<2*"1. (4.52)
Note that, by inequality (4.49),
2RR \'*
pARY e
- (M—s)
We now insert inequality (4.51) into the upper bound (4.45) for B;. This yields
Y B;<consty* Y d(g)?|x;]| 2

o€ Nk 0ie Nk

Sconsty?23*T D Y|y 72, (4.53)

0.eNk
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The first inequality in (4.47) gives

M—4 M—4
d

lx,.lg—i— (0)*=c;, with ckE—TZ“k, for all ge . (4.54)

Applying part b) of Theorem 2.1, (2.4), once more we see that
Ix(o 1) - X(Qz)l = diSt(Qp Qz) —d(e 1) - d(Qz)
> M2ak _ 2k+ 2
>(M—4)2% for oa>1,

for arbitrary g, and g, in A;* with g, ¥ g,. This inequality and a simple, geometric
consideration show that the number of elements g, A4;* for which

re SIx | = (r+ gy,

is bounded by K r, for some constant K, independent of g, «, and M, provided M
is sufficiently large. By (4.54) and (4.50) the range of values of r is given by

m,<r=<m,,
where
m; =c, 'max((1 =R, c,)
m,=c; 'max((14+ )RR, c,).
Recalling the definition (4.54) of ¢,, we therefore obtain

my
Z Ixl ?=K, ¢ ? Z rt

0ieNFe r=m

<(K,/M?27*InR.
Combining this inequality with (4.53) we get
Y B,<(K3/M?)y*InR2G 2k,

oie Nk

Hence, for «>3/2 and M sufficiently large

Y B,<(Ky/M?)y*InR Y 2032k (4.55)

QieN* k=0

<K(M)y*InR, (4.56)

o0

for some finite constant K(M) which tends to 0, as M—co. If we now combine
expression (4.41) for e(C,, f) with estimates (4.42), (4.44), and (4.56) we obtain
inequality (4.34) of Lemma 4.4, under the condition that «>3/2. This completes
the proof. [

4.4. Proof of Theorem 4.1

The proof is based on an induction in the size of the diameters of the multipole
densities ge A". We define the diameter of the charged multipole to be infinite.
[This is permitted by Theorem 2.1, ¢).]
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Let
N p,={oe N :d(@)£2"}.

The induction hypothesis is
§ TT [1+K(o) cos(d(e) + (@)1 dpy(¢)

oeN

={ TI [t+2(B,0)cos(¢(@)+0(0))]

ol <p

IT [1+K(e)cos(pl)+a(@)]duye),

eeN\N ¢ p

where z(, o) satisfies (4.6) and ¢ has properties a) and b) stated in Theorem 4.1.

The step p=1—-p=2 follows from Lemma 4.2. Now let o*e 4" be such that 27
<d(e*)<27* 1, (If there is no such element we proceed to the next scale.) In order
to establish Theorem 4.1, we need only show

K(0) [ e F . p)dug()=z(0, p) [ €T F y(d)dpy(9), (4.57)
where F .. is given by (4.30), with I($)=exp[—(1/2)¢*], and E, (o* A4
=D, A'(0)-

The proof of (4.57) again proceeds by induction. First, we apply (4.18) and
(4.19). It then suffices to show

E\o@*, N)~3Eq(@*) 2D kZ (@] (4.58)
=1

Let k, be the smallest integer such that % (¢*) is non-empty. Let se & (0*). Recall,
0*/s is charged and isolated in the sense of (3.3). We suppose, to simplify notation,
that the square is centered at the origin. Let 5=2s5€.% . ,(0*). [Often § is also in
S+ 1(0%), but this need not always be so.] We define

f=Ry(0*/s)=R,(0*/5),
and
g=Ry(@*)—f.
In (4.32), (4.33), set

C,(¢,0%)=e"Y, and C,(¢,0*)=e"?.

Circumscribe s by a disc 2, of radius R; = [/5(2"0 —1).In (4.31),(4.31") and Lemma
44, set R= ]ﬂ When I (¢)=exp[ — (1/2B)$?], e= oo and ¢((B)=1/2p, in Condition
(4.10). Furthermore d(M)=2(n+1), for M large enough, in inequality (4.34),
Lemma 4.4. Hence

e(Cl,ﬂ)=e_“" 2)(ﬁ{4(n+ 1)q% , (4.59)

with |g| Zmin(&’, 1 — &), when ¢* =g ; see Condition (2.28), and |g| = 1, for all o* * 0.
When C,(¢, 0*)=€'*") is renormalized, it is replaced by (RC,)(¢, ¢*), defined
in (4.40), which in the Gaussian case is given by

(RC,)(¢,0%) =€),

for some function f depending linearly on f, with supp fC35€.%, , ,(0*).
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This procedure clearly assigns every se% (¢*) a factor e #P7, with
D=(In2)/4(z+1), and
min 6’5 1- 6/)’ *=0
alz {7 =0
, Qg =*0
and if 5€ % , ,(0*), the procedure can be iterated, since supp f C5.

Thus (4.57) follows by induction, and the proof of the theorem is complete. [
The following Fig. 1 shows the geometric situation.

D(p), peN* @ p e NAN*

S

(O]

271

Fig. 1

5. Kosterlitz-Thouless Transition in the Two-Dimensional Coulomb Gas and Villain
Model

In this section we first complete our proofs of Theorems A and B (Sect. 1.3) for the
hard core Coulomb gas. We then show how to extend our methods to general two-
dimensional Coulomb gases with a priori charge distribution dA(q) satisfying
Condition 4, Sect. 1.2. As corollaries we obtain proofs of Theorems B-D (Sect. 1.4)
for the Villain model and the dual discrete Gaussian model. The general ideas
underlying our proofs are the ones described in Sect. 1.5, all principal tools have
been constructed in Sects. 2—4.

5.1. The Hard Core Coulomb Gas

As in Sects. 2-4, we start by considering the simplest system exhibiting a
Kosterlitz-Thouless transition, the two-dimensional hard core Coulomb (lattice)
gas. For this gas

M0)=1, A*+1)=z/2, Ag=0, otherwise,
and

Ap)=(1+zcos¢). (5.1)
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Let
O aB2)=D8(B, ) (5.2)

be the Gibbs state of the hard core gas in a finite volume A, with free (or periodic)
b.c. at 04, in the sine-Gordon representation.
The first main result is

Theorem 5.1. Let f be a real valued function such that

Y f()=0. (5.3)

For each 6>0 there is a B, independent of A such that for all f>f, and 0=z
< BN ta 4
= €

- (=947 O (5.4)

<e£¢(f) >A (ﬁ» Z) 2 eXp| —

Remark. To prove Theorem A we first note that the right and left side of (5.4) are
analytic functions in ¢ and using the ¢ — — ¢ symmetry of {-)(f,z) we obtain

2

2
L+ 4GUPH (B2 +0E) 2 1= S (1=0)BL AT H+06.  (55)

Subtracting 1 from both sides, dividing by &* and letting ¢—~0 one obtains
Theorem A.
In order to prove (5.4), we consider

Zef)=Z e 4 (B, 2)

=[P [T (1 +zcosd(j)dpy(e). (5.6)
We define
o) = gCU%)f(/), (5.7)

where C is the Green’s function of A4; o, is well defined since f(0)=0 and
supp f € A. In (5.6) we now change variables,

d()—=d()+a,(), forall j. (5.8)

Under this change of variables,

") 5 g2 # NP BL (=271 (5.9)
duﬁ(d))_,e(llw)@ﬁ,dape(I/B)<¢,Aaﬁ>dﬂﬂ(¢) , (5.10)
cos¢(j)—cos(¢(j) + a4()) , (5.11)
where by (5.7)
(1/B)K P, dogy = —ed(f),
and

(1/2B)ap, Aoy = —&*B/2{ fi(= )" .
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Thus
Z (ef)=eFHS =710
S 1Tz cos(@0) + o) 1duy(¢)- (5.12)
JE

One sees that the “observable”, ¢“*Y), can be eliminated by the change of
variables (5.8).

Next, we apply Theorem 2.1, [replacing 1+ z cos¢(j) by 1+ z cos ¢'(j), with ¢'(j)
=¢(j)+0,(j)], to obtain

Z (cf) = e@HUD71p

{ > enf 1l [1+K(e)cos(¢(g)+a,;(g))]duﬁ(qs)}, (5.13)

NeF 4 geN

see Sect. 2.1, (2.3)«2.8). To all terms on the right side of (5.13) we then apply
Theorem 4.1, ie.

Z y(og)=] [] [1+K(e)cos((e) + o401 duy(¢)

= ]_JIV L1+ 2(B, 0) cos(¢(@) + a4(0)] duy(P) (5.14)
with
z(f, 9) =exp[ —(¢f—b)Ind(0)], (5.15)

for some constants ¢ >0 and b < oo, provided > b/c [see (4.4), (4.5)].
We now choose f so large that z(,0)<1, for all ge _#". Then

0<1+2z(B,0) cos(d() + a0))
=explIn[1+2z(B, 0) cos(¢(@) + a(0)] - (5.16)
We define
X =2z(f,0) cos p(2),
and
Y =2z(p, 0) {cosp(g) (cosa,(0) — 1) —sinP(@) sinayle)} -
By a trigonometric identity, (5.16) and Taylor’s theorem with remainder,
L+2(B, 0) cos(P(2) +a4l0)) =expIn[1+X + Y]
=(1+X)exp[Y/(1+X)—(1/2)Y? /1 + X +0Y)*], (5.17)

for some 0e(0, 1). Let z,(0)=z(B, 0) (1 —z(B,0)) !, and [x],, the value of x mod2n
between — = and 7.
Then

z(B, @) cos p(0) (cosaz(0) — 1) (1 +X) ™' = —(2,(0)/2) [a,4(0) 13- (5.18)
We set

S(e; )=2z(B, 0)sinp(@) sina (o) (1+X) 7", (5.19)
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and note that, for z(f,0)<1, S(¢;¢) is bounded and is an odd function of ¢.
Finally, if 8 is so large that z(f8, g) <1/4, for all ge A",

Y2/(1+X +0Y)* <z,(0) [04(0)13,, (5.20)

where
z,(Q)=(1+m)z(B, 0)*(1 —4z(B,0) *.

We now insert (5.17)—(5.20) into (5.14). This yields the lower bound

Zﬂ(c,;)gew{—(lﬂ) Y (z4(0) +25(0)) [c,,(a)]ﬁn}

QN

§ TT @01+ 2(B, ) cos p(@)]dpy()

geN

gexp{—(l/.z) > (zl(g)+z2(@»[o,;(g)]%n}zm (5.21)

0N

with Z ,=Z ,(0). Recalling that S(¢;¢) is odd in ¢, one sees that the second
inequality in (5.21) follows from Jensen’s inequality and the evenness in ¢ of the

measure | | [1+z(B, o) cos ¢(@)] duy(¢) which by (5.15) is positive for § sufficiently
eN
large. ’

In order to prove a lower bound on the functional Z ,(¢f), it now suffices to
exhibit a lower bound on

exp{—(l/Z) 2. (2,(0)+2,(0) [o4(0) §n},

eeN

which is independent of the ensemble ./, i.e. uniform in A€ Z,.
This is done as follows: Since all charge densities ge .4 are neutral,

ag@)= Y. {o,(p,) = ,(n,)}, (5.22)

where p, e {j:o(j)=1}, n,e{j:o(j)= — 1}, and there are A,(¢)/2 terms in the sum on
the right side of (5.22). Clearly

)= 041)= T (0,0~ ).

where j,=p,, j,=n,, for some 7, and |j,,— j,+;|=1, forallm=1, ...,/ —1. Since p,
and n, belong to suppg, £ <2d(g). We thus get

lo5(p,) = o5n)l = max [(Vo,)()|-2d(o)
=|(Voy) (j, )| 2d(0),

for some j,e D(g). (Here V is the finite difference gradient.) Thus
log(@)l = Ao(0)d(@)I(Vay) ()l (5.23)
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By the definitions of z, and z,, we see that for § sufficiently large there is a x such
that
z4(0) +z,(¢) =constz(B, ¢)

<exp[~ P ina (e))]

for all ge A" and all /'€ #. Thus for f>1
[z1(0) +22(0)] [o4le )]%niconstZ(/? 0) [Ao(@)d(@)1*1(Vay) (j,)I?

-3 2ﬁ |(Va,9(1 )d(@)™ "

Note that
Y Ve (jPde) ' £ Z 27k > Vo (j 1> < [1Vo,l>.

eeN eeN
2k<d(g)s2k*!

In the last sum we have used the fact that j, are distinct by (2.4). We therefore obtain

exp{—(1/2) }. (z,(0) +2,(0)) [o(0)13,} Z e~ ¥2PUI7orllz, (5.24)

QEN

By definition of a;, see (5.7),

IVogl3=e*B>{fi(=A)" > (5.25)
Now, Egs. (5.6), (5.13), and (5.14) yield

Z(ef) =TI S DTN ¢, Z (o),
NEF 4
so that, using (5.21), (5.24), and (5.25), we get
Z fef)zexpl(e®/2)(1=0)BLA (=)' DT Y efZy. (5.26)

NEF 4

But, ) c¢,Z,=Z, so that

o (DY [(Bo2)=Z 3 Z j(ef) 2 DAL (710
which completes the proof. []
Remarks. If we set f(j)=0,,—9;, we get from Theorem 5.1
(@0)= P(x))*) 4 (B, 2) 2 2(1 — ) BLC(0,0) — C(0, x)]
~(1—0)pn~'Inlx|,

for large |x|, for all > f(3, z). This proves Theorem A, Sect. 1.3.

By polarization, inequality (5.4), Theorem 5.1, extends to complex-valued
functions, f. Thus, in each translation-invariant thermodynamic limit, we obtain
from (5.4) by Fourier transformation

APk (B, 2)= (1~ 6) BC(K)
~(1-08)pk~2%, for k=0 small,
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for all B> p(0,z). As explained in Sect. 1.3, this implies that the Stillinger-Lovett
sum rule is violated for sufficiently large f.

Next, we turn to our proof of Theorem B, Sect. 1.3. We propose to show that
the fractional charge two-point correlation function G«0,x), with 0<{<1,
satisfies the upper bound

G0, x) < const(1 +|x|) 249, (5.27)

for some constant 6(f, £) which is positive for all > B(&, z), and B(¢, z) is a finite

constant, provided £€(0,1) and z<conste”, with ¢<1/16. The analogous lower

bound (1.24) has been proven in [5, Sect. 3], and holds for all  and z=0.
From (1.22), Sect. 1.3, we recall that, in a finite region A,

Gé(O, x) — <ei€(¢(0) - <15(x))>/1 ('3’ z)
={cos[&(P(0)— p(x)1> 4 (B, 2), (5.28)

by the ¢— — ¢ symmetry of {—>,(f,z).
By Theorem 2.3, Sect. 2.5,

GA0,x)=2,") ¢, f(cosp(éo,)+ K(o™) cosp(Egy +0™))
- [T (1 + K(o) cos p(0))duy(e), (5.29)

Q0N

where ¢4(j)=0;,—6,,. It is obvious that g, satisfies Condition (2.28), Sect. 2.5.
Thus, for 0< ¢ <1, we can apply Theorem 4.1, see also (4.57), and conclude

GA0,x)=2," ;cm §(2(B. Eoo) cos p(ED) + 2(B, Eoo +0™)

rcosp(Cog+0™")) [T (1+2(B, 0) cos (@) duy(@). (5.30)

0N

By (4.2) and (4.4)
z(B,0) Sexp[ —(cf—b) Ind(g)], (5.31)

if z<conste®, with ¢<1/16, and f>b/c, for some constants ¢>0 and b< o
(depending on z). Furthermore,

0<z(B, Soo) S exp[ —c'E*fInd(ey)] (5.32)

for some positive constant ¢’ <1/27.
Let n=min(&, 1—¢), and let ¢ and b be the same constants as in (5.31). The
bounds on z(B, £, +¢”) are

0<z(B, Eoo+o")<exp[—(cn*f—b) Ind(¢gy+0™)], (5.33)
for B>b/cn*.

The proof of (5.32) is really a simpler variant of the one of Lemma 4.4. The
bound (5.33), proven in Theorem 4.1, see (4.58), is quite crude. In the form given
here, it requires f>0(n %) which is a somewhat awkward condition. It can be
improved by going through the renormalization of cos ¢(Eg, +¢”) more carefully;
see Lemma 4.4. However, our methods only prove that

2(B, Soo +0") Sexp[ — " Ind(Eo, +0")],

for some constant ¢’ >0, if §>0(n ).
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By (5.31),
z(f,0)<1, forall geA” andall A
if B>b/c, so that
[1 (1 +2(B, 0) cos (@) dpy()

QEN

is a positive measure. Since z(B, £g,) and z(B, Eg,, + ¢”) are positive, for all B, & and
z>0, we therefore obtain from (5.30) and from the trivial inequality |z cosa| = z, for
z>0,

G0, x)=Z," ;CW[Z(IL £oo)+2(B, oo +0™)]

§ T (1 +2(B. 0) cos p(@)) dp,($)

QN

< max [2(B, &oo) + 2(B, Eoo +¢™)]

"zt ;CM [T (1+2(B, 0) cos (@) duy(), (5.34)

eeN

provided fi>b/c. By Corollary 2.4, Sect. 2.5, and Theorem 4.1
Zs= ;cm [ +K(@")cosple™) [] (1+K(o)cos p(e))duy()
N

Qe

= Yex [+ 2(B.0")eosdle™) T (142(6,0)cos p(@)duy(9),
QEN
where the renormalized charge densities g, and the renormalized activities, z(f, 0),
are identical to the ones in Egs. (5.30), for all g A", This last assertion follows from
the simple fact that, by Theorem 2.3 and Corollary 2.4, the renormalization

transformation of [] (1+ K(g)cos¢(g)) may be chosen to be independent of &.
oeN
Since the characteristic functional, (i.e. the Fourier transform) of duy(¢) is positive,

[(t+2(8.0")cosp(e™)) [T (1+2(B, 0) cos $(@) dy(h)

eEN

2 [] (1+2(B, 0) cos $(@) (),

QEN

for all A", Thus, using (5.34),
G0, x) = max [2(B, Eeo) + (B, oo +07)]

"z ;cm f(1+2(B,0") cosp(e™))

- [T (1 +2(B, @) cos $(@)) dpy(¢)

= max [(8, {oo) + 2(B. Eoo +¢™)].- (5.35)

Finally, we note that
d(&eq + ")z d(Ce,)=dl0o) =1,
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for 0<¢ <1. It follows therefore from (5.32) and (5.33) that for B> b/cy?

G0, x)<2exp[—(cn*f—b)In|x|]
which yields (5.27).

5.2. General Coulomb Gases, Villain Model and Discrete Gaussian

We now extend the arguments in Sect. 5.1 to general Coulomb gases with charge
distributions dA(g) satisfying Condition 4, Sect. 1.2. As we already noticed in Sect.
1.4, the dual of the Villain model, identical to the discrete Gaussian, is included in
that class. For this model we prove Theorems C, D stated in Sect. 1.4. Our first task
is to extend Theorem 2.1 to the general class of Coulomb gases characterized by
Condition A, Sect. 1.2. Thus we consider a general a priori distribution dA(q) with
suppASZ and Mg)=A(—gq). It is not necessary to assume that A is a positive
measure, but the growth condition

14(g)| Sconste® e £<1/16, (5.36)

is essential. Fourier transformation yields
Ap)=1+ Y. 2A(q)cos(ge).
=1

We now choose a sequence, {{,},~ ;, of positive numbers with

i {,=1, and || !<conste*", (5.37)
for some finite, positiv:: «'. (An explicit choice of {{,} is made later.) We then get
)= 3 10+ cosla). (539

where z(q)=2{, ' A(q). Hence
H A= gcmg [1+2(q,) cos(q,p(i)], (5.39)

with
qu{qj}jE/U C(qA)E H qu.

jed
For each term on the right side of (5.39) the following result closely related to
Theorem 2.1 holds.

Theorem 5.2. There exists a family 7, , of ensembles, A", such that

A°

[Tt +2g)cosgp(iNl= ¥ ¢ [1 (1+K(0)cosd(o)),

jed NeFq, eeN
where ¢/, >0, and ¢ is a charge density with the property that g(j)= £ q;, for all je A,
for all /'€ Z, ,and each N'€F, has properties a)—) stated in Theorem 2.1, for all

q 4 Moreover,
K@= TI zle(e™,

Jesuppe
n(e)

with S(0) < CA(e), A(Q)= ). A,(0), where C, n(o) and A,(¢) are as in Theorem 2.1.

k=0
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Remark. The proof of Theorem 5.2 is identical to the one of Theorem 2.1, except
that, in the last step of the recursion (2.21), (2.22), z#°® must be replaced by the
factor [] z(le(j)l). From (5.39) and Theorem 5.2 we now obtain

Jjesuppe

[THo(N=Y.Ua) Y ¢y [T (1+K(@)cos¢(0)

jeA NeFq, eeN

= Y ¢, 1 (1+K(0)cosdle)), (5.40)

NEF 4 oeN
with
F, = pg':zA,cﬂ=C(qA)c'JV, for NeZ,,.
A
It is clear that Theorem 2.3 and Corollary 2.4 extend to the more general
situation considered here, as well.

Next, we rephrase the results of Sects. 3 and 4 for the models studied here. By
Theorem 4.1 and its proof, see Sect. 4.4,

I TT [1+K(e) cos(¢(o)+ (@) ] duy(e)

geN
=] H,, [1+42(B, o) cos((Q) + o(@)]duy(¢), (5.41)
where
(B, 0)=K(@) exp[ — BE,oe(0, 4], (5.42)
and by inequality (4.58), Sect. 4.4,
Eude, A)ZU2E)+D 3 19,00, (543)
with
Eo(0)=(1/8) X.o())* (5.44)

[see (4.17)-(4.19), Sect. 4.2]. By Theorem 5.1,
IK(@) = [Tlz(le(lexp[CA(o)] -

In Sect. 3 we have shown that
A(Q)SEAL@+F 3 1%, (5.45)
k=0

for some finite constants E and F; see inequality (3.17). Thus
2B, 9l = [ Tlzlle()Dl exp[ —(¢'B—b") ()]
J

-exp[ —(cf—b) A(0)], (5.46)

for some constants ¢’ >0, b’ <00, ¢>0 and b < oo, provided > max(b'/c’, b/c). The
constant ¢’ <1/16 can be chosen arbitrarily close to 1/16. If

|A(@)| Sconstexp[(x+¢f)g?], with e<1/16, (5.47)
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we conclude that

|z(le(Ml exp[—(¢'B—b") e(j)* 1 sexp[ —(c"B—b") ()],

for some ¢” >0 and b”, by choosing for example { q=conste“"‘12 and optimizing in
0.

We have now proven

Theorem 5.3. If dA satisfies (5.47), then there exists a finite constant (1) such that for
all = p(4)

|2(B, @)l exp[ —(c¢"B—b")llel 3] exp[ —(cf—b) A0)],
where |o|%= ZQU)Z ; and A(g) = constInd(p).

This result also applies to the situation described in Theorem 2.3 and Corollary
2.4, (i.e. in the presence of fractional charges), and yields upper bounds on z(f, £g,)
and z(B, g, + o) It suffices to replace ¢ by en?, n=min(¢, 1 — &); see (5.30)~5.33).
In conclusion, the proofs of Theorems A and B and the lower bound (5.5) on
(e3¢ (B, 4) for the general Coulomb gases considered here are completely
analogous to the case of the hard core gas, Sect. 5.1, if one uses Theorems 5.2 and
5.3. [The only estimate that requires some additional thought in the proof of (5.5)
is (5.23) which we reconsider below.]

From (1.22) and (1.38) we see that Theorem D for the Villain model is a special
case of Theorem B for a general Coulomb gas. We are thus left with proving
Theorem C for the Villain model. Recall from Sect. 1.4 that

e (B)=(D§ >*(B), Eel, (5.48)
where
DS, =exp[f~ 10,1~ (2P 1&x], (5.49)
with
X[+ ) 1 1=j,=x, j2=0
f(’“h)‘{o, othe;wise,

and J,, =1, 2, is the «™ component of the finite difference gradient [see (1.36) and
(1.37) in Sect. 1.4]. In particular,

(So-S.> (B)= e ") (B)=<D§.>* (B). (5.50)

We propose to prove

Theorem 5.4. For the Villain model there exists some finite constant f, such that for

B> B
(D§.>* () zconstexp[ —(£2/2np) In(1 +|x])], E¢eZ,
for some positive ' = f'(f)— oo, as f— c0.

Remarks. 1. Theorem C, Sect. 1.4, is the special case of Theorem 5.4 in which £=1.
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2. If 1 is the a priori distribution of a general Coulomb gas satisfying the
growth condition (5.36) then there exists some finite (1) such that for all §> (1)

(D§.>? (B, A) = const exp[ —(£2/28) In(1 +Ix|)], (5.51)

for ée2nZ, for some f'=p'(f,1)>0.

(The modified condition on &, £e2nZ, corresponds to the rescaling ¢p—¢’
=2n¢ which relates the dual of the Villain model to a Coulomb gas; see
Sect. 1.4.) Clearly Theorem 5.4 is a special case of (5.51).

Proof of (5.51). By (5.40) and the definition of {—>% (8, 1)
(D54 (B A) =23 [ DE() TT M) duy(h)

jeA

=Z;' Y ey ﬁ%x(@@(1+K(Q>cos¢(g))du,,<¢>. (5.52)

NEF 4

In each term on the right side of (5.52) we now make the following real change of
variables:

where o= ¢+ ), (5.53)

a()=EL(Cx0, /M) ()=¢ ; C(=k)(0,/)(k),

and f* has been defined in (5.49). Using identities (5.9)«(5.11) and the definition
(5.49) of D, we see that, after the change of variables (5.53), D}, is cancelled, and
we get

Z (D5 % (B, 2)=e ; eyl HM [1+K(e)cos(¢(e) +a(@)Iduy®), (5.54)

where ¢%® represents the spin wave or Gaussian contribution to (D§ >4 (B, 1)
(= ~%% (B), in the case of the Villain model). More explicitly

Gx)=02p)"{{a, da) —&*|x|+2E(0, f*, )}
=2p) " {—<o, 4oy —E*|x|} .
By definition of f* and o,
—<0, 40y =E*0,f*, Cx0, f*)
=2 f*,050,Cx f*)
=E N S = 820, 7, Cxa, %)
=&x| - 28*{C(0)—- C(x)},
where we have used that
(a1fx)(i)=5jo_5jx' (5.55)
Thus

G(x)=—p~'E[C0)— C(x)]~ —(&/2np) In|x], (5.56)
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for |x| large. Next, we apply the renormalization transformation (5.41) and obtain

={ [] [1+K(0)cos(¢(e) +a(0))]duy(¢)

0EN

={ U« [1+2(B, 0) cos(p(@) + o(e))]duy(9) .

By Theorem 5.3, there exists some finite ,(4) such that
max |z(B,0)| <1/4, forall NeZF,, (5.57)
Q€.

provided > f,(4). As in (5.21) we then obtain the lower bound
Z y(o)zexp { —(1/2) Z” (z,(0) +25(0) [G(Q)]ﬁn} Zy, (5.58)
oe

for B> f,(4), where
zy(0)=12(B, )l (1 —|z(B, )",

and
2,(0)= (1 +m)lz(B, 0)P(1 —4[z(B, ))) > .

The proof of (5.58) is identical to the one of (5.21), see (5.16)—(5.20). We are thus left
with estimating ) (z,(0)+2,(0)) [o(0)]3,. For this purpose we rewrite a(),

oeN
using the neutrality of g, as in (5.22):
U(Q) = Z (T(pu) - a(nu) > (559)

m

for some sites p, and n, in suppo. There are 3ol =3 lo())| terms in the sum
J

on the right side of (5.59). We now claim that

o(p)—oln,)= Z {e,())(9,0) (i) +2,()) (930) ()}

= Z {e,(7) EL0,(C(j)— C(—x))]
+82(I) LS +0,(CG)—CG —x)N1} (5.60)

where j is the neighbor of j in the positive 1-direction, ¢ (j)=0, =+1,
suppe, € D(g), for k=1, 2, and

2 le Gl +le, ()1} =2d(0)- (5.61)

The second equation in (5.60) follows from the identities
£710,6=0,C0,f*=0,Cxd, [*=03,[C(j)— C(j —
E710%50(j)= — AC* fX(j)— 0,01 Cx fX()) (5.62)
= ") +0,LC()—C(' —x)],
and we have used (5.55).
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Combining (5.60) and (5.61) yields
I[o(p,) —o(n,)],.l <2d(e)¢ jmax (C()=CG—))l-

We choose j,esupp, ¢ so that
IP(C)~ =)= max F(C()~Cii=).
Thus
ILo(@)]2.l = llell dle) SIV(C(j,) — C(jy— X))l (5.63)

By Theorem 5.3 and (5.63) there exists a finite (4, d) such that for all B> (4, )

(z1(0) +22(@)[ ()13, S constexp[—(c" B —b") el 3] - llell}
‘ -exp[~(¢"f—b") Ind(e)]d()*E*|V(C(j,)— Clj,— )
SEO/PIVICG,) - Cli,— )1, (5.64)

for all pe A" and all /' eZF,.
Thus

2,, (z,(0)+ 2,(2) [0(0)13, = E2(6/BIVC() — C(- =x) I3

=&%(8/B)2[C(0)— C(x)].
By (5.58) we therefore have
Z (o) zexp[— B~ 1E2(C0)— C(xD]Z,,

which, together with (5.54) and (5.56) completes the proof of (5.51), for <1 and
B> B(4,06). This completes our analysis of lattice Coulomb gases, the Villain model
and the discrete Gaussian.

6. Kosterlitz-Thouless Transition in the Two-Dimensional Plane Rotator

In this section we complete our analysis of the Kosterlitz-Thouless transition in
the two-dimensional plane rotator model. In particular we prove Theorem C, Sect.
1.4. Definitions and notation are as in Sect. 1.4. Our purpose is to prove that there
exists some finite f, such that, for all 5>,

(80 (B)=<D§,>* (B) Z constexp[ - (£2/2nB) In(1+1x)],  (6.1)

0%¢eZ, for some f'=p'(f)>0 tending to oo, as f—oo. It is known from a
standard high temperature expansion that for sufficiently small j8

(e (B) < constexp[ —m(f) I, (6.2)

for some m(f3) >0.
Thus, the lower bound (6.1) establishes the existence of a transition in this
model. For é=1

e (B)={Sy"S,> (),
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see (1.50) and (1.58), Sect. 1.4. Therefore Theorem C, Sect. 1.4, is really a special
case of (6.1).

Proof of (6.1). Our proof is closely related to the one given for the Villain model in
Sect. 5.2; see Theorem 5.4. The first step consists in passing to the dual model and
rewriting it as a perturbation of a zero-mass measure by “irrelevant (for large f)
operators”, For this purpose we introduce a function Iy(¢) which is complex
analytic and non-zero in the strip |Im¢| < /2 and satisfies the following conditions
[see also Condition (4.10), Sect. 4.2]:

a) For integer n

12n

Iﬂ(n) 5; ﬂcose m0d9
0

(b) 14(¢) is even and positive on the real axis and integrable.

() (¢ +ia)I(p)|=e?@P,  peR,
where
consta?, la] <1
0
gla)= {constez"l“‘ 1<]al£B)2.

(d)

a
Lo 01,0+ /1) SCp e,
for m=1,2, and |a| < /2, uniformly in ¢peR.
The existence of such a function is proven in Appendix B.
Let A be some finite, rectangular array of sites. Let dy; ﬂ(q.’)) be a measure with
the following properties:

1) [e?Ddy; (¢)=0, (6.3)
for all real functions f on A with Y f(j)=*0.

J
i) Let ¢ be a complex function on A with || Img]| , <f/2. Then

duy (¢ +0)
—d]‘m)—“ =9,V(¢ +0)),

where

1(P()) — () + a(i) — a())
SV, ve)= [] -2 )
o79. Vo) li—ji=1 () — ¢(j))

ied

(6.4)

Remark. A measure du; (¢) with properties i) and ii) can be obtained from the
family of measures

i, o $)=Na' 11 160 —9() [1dé().
ltjélg— 1 je

with ¢(j)=0, for j¢Q, in the limit Q/Z? by means of a weak compactness

argument. In this case we shall speak of free b.c. at 0A. Alternatively, we may
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choose dy; ﬂ(q&) to be given by the measure dy;, ,(¢), but with periodic b.c. imposed
at 0. The Gibbs state in the region A (with free or periodic b.c. at d4) of the model
dual to the plane rotator model is given by the measure

z 1 {Z eiz”qd’“’} dug (). (6.5)

jeda |qeZ
We recall that for small § the Gibbs state of the plane rotator model in the
thermodynamic limit is independent of b.c. In order to establish the existence of a
Kosterlitz-Thouless transition we are therefore free to impose some b.c. at 94
which are technically convenient for large . The Fourier transformation of the
measure (6.5) with free or periodic b.c. at 04 is a Gibbs state of the rotator model
with b.c. that are technically convenient for large f. More natural would be
Dirichlet (i.e. zero) b.c. at 04 which our methods permit, in principle, to analyze,
too (see Appendix D).
Next, we recall from Sect. 1.4 that, for x=(n,0),

o LG () +E)
.= 11 1,(0,9)0)
where p=(p,,), with p, =0 and

¢ for j=(,0),1=iZn
0, otherwise.

Ve, v), (6.6)

v,0)= {
By (6.1) and (6.6)

(000 (B=271 | H{ 5 e‘z"‘”’“’} b @), (67)

jed \g=—-

Clearly,

Z (i2700) — { 4 ) Z cos(2rnqd(j)).

q=— g=1

Let {{,};% be a sequence of positive numbers such that ) (,=1. We set z(2nq)
=1
=2(, ' Then !

1+2 Z cos(2nqd) = Z {(1+2(2nq) cos (2nqe)) .

q= q=1

Hence, by Theorem 5.2 and (5.40), Sect. 5.2

[T11+2 i cos(ang‘b(]‘))} = Y ¢, ] (1+K()cosd(g)),c, >0, (6.8)

Jjed g=1 NeFa 0eN
where each /e % satisfies properties a)—c) stated in Theorem 2.1 and
K(= { [1 Z(IQU)I)}eS‘@,
Jjesuppo

with S(g) as in Theorems 2.1 and 5.2; finally o(j)e2nZ, for all ;.
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Thus
(€m0 (B)=2Z1" Y S [T (1+K()cos () 25V, w)duy,(¢). (6.9)

NeFy eeN

By property a), Theorem 2.1, and (6.3) we may assume that each ge /" is neutral,
ie. Y o(j)=0, for all /'€ Z,.

As in the Villain model [see (5.53), Sect. 5.2] we shall make the change of
variables

where (6.10)

()~ () +a(j), }
a(j)=&(C"x0, ™) (),
f* is the function defined in (5.49), and C’ is the Green’s function of — (9% + 3).
By Eq. (5.55),
E710,0)()=0,(C'(N—C'(j—x)) (6.11)
and
E10,0) ()=(07+03) (C'* f*) () — 0, C'*0, £*(j)
=—f()—0,(C(H-C(—x). (6.12)
We now define
0,()=¢0,(C'(H—C(j—x),
0,(j)=—<¢0,(C'()—C(j—x)), (6.13)
0=(0,,0,).

and

In each term on the right side of (6.9) we now make the change of variables (6.10).
By (6.4), (6.6), and (6.12)

IV, p)dp (9)—2,(V(p +0), w).I y(V, Vo) dpuy ()
=I5V, 0)du; (), (6.14)

since the term —¢f~ in d,0 cancels y; see (6.11)~(6.13) and (6.6).
Thus

(00 (By=Z71 Y ¢, 7' (0), (6.15)
NeFy
where
7' (o)= | [lf [1+ K(o) cos(p(o) + a(0)] L4V, 0)dpy () - (6.16)

Our main task is now to prove a lower bound on Z',(0): For all > f,, for some
finite f,

Z/(o)zexp[—(1/2f)<0,65]1Z,(0), (6.17)

for some positive () which tends to + co when f— co. In order to prove (6.17) we
must first renormalize the factors 14 K(g) cos(¢(e) + o(p)) under the integral on the
right side of (6.16), using the techniques of Sect. 4. The result is the following
variant of Theorem 4.1.
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Theorem 6.1. Let 1 (o) be a function satisfying properties (a) through (d), let dp;, be a
measure satisfying (6.3) and (6.4). Finally let A" be an ensemble of charge densities
with the properties described in Theorems 2.1 and 5.2. Then

Z(o)={ T [1+2(B,0)F, 4o;V¢+06)sin(¢(e)+o0()

+2(B,0) F, gle; Ve +0) cos(d(e) + a())] #p(V + O)dpy (),

where

z(B, 0)=Kl(o)exp[ — L(B) E,,c(0)] s

E,(@=Clel,+D k; ()l

with %,(0) as in (3.3), Sect. 3 (see also (4.58), Sect. 4). Here L(P) is some function of f§
which tends to oo, as f— o0 (one may choose L(f)=constlnfi). Moreover, the
functionals F; 4o; -) have the following properties :

(1) Flo:;V@) depends only on

{0,00):x=1,2,jeD(e)},

where D(p) is the disc defined at the beginning of Sect. 4.3, i.e. D(g)D suppo,
dist(suppe, 0D(g))=d(e).
(2) F, is odd, F, is even in the variables V(j).
() IFfe; =1, for real .
(4) For i=1,2, for arbitrary real ¢ and for m=1, 2,
am

—  F.(o: < 2m N |m
57 Fi(@: Vb +6)) <constd(@)*™ max [0G)",

provided B is sufficiently large. Here |0|=1/07+05. [

Proof. The structure of the proof of Theorem 6.1 is identical to the one of Theorem
4.1 which was given in Sect. 4.4. The renormalization transformation is carried out
by induction in the size of ¢ and in the scale size, 2%, /=0,1,2, ..., of the charged
constituents of . On scale 2° the renormalization is obtained by applying Lemma
4.3 and (4.22)-(4.24). The renormalization on scales 27, / = 1, is carried out with the
help of Lemma 4.4, Sect. 4.3. In order to verify properties (2) and (4) of F(g; -) we
shall need the explicit expression for the renormalization RC, of the functional
C,(¢, ) given in Eq. (4.40). Equations (4.15), (4.22), (4.24), Sect. 4.2, and Egs. (4.39),
(4.40), Sect. 4.3, show that F, and F, have the following general form:

"22F (V)= [ i,0,a0):0,00))

JjeD(e)

a=1,2

+ ( - 1)" 1;‘([ lﬂ( - aaa(.j) 5 aad)(.])) B (618)
jeD(e)
a=1,2

where n=1,2 and

iga; @) =1I4(¢ +ia)l ()~ 'e™ 9P, (6.19)
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see (4.12), Sect. 4.2, and property (c) of I,. The “translation function” a is of the

form
= t’z al, m(]) 9

where / labels the scale size and m labels elements of (). [The functions a, ,,
come from applying Lemma 4.3, and a, ,, is the translation function introduced in
the renormalization of the m™ square in %(0), using Lemma 4.4.] Clearly Ay m
depends on g, suppay, ,, £ D(0), for all £, m, and’

suppVa, ,,nsuppVa, , =0 (6.20)

unless (£, m)= (", m').
Properties (1)—(3) stated in Theorem 6.1 follow from these properties of a and
from Eq. (6.18) by taking into account that

lig(as Mo (6.21)
[see (4.12), Sect. 4.2].

Our lower bound on E, (¢) and L(f) is proven as follows: The renormalization
on scale 2° contributes an amount constIn o], to L(B)E,(). This follows from
(4.16), (4.20), (4.21), and (4.24) by choosing a, ,(j) = const signo(m) (lnﬁ)éjm,
some sufficiently small constant. By property (c) of the function I, this is an

allowed choice for a,. The term D Z 1%:(0)] in E, (o) is obtained by inductive

renormalization, as in Theorem 4.1, each induction step being carried out with the
help of Lemma 4.4. By (6.20) and property (c) of I the translation functions a, ,,
can be chosen as in (4.37), Sect. 4.3, with y =constInf, for some sufficiently small
constant. We set R= ]/5 in (4.34) and (4.35), as in the proof of Theorem 4.1. For
¢/ Z0(Inf) we can in fact choose y=constf [see (4.34)]. It follows now from (4.34)
that L(f) 2 constInB. [By improving the inequality in property (c) of I, one might
be able to show that L(f) grows like a small power of .] This completes the proof
of the lower bounds on E, (¢) and L(ff). The bound on z(f, ) follows from the
bound on L(P)E, (¢) and Theorem 5.2.

Thus, we are left with proving property (4) of F{o; ). We make use of the
explicit expressions for F', and F, given in Eq. (6.18) and of property (d) of I,. We
first note that for each je D(g) and k=1, 2,

0
57 11(0cal)); 0, PUj) + 20, (j)) = e # P ’ 77 Lplr(D) +i0,a()/T4(r(2))

=0,()) [(og ) (r(4) +i0,a(j) (loglﬁ)’(r(i))] ig(0,a()); 0, p(N+20,7),  (622)

where r(4)=0,¢(j) + A0,(j) which is real. Now from properties (c) and (d) of I, we
see that the absolute value of the expression in (6.22) is bounded by

2C~ [exp2m|d,a(j)]10, ()l (6.23)

Similarly the second derivative of iy(0.a(j);,¢(j)+40,(j)) in 4 is bounded in
absolute value by

6CB ™ Hexp2n|d.a(j)l]-10.()*. (6.24)
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By (6.18), (6.22), and (6.23) the first derivative of F, or F, in A produces no more
than constd(p)? terms, each term bounded by

Cp~ " max ([exp2nld.a()l]10.())-
jeD(a)
The bound on the second derivatives is obtained by similar arguments.
The proof of (4) is completed by requiring that
B~ ! exp2n|d a(j)| £ const. (6.25)
Thanks to property (6.20), (6.25) holds if
B~ " exp2nld.a, ,(j)l Sconst,
for all 7 and m, i.e.

la; wDI=cnp.

This bound is fulfilled by the functions a, , used in the proof of the lower bound
on L(B)E, (o). O

Remark. As in Theorem 5.3, Sect. 5.2, one convinces oneself that Theorem 6.1
yields the following bound on z(f, 0):

0<z(f,0)<exp[—(c"L(B) —b") el ]-exp(—(cL(B)—b) A(e)],  (6.26)

for some positive constants ¢”, ¢ and finite b” and b, provided L(f) is large enough,
ie. for sufficiently large j.

We now complete our proof of the basic lower bound on <e™@ =% (8), 0+
EeZ, stated in (6.1). Our arguments are very similar to the ones used in the proof of
Theorem 5.4, Sect. 5.2, concerning the Villain model. We recall identity (6.15), i.e.

L (B=25" Y ey Zio),

NEeFA

where Z’,(0) is given in Theorem 6.1. In order to establish (6.1) it suffices to show
that

Z' (o) z constexp[ —(2) " 01312, (6.27)

for some positive ', provided f is large enough [see (6.17)]. For, since
1012 =2 {10,()1 +10,()I*}
J
=282{C(0)~ C(x)}

~ & m)” ' In|x|, for large [x],
and
ZiN Y epZy=1,

NeFy
inequality (6.27) yields (6.1).

We prove (6.27) by using Theorem 6.1 and Jensen’s inequality, as in the proof
of Theorem 5.1, (5.12)—(5.21).
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First we consider the factor .#y(V'¢$ + 0) under the integral expressing Z'(0). By
property (d) of I,(¢) and Taylor’s theorem with remainder,

14(0,0() +0,(7) 1,0, $(j) ' Zexp

(%) @,0())0.()— CB~1(0.())*], (6.28)

where I)(¢)= ( 3% I ,,) ¢). By property (b) of I, I}1, !is an odd function of ¢. Thus,
by (6.4), (6.13), and (6.14)
LV +0)zexp[Ho(p)—CB 11031, (6.29)

where H, is an odd function of ¢. The factor exp[ — CS~! [ 0]|3] is the analogue of
the spin wave contribution, expG(x), in the Villain model; see (5.54), (5.56). We
define

Fy gl0;VP)=F, g;V+0)sin(¢(o)+[a(0)],,)
+F, glo; Ve +0)cos(gp(o)+[a(0)],,)- (6.30)

Thanks to the periodicity of sin and cos we now have

Z'(0)zexp[—CB 0131 ] [1+2(B,0) Fy ylo; V)l e Pduy (4), (6.31)

oeN

and we emphasize that the renormalized activites, z(, 9), are independent of ¢ and
0. As in (5.17), Sect. 5.1, we write

L+2(B,0) Fy plo; V) =expln[1+X + Y], (6.32)
where
X=2B,0) Fy-o,40: V),
Y=z(B,0) [Fo 4(0: V) —Fo 4l0;VP)].
By (6.26) we may choose f so large that z(f, ¢) <1/8. Then, by Theorem 6.1, (3)
(1+X) '35,

and (6.34)
(1+X+tY)"1<2, forall te(0,1).

(6.33)

Taylor’s theorem with remainder then gives

1+Z(ﬂ,Q)Fe,p(Q;V¢)=(1+X)CXPLIX -%(HXYHY) } (6.35)

for some te(0, 1). Abbreviating
FiO,B(Q;V¢)-FO,ﬂ(Q9V¢), Oéiél,
by F,(¢) we obtain from Taylor’s theorem

A0 [ 2
—pog i+ 50 arw)

for some A,€(0, 1).
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We now define

Hl,g(¢)zz(ﬂ> (1 +X)—

Fl(as)] . (636)
=0

By Theorem 6.1, (2) and the definition of X and F,, H, , is an odd function of ¢.

Next, let

52

AP, Q)(1+X) [W F,j(ﬁ)} ~ CLYI+X 1Y), (6.37)

H, ($)=

and
|H,, = Sup |H,_ (#)l
Then, by (6.31) and (6.32)(6.37),
Z/ (o) zexp[ - CB™11|01|3]
S TT AT +2(B. Q) Fo ylo; V)] erelP e Mzely o@Dy, (h). (6.38)

oeN

Since, by Theorem 6.1, (2), for large f
[T [1+2(B,0) Fo slos Ve)ldu,(¢)

eeN

is positive and even in ¢, whereas Hy(¢) and > H 1,0(¢) are real-valued, odd

functions of ¢, Jensen’s inequality yields el
Z(o)zexp[—CB~1]0]3] ( [1 e*le-el) Zy, (6.39)
oeN

where

Zy= {11 [1+2B,0) Fo ylo: V) ldu; ().

ee N

We proceed to proving a bound on |H, ,|. We use Theorem 6.1, (4) and the
following equations for [o(0)],,,

Lo(@)],.= [ZZn a(p,) J(n“))]n’ (6.40)

and there are no more than 1/2|(2n)" 'g||, terms on the right side of (6.40).
Furthermore

[2n(a(p,) — ()], = [2275 1N, () +2,()) 2(1"))]2 , (6.41)

where j' is some nearest neighbor of j, and ¢,(j)=0, +1, suppe, S D(g), for k=1, 2,
and

2 Al O + leo (I} = 2d(0).- (6.42)

The proof of these equations is identical to the one of Egs. (5.59), (5.60), Sect. 5.2
[replacing C by C’, o by 2no and taking into account the definition (6.13) of 6].
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If we recall the definition (6.37) of H, , and (6.33) and use Theorem 6.1, (4) and
(6.40)—(6.42) we conclude

IH,, | <const z(B, 0) d(@)* [ (2m) "' oI} max l0G)I*, (6.43)

provided f is so large that
1+X) '=s%  (1+X+tY) 12
[see (6.34)]. It now suffices to note that

max I(9(1)|2<Constd(9)2 max 6O

jeD(e)

It now follows from the upper bound (6.26) on z(B, ¢) that
[H,, J<c(B) max [0())%, (6.44)
JESupp @

where ¢(f) tends to 0, as f— oo (like some power of 1/f). Since supponsuppo’ =0,
for two distinct charge densities ¢ and ¢’ in A"

> max [00)1* <03,

pe €sup

hence

Z\ (o) zexp[—(CB™ " +c(B) 01212,

provided f is sufficiently large.

This completes the proof of inequality (6.27), with 28'=(CB~ ' +¢(B)) " !. Since
the basic lower bound (6.1) on (e %% (B) follows from (6.27) — as explained —
the proof of existence of a Kosterlitz-Thouless transition in the rotator model is
complete.

7. Massless Phase in Two-Dimensional Z, Models and Roughening Transition
in the Solid-on-Solid Model

In this section we first establish the existence of a massless, intermediate phase in
the two-dimensional Z -models. (We prove Theorem E, Sect. 1.4.) We then exhibit
a Kosterlitz-Thouless, or roughening transition for the solid-on-solid model,
defined in (1.21) (see Theorem A, Sect. 1.3).

7.1. The Z,-Models

Let dpu,(0) denote the unique Gibbs measure of the two-dimensional rotator model
in the thermodynamic limit. The Gibbs measure, du{’,(6) of the Z,-model in a
finite domain A CZ* with “free” boundary conditions is given in terms of du,(6) by
the equation

w0 =2z <1+2 i cos(qnGj)) duy(0), (7.1)

Jjea q=1
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where Z™ is the usual partition function, and

0 n—1

<1+2 y COS(an)) 0= ( ¥ 5(n0—2nk)) d0 (72)
g=1 k=0

is the Dirac measure with support on {#:0=2nk/n, k=0,1,...,n—1}.

Let {->W(B) denote the expectation with respect to d,u("’ (0); see Sect. 1.4,
(1.38). The thermodynamic limit, <->™(B), (as A/Z?) exists by Ginibre’s in-
equalities [117.

Our main result for the Z -models is

Theorem 7.1. For all £=1,...,n—1,
(1) (00050 () = (000 ()

(2) Given p and qe(0, 1), ther exists some ny =ny(f, q) < o such that for all n=n,
and all & with min(¢é/n, 1 —¢/n)2q

000 ()< comst (1-+ x]) 277,
for some B"=f"(B,n,q)< co. Moreover, ny(f,q)— oo when f—0 or g—0. [J

Remarks. 1. It suffices to prove Theorem 7.1 for (/s ~%%®)(B) for arbitrary, finite
domains A. The states - »>{(B) are the limits of the states (- Y% (8, h), defined in
Sect. 1.4, as h—co. By Ginibre’s inequality, {e’“%~%%0 (g k) is monotone
increasing in A and h. This proves part (1) of Theorem 7.1 and shows that Theorem
7.1 holds for all h, 0<h= co, assuming it holds for h= co.

2. Let f, be the critical temperature of the plane rotator model. For f>f,

(500700 (B) 2 comst(1 +[x) €72,

for some f'=f'(ff) (— o0, as f— c0), as shown in Sect. 6. Thus, for f>f,,

(et (B) = comst(1 +|x|) 712, (7.3)
Furthermore, for n=ny(f, q) and min(&/n, 1 —&/n)=q,
(00950 < consi(1 + [x]) (€21, (7.4)

for some finite pB”. Let no(ﬁ)=0min1no(ﬁ, q). [We shall see that ny(p)
=q=

=no(f,n" '[n/2]).] Inequalities (7.3) and (7.4) thus prove that, for >, and
n=ny(f), the inverse correlation length (mass gap), m(f,n), of the Z,-model
vanishes, i.e. there is a massless, intermediate phase for fe[f., B.), where B.=B.
and fB,=f(n) (>B,, for n large enough) is such that n,(j, )=n. For B>p., the Z,-
symmetry of the model is spontaneously broken. That B, is finite is seen by a
standard Peierls argument.

3. By methods closely related to the ones used in Sect. 6 one can show that for
each f there exists some positive integer n,(f) such that for all n=n,(f)

(D5 (B) = const(1 + fx)) =727, (7.5)

for some finite B =p"(B,n). Moreover n,(f)—c0, as f—oo. Here D}, is the
disorder operator of the Z, model, defined as in (1.31). The proof of (7.5) is almost
identical to the one of inequality (6.1), after replacing ¢ by 0, I4(¢) by expf cos(0)
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and du, ﬂ(q&) by du,(0) in the formulas of Sect. 6. The necessary estimates will follow
from our subsequent analysis.

4. Instead of studying the Z, models which correspond to the rotator model, we
could also study Z, models obtained from the Villain model by constraining 6; to
Z,, for all j. These models are self-dual, and a partial result concerning the
existence of a massless, intermediate phase for n large enough has previously been
obtained in [15]. Our methods permit us to establish Theorem 7.1 and (7.5) for
these models, as well.

We now turn to the proof of Theorem 7.1, (2). The basic ideas are
straightforward variants of the ones developed in Sect. 5.1, in the proof of
(5.27), i.e. of Theorem B, Sect. 1.2, for the hard core Coulomb gas, and of the ones
in Sect. 6.

First, we choose a sequence of positive numbers, {,» such that

Zl [,=1 and 0<z(g)=2(;'<e™ma, (7.6)
=

As in Sect. 5.2, (5.39) we have

[1 <1+2 ) COS(qn9,-)) =2 {a0) [T(1+2(g)) cos(gmn)), (7.7)

jed qg=1 qa jea
with
a,={q}icsr  LaD=1T1¢,.
jeA
We now rename nf); = ¢(j), %% = WO with & =¢/n. Clearly

(et m0ND (B)=cosp(E' 00 (B),
with ¢4 =65 —4;,. In our new notations it is obvious that we may apply Theorem
2.3, Sect. 2.5, which yields the identity

cos$(&'go) [ ] [1+2(q;) cos(q¢())]

jeAa

S Y cleosd(€oo)+KleM)cosd(Eoo+0™)) [ (14 K(o)cosd(o)),

NeF q,(00) oeN

and, by summing over all configurations, g4,

cosp(&oo) [T[1+2 Z cos(gp(j))

jed

= ) cyleosd(&oo)+ K(g")cosp(&'0o+0") ] (1+K(g)cosp(e), (7.8)
NeF (o) eeN
where each A'e%,(¢,) corresponds to some configuration g, and some
N'eZ, (0o), and ¢, ={(q,)c)y, [see also Sect. 5.2, (5.39) and Theorem 5.2].
The estimates on the entropies of multipoles, i.e., the bare activities K(g), are as
in Theorem 2.1 and 2.3, except that the factor z*°® must be replaced by
[T =G
Jjesuppe
The remainder of the proof of Theorem 7.1, (2) is very similar to the proof of

the analogous result (5.27), Sect. 5.1, for the hard core Coulomb gas, but the



Kosterlitz-Thouless Transition 587

renormalization transformation in the present model is somewhat more com-
plicated. It is similar to the one used in Sect. 6, Theorem 6.1. Again, the feature of
the model which permits us to apply the renormalization method of Sect. 4 is the
analyticity of the underlying measure, here dpu(60)=dpy(¢/n), in ¢. We shall follow
closely the notations of Sect. 6. Let

INﬂ(gb =expfi cos(f)=expfcos(¢p/n). (7.9)

This function has the following properties
() I J,(qb) is even and positive on the interval [ —zn, tn].

© () +ia) ) <™, pe[ —mn,n],

where
a 2
constf (ﬁ) , lal=n
0=Zg(a) =
SH@=q Bel“m,  n<lal<oo.
dd)m loglﬂ(d) + 1a)l < Cﬂn_melal/n

for m=1,2 and |a| < oo, uniformly in ¢ e[ —nn,nn].
Properties (b)-(d) follow by inspection from the formula
(¢> +ia)y=1I s(@) exp {f cos(d/n)(cosh(a/n)— 1)} exp {if sin(p/n)sinh(a/n)},

see (7.9).
We now note that, with 6=¢/n,

dig o(0)=dus, ofb)
=Ng' T I —¢G) [ deG).

li— JI 1 Jje

P(j)e [ —mn,nn], ie. the properties of the measure dy;, o(¢) are very similar to the
ones of du;, _ol¢) considered in Sect. 6. Let dy; J@)=dpy(0) denote the limiting
measure, as "Q7 72 We now prove

Theorem 7.2. Given f§ < o0 and g€ (0, 1), there exists some finite ny(p, q) such that for
all nzny(P,q) and all & with min(E/n, 1 —¢&/n)=q,

(ROTIRDB=(ZP)" " Y e [LaUB E0o)FyE'0q; V)

N eF a(eo)

+2(B, & 00+ 0" VF (&' 00+ 0" : V)]
[T [U+2(B, 0F ylo; Vé)ldug,(4), (7.9)

oeN
where

Fylo; Vo)=F, 4o;Vp)sind(o)+F, 4o; Vp)cosp(o)

and the functions F, , and F, p have properties (1) through (3) listed in Theorem 6.1,
in particular ||F; yo;-)ll,, =1
Moreover,

Z(ﬁ Q eXP[ L(ﬁ n)Eloc(Q) (710)
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with
Ei(00=Clel,+D Y %),
k=1

for some positive constants C and D (with notations as in Theorem 6.1). The
function L(B,n) satisfies

L(B,n)=Kn—Lp (7.11)

for some positive constants K and L.
The estimates on z(B,&0,) and z(B,E0,+ ") are identical, but with L(B,n)
replaced by

LBm=Kn—LE. [ (7.12)

The Proof of Theorem 7.2 is very similar to the one of Theorem 4.1, see
Sect. 4.4. It follows inductively from Lemmas 4.3 and 4.4. By property () of I s the
parameter ¢ in Condition (4.10), Sect. 4.2, and Lemmas 4.3, 4.4 can be chosen to be
e.g., e=n, and the constant ¢(f) in Condition (4.10) satisfies, in the present model,

(P =p/n. (7.13)

Lemma 4.4 can now be used to show that each square in ¥(g), k=1,2,3,...,
contributes an amount of at least

constn—const’c(B)n*=c,n—c, - p (7.14)

for some positive constants ¢, and c¢,, to L(f, n)E,,(¢). (The inductive proof follows
the one of Theorem 4.1.)
From Lemma 4.3 it follows that there is a contribution of at least

X (en=csPle()

JESuppe@
to L(B, n)E,,.(¢) coming from the renormalization of cos¢(g) on scale 2°. From our
estimates on K(g), see Theorems 2.1, 2.3, (7.6) and (7.10) follows, as usual, the upper
bound

2B, Q) =exp[—(¢'L(B,m)—b) el Jexp[ —(cL(B,n)—b)A()],  (7.15)

provided L(f, n) Zmax(b/c,b'/c’). See Theorem 5.3, Sect. 5.2, and Sect. 3. If g =&,
or =&0,+¢" the function L(f, n) must be replaced by L,(B,n) [since squares in
(o) cover constituents of ¢ whose total charge is only known to be =g, rather
than =1. See Theorem 2.3]. This completes the outline of the proof of
Theorem 7.2. [

We now turn to our proof of part (2) of Theorem 7.1. Since expfcos0 is of
positive type for all $>0, the measure dpu,(0)=du; () is of positive type in ¢ =n0.
This property together with Theorem 7.2 permits us to complete the proof of
Theorem 7.1, (2) by repeating the arguments described in Sect. 5.1, between (5.30)
and (5.35) (upper bound on the fractional charge two-point correlation in the hard
core Coulomb gas). It suffices to choose n so large, depending on f and ¢, that
c'L(B,n)—b'>0 and cL(B,n)—b>0, and notice that L(B,n)=L,(B,n). [
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Remarks. 1. Because of properties (b) through (&) of I s and the behavior of the
function L(B, n), see (7.11), the proof of the lower bound (7.5) on the expectation of
the disorder operator is almost identical to the proof of the analogous estimate
(6.1) in the rotator model.

2. Our basic identity (7.9) stated in Theorem 7.2 exhibits a remarkable
invariance property: It follows from the properties of the renormalization
transformation outlined in the proof of Theorem 7.2 that the effective activity
z(B, 0) vanishes, unless the total charge, Q(g), of a multipole density ¢ vanishes.
Thus, from the explicit expression for the renormalized functions Fye; V) it is
easily seen that they are all invariant under the substitution

D) () + not,
ie.,

0;—~0,+a,

where « is an arbitrary angle. This U(1)-invariance is obviously shared by du; (¢).
The same U(1)-invariance appears in the renormalized expression for <D§,x>6‘)(ﬁ)
[see (6.15), (6.16) and Theorem 6.1, and replace du;, by du,]. Thus, in the
massless, intermediate phase of the Z -models, an effective, continuous symmetry
group, U(1), appears, and suitably chosen correlations behave indeed like corre-
sponding correlations in the low-temperature phase of the rotator model. This
behavior contrasts the one for < f, (unbroken Z,-symmetry) or > B, (broken
Z ,-symmetry), where connected correlations have exponential fall-off.

In renormalization group language, a fixed point of our renormalization
transformations, for §,< < B, has a continuous symmetry group, U(1), not found
in the original model.

Similar phenomena are observed in the three- and four-dimensional Z, lattice
gauge theories, where one analyzes the expectations of the Wilson loop and the
disorder operator. An analysis of these theories will appear in [17].

7.2. The Solid-on-Solid Model

This final section contains the proof that the order parameter, ¢, in the two-
dimensional solid-on-solid model has, at high temperatures, logarithmically
divergent fluctuations. The main result is a variant of Theorem 5.1, and its proof
consists of a combination of the arguments in the proof of Theorem 5.1 and in
Sect. 6, involving just one additional, technical idea which we discuss below.

As in Sects. 5, 6 for the dual Villain and rotator models, we start by expressing
the solid-on-solid model as a perturbation of a zero-mass measure by operators
which, for small f, are “irrelevant”. The construction of the zero-mass measure
requires looking for a function I4(¢) which is analytic and nonzero in the strip
[Im | <constf~'/* and fulfills the following four conditions [see also Condition
(4.10), Sect. 4.2, Sect. 6, conditions (a)—(d), Sect. 7.1 conditions (b)~(d)]:

(@) I(p=n)=e ", for all neZ.

(b) I is even and real on the real axis.
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(©) (¢ +ia)/I,(p) £e#79@, for all a with |a| <const'f~ /3,
(d) d‘fb"’ 10g(1ﬂ(¢ +ia)/ Iﬂ(qﬁ))’ < CB*3g(a) for some constant C independent of ¢

and B, all a with |a|<const’f™ 13, and m=1,2. Here g(a) is as in Sect. 6 and
Appendix B. The existence of a function, I/b with properties (a) through (d) is
established in Appendix C.

We now construct an “unperturbed, zero-mass” measure, du, B(qﬁ), as a vague
limit of the measures

dpy, o @)=Ng' [ T (¢0)—¢() [ de(k),
[z:él{; 1. keQ
when Q/Z?% [$(j)=0, for j¢Q].
The measure dy,, can be shown to have properties (6.3) and (6.4) (with I,
replacing the function I, used in Sect. 6).
The equilibrium measure of the s-0-s model in a finite region A CZ? with free
boundary conditions at 0/ is given by

Z'[T(1+2 Z cos(2nqe(j)) | diy (). (7.16)

jed

Let (- »9(B) denote the expectation in this measure. (The results and proofs which
follow could be extended to Dirichlet and periodic b.c., as well.) Our main result
for the s-0-s model is

Theorem 7.3. For f§ sufficiently small,
<e£[d>(0) —¢(x)]>(/)1(ﬁ) > e(zz/l?:)ln(l +1x]) , (7.17)

where ' ='(B) tends to 0, as p tends to 0. [

Remarks. 1) By expanding to second order in ¢ one deduces from Theorem 7.3

[9(0)— p()1*>5(B) z(1/B) In(L+1Ix]), (7.18)

if B is small enough.

2) It follows from a standard low-temperature (Peierls contour) expansion that
{[P0)— d(x)]*>3(B) is bounded uniformly in A and in xe A, provided f is large.
This and (7.18) establish the existence of a roughening transition, as f is varied.

3) The interest in the s-o-s model is motivated by a heuristic argument
suggesting that ¢(-) behaves like the graph of some type of interface in a three-
dimensional Ising model (with “plus-minus” b.c.) [10] or the random surface
bounded by a planar Wilson loop in a lattice gauge theory [18].

Outline of Proof of Theorem 7.3. The first step in the proof consists again in
applying Theorem 2.1 to [] [14—2 Y cos(27'cq¢>(j))]. As in Sects. 5 and 6 this

jed q=1

yields

1142 3 cosCmad()| = 3 e, [T (+K@eosdla). (119

jed qg=1 NeF 4 0N
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where each charge density g takes values in 2nZ,

K(Q)é{ I1 Z(Ia(i)l)}es@,

Jesuppe

with S as in Theorem 2.1 and
2(27lg]) < conste®ld! |

and ¢, >0, for all A€ #,. Thus

OO IDUP=LI T esZyle:0.9), (7.20)
N eFa
where
Z,(&30,x)=[eO =991 [T (14 K(o) cos d(o))diu, (). (721)
oeN

Next, we make the change of variables
BG)--00)+ o4,
where ‘
o,()=a(Be[ C(j)— C(i—x)]1, (7.22)

a(f) is some function of § to be chosen later, and C is the Green’s function of the
finite difference Laplacian; see Sect. 5, (5.7), (5.8). We then find

Z ,(¢; 0, x)=exp[2e?a(B)(C(0) — C(x))1Z/(0,), (7.23)
where
2 (o) =[e1HO 70N l—!f [1+K(g)cos(9(e) + a4(0))]
IV (@ +0p))du,(P), (7.24)
and

FyV(P+0p) =duy (b +0g)/dp ($).

The derivation of (7.24) is as in Sect. 5, (5.12) and Sect. 6, (6.15) and (6.16).

Next, we carry out the renormalization of Z, (o) by applying Lemmas 4.3 and
4.4 inductively, as in the proof of Theorem 4.1, Sect. 4.4. All renormalization
transformations are done by means of complex translations,

dG)—d() +ia,, Aj) (7.25)

where / labels charged constituents of a charge density o 4" on all possible length
scales. As remarked in Sect. 6, the supports of the functions Va, , are pairwise
disjoint, and |a, j)l Lconst'f~ '3, for all j, ge 4" and /. Morcover they are chosen
to be independent of the observable, @~ ¢ je of ¢ and o, We set

a,= Zaa.t"
¢

By Lemmas 4.3 and 4.4
suppa, £ D(o), (7.26)
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where D(p) is the disk of radius at most 2d(¢)+ 1 containing suppg which was
introduced in Sect. 4.
Let A, S.A4" be the sub-ensemble of all those charge densities, g, with the

property that
D(0){0,x} +0. (7.27)

After renormalization, corresponding to the change of variables (7.25), ¢*¢(©) ~ ¢
is replaced by
£f1¢(0) o] H eiag’ (7.28)
€N o0, x
where o, =¢(a,(0) —a,(x)). For, by (7.27), a,(0)=a,(x)=0, for all ge /\A}, .. After
having carried out all the renormalization transformations we obtain

2 (o) =[O [T [1+2(8,0)F, (0; V($p+0p)]

[T [+, 0)F 4lo; V(¢ + o)1V (d +0p)dp,(¢), (7.29)

Qe N\ N o, x

where
Fy (0;Ve)=iF 5 (0; Ve)sind(o)+F, 4 [(o; Vp)cos (o),

Fy=Fp 0, F,3=F, 0>
and

2F, 4 o, Vp)=e™e g i(0,a,(j); 0,,4(j))
: JjeD(a)
xk=1,2

+H(=1)"e" " H( if(—=0cag(i); 0, D)
2

and the functions F, ;, and F, ;. have the same properties (1) through (4),
Theorem 6.1, as the ones introduced for the rotator model in Sect. 6, in particular
IFj o Vo)l =1. (7.30)

Moreover, Theorem 6.1 holds for Z/(g,) if f is replaced by B~ L. Since the
functions a, are independent of ¢ and o, Fy(g; -) and z(f, ¢) are independent of ¢, as
well. Finally, one may show that, for f-small enough,

0<z(p,0)<exp[—(c"Lo(B)=b")lell Jexp[ —(cLo(f) —D)A(@)],  (7.31)

where L(f) is some function which tends to co, as § tends to 0 [ L,(f) behaves like
the function L(B~ '), defined in Sect. 6].
Now notice that, by (7.31),

WO T [142(B,0)F 40 V(e + 0 )N1I V(b + 0 ,)dpy ()

eeN\ N0, x

is positive, and by (7.30)
[T [1+2(B,0)F, (0 V($+0ap)]

€N 0, x

z( I 1L(BQ))(H [+, 0Ffe: Vgo)]). (132

0eN 0, x 1+Z(ﬂ,Q) Ko, x
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We define
Z.(6,) =[O0 T [142(8, 0)F 0 V(b +0,)]

IV ($+ 0 )iy, (@). (7.33)
From (7.20)-(7.24), (7.29), and (7.32),‘(7.33) we conclude that
(e A(B) Z exp [26a(B)(C(0) — C(x))]

- 1- Z(ﬁ> Q)
-z 1{ c ( — =2\ (og)p. (7.34)
AL, T )
Thus, it remains to exhibit uniform (in A", A, and xe A) lower bounds on the last
two factors in {-} on the right hand side of (7.34).
Since e[ p(0)— ¢(x)] is odd in ¢, while

[T [1+2(B,0)F (o5 V)ldu,(¢)

aeN N
is even [see property (b) of 1], the arguments used in the proof of the lower bound
(6.27) on Z',(0) in the rotator model, see Sect. 6, can be repeated in the present
situation and yield

Z (o) z constexp{ — (e0(B))*c(B)LC(0) — C()I}Z,, (7.35)

with Z ., =Z ,(5;,=0), for § small enough [so that ¢"Ly(f)—b">0, cLy(f)—b>0,
see (7.31),and z(f8; 0) < 1/4, for all ¢]. Here ¢(p) is some function of 8 which tends to
0, as f—0. For details, see Sects. 6 and 5.1, (5.13) through (5.26).

We now choose

a(B)=c(p)™". (7.36)
In order to complete the proof we must finally prove a lower bound on
- Z(ﬂ> Q)
K(AN, )= — 7.37
o Qel‘/;[b,x 1+2z(B, 0) ( )
Clearly,
o 1- Z(ﬁa Q)
KN )= el
. nl;ll (oeho x: 27sd(@)<2n+ 1y 1 +2(B, @)
By Theorem 2.1, (2.4)
card{ge A} ,:2"<d(0)<2" '} £2,
and by (7.31)
1—z(p,0) _
= > —(n+ 1) PP 7.38
T R (739

if 2"<d(g)<2"**, for some number p(B) which tends to oo, as f§ tends to 0. This
follows from the divergence of Ly(f), as f—0, and the standard lower bound, A(p)
= const Ind(p).
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Thus, for f small enough,
K(A5,)Z2K>0, (7.39)
uniformly in A€ Z,, A, and xe A. Combination of (7.34) through (7.39) yields
(PO PN A(B) = const K exp[e*c(B) ™ H(C(0)— COeDIZy ' {Y ey Z ) - (7.40)

Since the product of the last two factors on the right hand side of (7.40) is = 1, the
proof of Theorem 7.3 is now complete, with f'=c(f)—0, as f—0.

Appendix A. The Duality Transformation

In this appendix we verify relation (1.37) for a system in a finite region A with
boundary conditions at 04 which are invariant under the symmetry transfor-
mation 0,—0;+0, 0=<a=<2r, of the Hamilton function. This is no loss of
generality, since in two dimensions all infinite volume equilibrium states can be
obtained from such b.c. Included in that class of boundary conditions are the ones
corresponding to what we called “free b.c.” in the dual models which were imposed
in Sects. 5 and 6.

For simplicity, we only consider rotator models in a rectangular box A, with
free (=0 Dirichlet) b.c. imposed at 04, but as noted at the end, our arguments
extend to a general class of b.c. in a straightforward manner. With each ordered
nearest neighbor pair <i,j), iand jin 4, j=i+e, or j=i+e,, where ¢, and e, are
the lattice basis vectors, we associate a function f; (6) which is smooth and periodic
in 0, with period 2n. We then consider the generalized partition function

ZA:j [1 £i{0;,—0)) [ 46,. (A1)
(i, jyed keA
Next, we represent each f;; by its Fourier series
f;’j(ei_gj): Z ﬁj(”ij) €Xp [inij(ei—gj)]'
ni;eZ

Here the n,;’s are integer-valued bond variables, and we adopt the convention that

ng=—n;.
We abbreviate ij by b, b denoting the oriented bond corresponding to {i,j» and
substitute the Fourier series of f;; into (A.1). This yields

Z,=Y TI fin)fexp [i ; ny(0,— 0 j)] er do,

{np} bcA

= Z [T j;(nb)j [ ] expli(on),0,140,

{np} bcA ked

= Y Tl A0, (A2)

{np:on=0} bcA

The symbol on, the divergence of n, is defined by
Gn)= Y g,

itli—k|=1
with i and k in A.
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Now we claim that there is a 1—1, onto correspondence between bond
variables {n:0n=0} and variables {m,}, where {m,} is a family of integer-valued
variables indexed by the plaquettes (oriented unit squares) pC A, oriented clock-
wise. This correspondence is given by

nij:nbzmp——mp, N (A.3)

where p and p’ are neighboring plaquettes which have b= {i,j» as a common bond.
Moreover, p is the plaquette whose orientation agrees with the one of b, whereas
the orientation of p" agrees with the one of —b. If p is not contained in A, we set
m,=0.

We recall that the plaquettes p form the sites of the dual lattice A*~A
+(1/2,1/2). By (A.2) and (A.3) we have

Z,= Z Hfb(mp_mp’)’ pnp'=b

{mp) bcA
= I fim—m), (A.4)
{mp} i, jeA*

where {i,j) is a pair of nearest neighbors in A* and b the bond in A dual to <i, ;).
The condition m;=0, j¢ A* corresponds to Dirichlet boundary conditions at 9A4*.

In order to obtain the partition function of the Villain or rotator model one
sets

fi0)=f(0),

where

f(O)=v,0) or r,0).

Next, we choose a path w from O to x. The unnormalized correlation
Z (%70 is obtained by setting

fif @)= f(0) exp[ —iy;€0],

with y;;=11f (i, j) is a pair of nearest neighbors contained in w, oriented according
to w, and y;;=0, otherwise. Here we are using the simple fact that, with this
definition of

= Y 10— 0)=0,—0,.
LJ

Let 7;;=1, (—1)if <i,j», (<j, i>) is an ordered nearest neighbor pair in A* dual to a

bond in the path w, i.e. crossing w, and J; ;=0, otherwise. Then
Jom=m)=flm—m;+Exyy).

Thus (1.37) follows.

Finally we verify that the correspondence given by (A.3) is one to one and onto.
Let b be a bond belonging to 04, such that b=pnp" with pCA and p’ ¢ A. Since
m, =0, (A.3) shows that m,= +n, The plus (minus) sign is chosen if the
orientation of p agrees (disagrees) with that of b. Proceeding inductively (A.3)
allows us to successively determine m,, given {n,}, provided that the equations are

consistent. Consider a site jeA, there are four bonds and four plaquettes
containing j as shown below.
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SRERS )l,e)

Fig. 2

Assume e.g. that m, has already been determined, and n,,, ..., n,, are given.
Then by (A.3)

mpz = nbn +mp1 >

(A.5)

mp4 = nba +mP1 :

We must check that there is a consistent choice for m,,, i.e. that
mps E_nbz + mpz =y, + mI-M >
or, using (A.5),

My, + 1y, + m, =n, +ny, +m,,,

ie.

My, +ny, —m,, —m,, =(n);=0.

3

This completes the construction of {m,}. Clearly, {m,} is unique, given {n,} and
the b.c. m,=0, for all p{ A. Conversely, given any such {m,}, it determines a
unique {n,}, by setting

ny=m,—m,,
with p, p’, and b as shown above. It is obvious that 6n=0.

We conclude this section with a comment on general boundary conditions
invariant under the symmetry transformation 0,—0,+a. Let

A={j:dist(j, A)<1},
0A={j:dist(j, A)=1}.
Let 0(0,,) be a function of {6;: jedA} with the property that

00, 0)=0((0+); 1), (A.6)
where ;= o =const, for all je 0. Let ¢ denote the Fourier transform of ¢. By (A.6),
é({nj}jea/f):(), (A7)

unless

Z nj=0.

jeod
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We now consider the generalized partition function

ZA,QZJ H _fij(ei_ej)g(ea/i) I_I_dgk.
{, jrcA ke A
Ljygea

Given jedA, let b(j) be the bond containing j and a site ie A. Fourier transfor-
mation yields AL
Zyo= Z H_ fb(nb)Q({nb(j)}jea/I) .
{np:6n=0} bCcA

We leave it to the reader to check that, thanks to (A.7), there exists, given {n,}, a
unique integer-valued function {m,} such that

n,=m,—m,,
with b compatible with the orientation of p, and

mp0=0,

for some arbitrary, but fixed p,C A\A.

Appendix B. An Analytic Interpolation of 14(n),
and Estimates on Bessel Functions

In this appendix we establish the existence of a function, I,(¢), with properties (a)
through (d) required in Sect. 6 [between (6.2) and (6.3)]. For ¢ =n, an integer,

12" .
— B cosf ,inf
I ﬂ(n) " g e e™do

— 1 f pcosf inf
=5 _fne e'"’do (B.1)
is the n™ modified Bessel function evaluated at the point feR,.

We propose to construct a suitable analytic interpolation, I,(¢), defined for all
¢ in the strip |Im¢| < /2, which is given by (B.1) when ¢ is an integer. Our first
task is to evaluate I ,(n) asymptotically for large 8. We do this by using the method
of steepest descent. Let 0, be the critical point of fcosf+in6, i.e. 0, is the solution
of the equation

fsinf,=in,
ie. (B.2)
0,=isinh™! (£> =ir.
B
We change variables,
0—0+ir (B.3)

in Eq.(B.1). This change of variables corresponds to a deformation of the
integration contour. The contributions of the vertical sides of the contour cancel
by periodicity. Thus we obtain

—nr m

_{ eﬂ cosﬂ'coshre —ip sinhr'93h(9)d0 ,

e
Iy(n)= o

-7
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where h(0)=073(sinf—0). The range of integration is now broken up into two
pieces,
[-3.2] and [—7m —3]U[5, n].

This yields
—nr w2

IB(n) =5 ‘[ eﬂ cosf coshre— ip sinhr03h(8)d0 Le. (B4)
—n/2

Since cos0 =0, for e[ —n, —3]U[3, 7],

e< 5 (B.S)
We set
n2 1/2
o=(Bcoshr)/? = <ﬁ 1+ F)
62
9(9)=0“4(0059—1+ 7) . (B.6)
X(0)=0"20%j(c"*0)+iBsinhrc " 303h(c ™ 10)
If we change variables, 0—c 10, we get
e—nr no/2 ,
Iny==—e" [ e *72*Pd0+¢. (B.7)
2TEO- —no/2

Next, we extract the leading contribution to the first term on the right side of (B.7)
by using Taylor’s theorem with remainder,

1
KO =1+X(0)+ | eXO(1 —s)X(0)*ds. (B.8)
0
It is straightforward to show that
no/2
[ e 21 +X(0)d0=)/2a(1+0(c~?), (B.9)
—na/2

because g and h are bounded. Moreover, since

02 62
- O+ — > —
SO+ 5> 7
for
Oe[—on/2, om/2], forall 0=s=1,
s (B.10)
[ emPTXOX(0)7d0=0(c"?).
—nof2
Thus
In)=——e”(1+0(c~ ) +¢
l/2no
= (14007 ?), (B.11)

[2ro



Kosterlitz-Thouless Transition 599

by (B.5). We define

1 nl 1/271-1/2 ) nZ 1/2
v e e e
By (B.2), (B.6), and (B.11)
In)=Lyn)(1+0(c™2), (B.12)

for all neZ. We note that Ly(n) is the restriction of the function

o 8T oo+

which is analytic in the strip [Im¢| < f/2, to the integers. Using Taylor’s theorem
one verifies that

Ly +ia) S e P L (), (B.13)
for real ¢ and |a| < f/2.
We now define
Iﬂ(¢) = Lﬁ(¢)Eﬁ(¢) s

where
sin?[(¢ —n)n]

(p—n?n> |
The proof of properties (a)~(d) follows easily from (B.12)~(B.14).

Ej(¢)=exp|Y.(InIy(n)—InLyn) (B.14)

Appendix C. An Analytic Interpolation of ¢~ #I"!

Here we construct an analytic interpolation of the function e ", ne Z. The basic
idea is as in Appendix B, but the present construction is considerably simpler than
the one in Appendix B, so that we only sketch it. We define

Ly(¢)=exp[ —p>3(1 + B> ¢*)"?],

sin’ [(¢ —n)]

Ej(¢)=exp |~ Y (Blnl— B> (1 + p**n?)'?) b—nin? | (C.1)

I/} (f)):Lp ¢ Eﬁ(d))
Note that I,(¢) is real and even, for ¢eR, and analytic in the strip [Imd|

<1/28~ /3. Moreover,

Binl — B30 + prn2yz < B
2ln

Properties (c) and (d) of I; required in Sect. 7.2 then follow directly from (C.1), (C.2)
and Taylor’s theorem with remainder.

(C2)



600 J. Frohlich and T. Spencer

Appendix D. Boundary Conditions

For simplicity we have proved our main theorems for the case of free boundary
conditions in models dual to the Villain or classical rotator. In this appendix we
briefly indicate how to deal with Dirichlet conditions on the boundary of a large
square A. First we must modify our construction of the ensembles /" appearing in
Sect. 2. This is because a long dipole of length Z both of whose charges are near the
boundary of 4 has small energy ~0(1) compared to its entropy ~In. In order to
avoid forming such a dipole we shall imagine that a charged ¢ is “neutral” by
associating opposite image charges via reflection through one of the boundaries of
A. Our ensemble /" may now have many ¢’s localized near the boundary of A for
which Q(e)=+0.
We make the above idea more precise as follows. Let us define

d(0)= max [dist(o, 4%, d(0)], if Qo)+0
9= (), it 0()=0.

Note that the (Dirichlet) electrostatic energy of g is at least as large as Ind ,(¢). The
revised version of Theorem 2.1 reads as before except that 4" now satisfies:
a) If o,0’e A, ¢+’ then dist(g, ¢') 2 M[min(d 4(¢), d s(0")]".
b) If ¢, Coe N satisfies dist(g,,0—0,)=2Md(0,)?,
then Q(0,)+0 and
2M dist(p,, A9 = dist(,,0—0,).

The bound on K given by (2.6) and (2.7) holds with
n(e) =smallest integer =1n,(Md ,(0)).

The proof of Theorem 2.1 proceeds as before. We iterate our application of
Lemma 2.2 to subensembles &, until conditions a) and b) are met. The ensembles
&, are n-ensembles with ge &, if and only if for some ¢'€Q,, o+ ¢’

dist(g, ¢') = M[min(d x(¢), d s(¢)]"-

Conditions a) and b) above follow in a straightforward manner from this
condition. The proof of our entropy estimate requires only small alterations.

In order to estimate the electrostatic energy (Sects. 3 and 4), for charged
configurations we define (g, 4)C %,(¢) to be the subcollection of 2* x 2* squares
which satisfy (3.3) and dist(s, 4°) = 2% %;when %,(g) consists of a single square we
set (0, A)=0 unless Qo)+ 0 and 2**? <dist(p, A°) in which case %(0)=%(0).
The statement of Theorem 4.1 reads as before except condition b) becomes

d(@)=d 4(0)+d(0)-

Our proofs of the theorems in Sects. 5 and 6 are nearly the same except we must
deal with a possible g, with Q(¢)=0 and ¢ localized in some neighborhood of our
observable. If we take A very large in comparison to the support of our observable
then it is easy to see that the effective activity of such a g is exp[ — f’ In(dist(g, 04))]
which is negligible. In general for f sufficiently large it can be shown as in Sect. 3

that
|2(B, o) Sexp{— f'(B) In[d (0)1},

where f'(f)— 0 as f— 0.
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We conclude with a comment concerning the proof of Theorem 4.1. If
se £ (0%, A) and gns=+0 then by our definition of &’ and conditions a) and b)
above, Q(¢)=0. Thus the renormalization of charges explained in Sect. 4 proceeds
with only minor changes since the ¢’s which interfere with the renormalization of
o* are still sparse and neutral.

Appendix E. Properties of Components C;

We shall establish properties a) and b) of the components C, [following (4.37)] by
induction on d(g;). Clearly both a) and b) are valid if d(g;) <2. We first establish a).

Let
M ={ge S |d(0) = d(0,)}

and define C;; to be the components of

U D).

ves, — M

By induction, diamC; Jéid(gi, j)- Since C,; intersects D(¢) for some ge.# we
conclude by (2.4) that
2d(g,) = dist (e, Qi,j) = Md(Qi,j)a .

Thus, for M large, d(e;)>d(o;)), for all j. If .4 has more than one element then,
since C; is connected, there are two elements, ¢, and g,, of .# such that D(g,)
and D(g,) are connected by some C;;. Hence, by (2.4),

5 . M [d(g;)\*
— L) > >
Zd(.Q,J)zdlamC,j= 5 ( 5 )

which contradicts the above inequality, for M > 1 and o> 1. Thus .# has exactly
one element, and
diam C; < 2d(;) +2 max d(g; ) =3d(o)).
j

In order to establish b) assume
|6Cij| =10d(g; ;)-
Hence

l0C{| =[0D(ey)l+ X10C; |
Jj
=8d(g;)+10 Zd(gi,j)'
i

By property a) and (2.4) we know that there are at most
8d(o)[M2%]™!

components C;; of diameter 2%~ 1 [which intersect #D(g)]. Therefore the last term
in the sum over j is bounded above by

80 Z d(@)IM2*] 12571 <2d(g), [m=a”'log,d(e,)]
k

for M sufficiently large.
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