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Abstract. We consider the C*-algebra Θn generated by n^2 isometries Sx,..., Sn

on an infinite-dimensional Hubert space, with the property that
SiSJ •+•... + SnS* = 1. It turns out that Θn has the structure of a crossed product of
a finite simple C*-algebra J^ by a single endomorphism scaling the trace of 3F by
l/n. Thus, Θn is a separable C*-algebra sharing many of the properties of a factor
of type IIIλ with λ = l/n. As a consequence we show that Gn is simple and that its
isomorphism type does not depend on the choice of Sl9...9Sn.

A C*-algebra is simple if it contains no non-trivial closed two-sided ideals. We call a
simple C*-algebra with unit infinite if it contains an element X such thatX*X = l
and XX"* =1=1. While non-separable algebras of this type are well known (e.g. the
Calkin algebra or type III factors on a separable Hubert space) there is to my
knowledge no explicit example of a separable simple infinite C*-algebra. The
existence of such algebras was proved by Dixmier in [9, 2.1] by the following
argument. Let Sl9 S2 be two isometries (SfSf = l, i= 1,2) on an infinite-dimensional
Hubert space Jίf such that S ^ + S^Sf = 1. Since the C*-algebra C*(Sί9 S2)
generated by Sx and S2 has a unit, it contains a maximal proper two-sided ideal β.
The quotient C*(Sί9 S2)/f is separable, simple and infinite. One of the results of the
present paper is that C*(Sί9 S2) itself is already simple (thus answering the question
of Dixmier to this effect). More generally, we study the C*-algebra generated by

n

n^2 isometries Sί9...9Sn satisfying ]Γ StSf = 1 (this condition implies in particular
ί = l

that the range projections StSf are pairwise orthogonal). We include the case n=oo.
We note incidentally that J. Roberts, motivated by investigations on superselection
sectors, has studied closed linear spaces generated by isometries with this property
[15]. These spaces are in fact Hubert spaces and C*(Sί9..., Sn) is from this point of
view the C*-algebra generated by a Hubert space.

We construct a faithful conditional expectation of C*(Sl9...9Sn) onto a C*-
subalgebra #" and show that C*(S1?...,Sn) is the crossed product of J^ by a single
endomorphism Φ (in a sense to be made precise in Section 2). If n is finite, then #" is a
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UHF-algebra in the sense of Glimm [12] of type rc00 and Φ scales the trace of 3F by
1/n. Thus we have here the C*-analogue of a factor of type IΠΛ with λ= \/n (cf. [6]).
We use this description of C*(Sί9...,Sn) to show that the isomorphism class of
C*(Sί9...9Sn) does not depend on the choice of Sί9...9Sn—that is, if 5 l 5...,Sπ is a

n

second family of isometries satisfying £ StSf = l then C*(Sί9...9Sn)is canonically
ί = i

isomorphic to C*(Sί9..., Sn). We denote in the following (the isomorphism class of)

C*(S 1,...A)bytfπ.
It is then easy to see that Θn is simple. What is more, Θn is simple in a very strong

sense—for every OφXe0 π there are A, BeΘn such that AXB = 1. Among infinite
simple C*-algebras the algebras Θn play a universal role comparable to that which
UHF-algebras play among antiliminary C*-algebras. Any simple infinite C*-
algebra s$ with unit 1 contains, given n = 2,3,..., oo, a C*-subalgebra j / n with 1 e j / n

such that a quotient of J / Π is isomorphic to Θn. For rc = oo the subalgebra stf ^ can
even be chosen in such a way that s$^ itself is isomorphic to Θ^.

Since the algebras Θn represent quite a new type of C*-algebras they give rise to a
number of counterexamples. From the representation as a crossed product it
becomes clear by the recent results in [7], [4] that Θn is nuclear. On the other hand
we show that Θn can not be an inductive limit of C*-algebras of type I. This answers
to the negative a question which arose naturally in the recent development of the
theory of nuclear C*-algebras (cf. [3]). J. Rosenberg after reading this article
showed that Θn is even amenable [16]. Since Θn is clearly not strongly amenable this
solves a problem of Johnson [13, 10.2].

C*-algebras generated by isometries have been studied before by various
authors. Curiously enough, it usually turns out that the isomorphism class of these
C*-algebras does not depend on the choice of the isometries—but only on their
algebraic relations. The difference between the present paper and investigations
such as [2, 5, 11] lies in the fact that the isometries considered here are in every
respect non-commutative.

We remark further that O. Bratteli has recently shown that the crossed product
of the CAR-algebra by a gauge automorphism is simple [1]. However, these
automorphisms do not scale the trace, so the algebras obtained are finite.

1. The Algebras Gn

In the following we fix n = 2,3,..., oo and a (finite or infinite) sequence {SJ"= 1 of
n

isometries (i.e. SfS. = l) on a Hubert space Jf. If n is finite we assume that £
r i=l

StSf = 1. If n is infinite we assume that ^ S-S? £Ξ 1 for every re N. We are going to
ί = l

determine the structure of the C*-algebra C*(S l 5..., Sn) (we use this notation also if n
is infinite) generated by {SJ"=1.
1.1. Given fee IN, let W\ be the set of all fe-tuples (/i, Jfc), with ;\e{l,...,n}

(i=l,...,fc)if nis finite, o r ^ e N i f nis infinite. Further let ^ = {0} and Wn

oo= M
k=O

W\. We write S0 = l and, given 0L = (jί9...9jk)eWl, we denote by Sα the isometry
Sa = ShSJ2...Sjk. Let /(α) = fc be the length of α and *f(0) = 0.
1.2. With this notation we have the following lemma.
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Lemma, a) Let μ, veW^ and *f(μ) = /(v). Then S*Sv = δμvl.
b) Let μ, veW^ and let P, Q be the range projections of Sμ9 Sv respectively.

Suppose S*S vφ0.
If ί(μ) = φ) then Sμ = Sv and P = Q.
If t(μ)<φ) then Sv = SμSμ, with μ'e WJ ( v W ( , } and P>Q.
If t{μ)>ί(v) then Sμ = SvSv, with v 'eP^ ( μ ) _ / ( v ) and P<Q.

Proof a) follows easily from the relation SfSj = δijΐ.

b) The first assertion follows immediately from a). To prove the second
assertion write Sv = SaSμ, where /(α) = /(μ) and /(μ') = /(v)-/(μ). By a) we have

W M = V V > w h e n c e α = i

1.3. Lemma. Let M=\=0bea word in {SJu{S* }. Then there are two unique elementsμ,
such that M = SμS*.

Proof Let M=XV.Xr whereXjG {SJu{Sf} (/'= 1,..., r). In this expression we may
cancel out every term of the f o r m X ^ ^ x w i t h X ^ + x = 1. After finitely many such
eliminations we get an expression for M in lowest terms M=Y1...YS where
^ ^ + 1 Φ l ( i = l , . . . , s - l ) . Since SfSj = δijί and MφO, the Yt must satisfy the
following

Thus, if/0 is the largest number between 0 and s such that Y ôe {SJ, we have Ŷ
for 1 ̂ j^j0 and l^e {Sf} forjΌ + 1 ^j^s. This shows that there are μ, v e J ^ such
that M = SμS*. Assume that α, jSePF^ are such that M = SaSp Then obviously
S*Sα φ 0 (since M*M Φ 0) and 5μ5* = MM* = SaS*. Thus the range projections of Sμ

and Sα coincide and according to Lemma 1.2b) we get Sμ = Sa. The same argument
applied to M* shows Sv = Sβ.
1.4. Let # ^ = Cl and let ^ be the C*-algebra generated by the set {SμS*\μ, ve Wl).
We denote by Jίγ the star algebra of r x r complex matrices and by Jf the algebra of
compact operators on an infinite dimensional separable Hubert space.

Proposition. // n is finite then <F\ is star ίsomorphίc to Jίnk and ^ C J ^ + i
(fc = 0,1,2,...). If n is infinite then £F\ is star ίsomorphίc to Jf* for all fc>0.

Proof According to 1.2a), for μ, μ', v, v'e W\> we have

(SμS*)(Sμ,S*) = δvμ,SμS*.

Since also (Sμ5*)* = SVS* this shows that {SμS*\μ, ve Wl) is a self-adjoint system of
matrix units generating <F\. If n is finite, then

sμs*= Σ sμstsrs*
i=l

is in ^n

k+1 since each summand on the right hand side is in ^n

k+v

1.5. Let &n be the C*-algebra generated by the union of all §F\ (fe = 0,1,2,...).
Proposition 1.4 shows that J^" is a UHF-algebra of type π00, if rc is finite. If n is
infinite J^0 0 is not a UHF-algebra but an AF-algebra.

1.6. We are now going to describe the algebra 0* generated algebraically by {5̂ }"= 1

and {iSf }"= v We take and fix one of the St, say Sv To emphasize the special role of
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Sl9 we will write V for Sx and V1 for S*. Let M = SμS* be a word in {£.} and {S*}.
Let r = £(μ), s = /(v) and k = r — s.

If /c>0 set M = SμS*Sf. Then M e f ; and M = MVk.
If /c<0 set M = S^kSμS*. Then M e J ^ and M = F f c M .
If fc = h

Since any ^4e^ is a linear combination of words, 4̂ can be written in the form

i = — JV i = 1

where the At are in # Λ We write A^F^A).

1.7. Proposition. The elements At = F f (4) are uniquely determined by the construction
described above (they do not depend on the special representation of A as a linear
combination of words). We have 11/̂ (̂ 4)11 ̂  ||^4||.

For the proof of this proposition we first need a lemma. Let n be finite and let
{εϊ}ϊ6N w n " n £ie {!> "->n) ^ e a sequence which is aperiodic in the sense that there is no
ίo>0 such that { ε j ^ becomes periodic. Given reN, write Ur = Sε...Sε and
Pr = UrU*.

1.8. Lemma. Let M l 5 . . ., M w be words m S l5..., 5n and iSf,..., 5* and Zeί k be a natural
number. Suppose that each Mt has the form Mt = SμS* where £(μ) φ /(v). Then there is
r e N such that

for i = 1,..., m and for all a, βe W\.

Proof. If Mt = SμS* where ί(μ) Φ φ ) , then 5*M ^ = 0 or we have after cancellation
SZMiSβ^Sfiϊ in lowest terms where ί(y)-£{δ) = £(μ)-£(v) (cf. 1.3). This shows
that S*MtSp also satisfies the hypothesis on M of the Lemma for any oc,βe W\. Thus
it suffices to show that for any finite collection M l 5 . . . ,M m , of words of the form
M = Sμ.Sv*. with ^(/OΦΦi), there is r e N such that P p M f P r = 0 (i=l,...,m'). It
suiffices to prove this for the case m' = ί.

Let J'(μ1) = p and ίf(vί) = q.. Then, for r>p,q, the expression Lr=U*rMίU
r can

be non-zero only if Sμ i = (7pand SVl = [7β (1.2b)). Thus Lr = S*r..Sfp + ίSeq + 1.:.Ser. But
then L r must be zero for sufficiently large r since by assumption p + q and since {εj
is aperiodic.

Proof of Proposition i. 7. Since for i ̂  0, by construction Ft +ί(A) = Ft (A V*) and for
i^O, Fi_ί(A) = Fi(VA), it suffices to prove the assertions for F0(A).

We consider first the case that n is finite. Choose an aperiodic sequence {ε J as in
the preceding lemma. Let k be so large that Fo (A) is in $F\. Using Lemma 1.8 we find
re N, r > k such that PrS*VjAjSβPr = 0 for; = - N,..., - 1 and PrS^AjV

jSβPr = 0 for
7 = 1,..,,JV and for all α, βeW£. We set

β= Σ H S / A *
aeWk

Then β F^ 7 .β - 0 for j = - N,..., - 1 and QAjVsQ = 0 for j = 1,..., N. On the other
hand β commutes with every Xe^n

k andXh>βXβ is an isomorphism of 3F\ onto
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. In fact, QSaSj = SJ5'jlQ = SaPrSf and the set {SβPrSJ|α, βeW"k} is a self-
adjoint system of matrix units generating Q J ^ β . Thus

Consider now the case n — oo. There is a finite subset I of N such that A is a linear
combination of words in Si9 Sf (ieH). We assume that C*(Sl9 S2,...) is represented on
Hubert space and choose an isometry S such that S*S — 1 and

ieΠ

We may assume that leH and define Ft(X) for X in the star algebra Θ> generated
algebraically by Si9 iel and S, as above with respect to V=SV Then F0(A) = F0(A)
since A is an expression in Si9 Sf only. We know already from above that there is a
projection Q in 9 such that QAQ = QF0(A)Q and | |βF 0(.4)Q|| = \\F0(A)\\. Hence

l|Foμ)|| = | |Foμ)| | = HβFoμ) ρ || = \\QAQ\\ S Mil.

Since in the finite and in the infinite case the mapping F0(A)t->QF0(A)Q is an
isomorphism, we finally see that F0(A) is uniquely determined by QF0(A)Q, hence
by A

n

1.9. Suppose that {SJ"= x is a second family of isometries satisfying £ SfSf = 1 and

let Φ be the star algebra generated algebraically by this family. It follows from 1.4
that J ^ n ^ and PnnΦ are algebraically isomorphic. Since these algebras are
inductive limits of finite-dimensional C*-algebras, they carry a unique C*-norm.
We may therefore identify J^n and # Λ With this identification, ΊϊAegP and A is the
corresponding linear combination of words in &9 then Fi(A) = Fi(A) for all ieZ. In
particular, A = 0 if and only if A = 0. This shows that <P and & are algebraically star
isomorphic. We equip Θ> with the largest C*-norm

H-XΊIo = sup{||ρ(X)|| |ρ is a star representation of & on a separable Hubert space}.

Let i f be the || || 0-completion of 0>. Since || || 0 is a C*-norm which majorizes the
initial norm on 0>9 the C*-algebra C*(Sί9..., Sn) is a quotient of if. We shall show
that &^C*(Sl9...,Sn). This will imply

1.10. The mappings F^.SP-^^^el) extend according to Proposition 1.7 to
normdecreasing linear mappings F f :C*(Sί,...,Sn)^>^'n and F f :«Sf ^ J ^ " (the use of
the same notation for both mappings will not cause confusion). Fo is a conditional
expectation [17, p. 101].

Proposition. LetXe^. If Fi(X) = 0 for all zeZ, thenX = 0.

Proof We use an argument which appears in [14, 1.2.5]. Let i f be faithfully
represented on Jf. By definition of the norm on i f the mapping
ρλ:Si\->λSi(i=l9...9n) extends, for every ΛeC with modulus 1 to a continuous star
representation ρλ of ^ on jf. Note that ρA(X)=X for every



178 J. Cuntz

Given ξ, ηe2tf with \ξ\ = \\η\\ = 1, let / be the function on the unit circle T in <C
which is defined by

) = (ρλ(X)ξ\η) (λeT).

Let {Ak} be a sequence in & which converges in jSf to X. Consider the functions

Since \\ρλ(X) — ρλ(Ak)\\0^ \\X — Ak\\0, the functions hk tend to / uniformly on T.We
have

\W= Σ (λΨFAAJξb)
ί=-N

+ (F0(Ak)ξ\η)+ Σ (F^AύλΨξW^ Σ ^
ί = l i=-N

The z-th Fourier-coefficient aik oϊhk converges to the z-th Fourier-coefficient ft of/
as fc-»oo.

But lim \aik\ ^ lim ||F.(^4fc)|| 0 = 0 by assumption for all ίeZ so that / = 0 and
fc-> oo k->oo

X = 0, since ξ9 η were arbitrary.

Remark 1. The idea of the proof of 1.10 really consists in interpreting Ff(X) as z-th

Fourier coefficient of the function λt->ρλ(X) (λe ΊΓ). In fact, the equation Fi(X) =
j ρ^X^dλ holds for every Xe if.
T

Remark 2. Let ^ k e ^ converge to XeS£. Since

) = l i m [ Σ W f l W + f o W ( ^ + Σ F - F ^ ][
[ f<o

we see from the proposition that Fo is faithful in if.
This fact and Proposition 1.10 itself could have been derived in a slightly

different approach from the general theory of crossed products [18]. We preferred
the proof given above because it is very elementary and fits exactly into the
framework of this paper.

1.11. Proposition. 5£ is canonically ίsomorphic to C*(Sί,...,Sn).

Proof. The identity mapping π'.gP-^g? extends to a continuous star homomorphism
π of if onto C*(S1,....,Sn). We show that π is injective. We obviously have
Fio7l = 7loFi [after identification of &n and π " 1 ^ " ) ] . If π(X) = 0 then Fi(π(X)) = 0
whence π(Fi(X)) = Fi(X) = 0 for all ίeZ.

n

1.12. Theorem. // {£t }"=1 is a second family of isometries satisfying

o r Σ SiS?^ί for every reN, ifn—oo L ί/iew C*(Sί,...,Sn) is canonically ίsomorphic
\ i=l I
to C*(Sv...,Sn) {i.e. the map 5 f ^S f extends to an isomorphism from C*(Sl9...,Sn)
ontoC*(Sl9...,Sj).
Proof This follows from 1.9 and 1.11. Note that in 1.9 all isomorphisms are
canonical.
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In view of this it makes sense to write Θn for C*(Sί9..., Sn) since the isomorphism
class of Θn does not depend on the choice of {SJ"= v We remark that Theorem 1.12
also shows that Θn is simple. In fact, let / b e a maximal ideal in &n = C*{Sl9...9Sn)
and π:Θn-+ΘJf the canonical projection mapping. Then, by Theorem 1.12, the
simple C*-algebra @J(f = C*(π(S1),...9π(Sn)) is isomorphic to Θn. But we are now
going to show that Θn has a property which is much stronger than simplicity (in [8]
we raised the question if every infinite simple C*-algebra with unit has this
property).

1.13. Theorem. Let n be finite and letX be a non-zero element of Θn. Then there are A,
BeΘn such that AXB = ΐ.

Proof. By 1.10 we have F0(X*X)ΦO. Without loss of generality assume that
\\F0QC*X)\\ = 1. Let Ye0> be a positive element such that \\X*X- 7| | < ε ^ 1/4. Then
||F0(Y)|| ^ 1 — ε (1.7). In the proof of Proposition 1.7 we constructed a projection
Qeffi^nP such that | |QF ?(Y)β| | = | |F 0 (y) | | and QYQ = QF0(Y)Q. Let fcbe so large
that QF0(Y)Q is in 3F\. Since &\ is a finite-dimensional C*-algebra, QYQ has the

s

form QYQ=: Σ Λ-Λ where R( are minimal projections in $F\ and λt are positive real

numbers. There is i 0,1 ̂  i0 ^ s such that λio ^ 1 — ε and there is a partial isometry U
in &l such that U*U = Rio and l/[/*=S5Sf (note that S ^ f is a minimal
projection in ^ ) . Then with A = S*kUQ we have AYA* = λiQl and

(since ||^4|| = 1 and 1 — ε^A ί o ^ 1 +e). This shows that A^ί^Z^* is invertible and we
are done.

Remark. If in the situation of the preceding theoremX ^ 0 and | |F 0(J0| | = 1, then it is
obvious from the proof given above that A and B can be chosen such that ||^4||,
||B|| ^ 1 + ε, for any given ε > 0. (Moreover A, B can be chosen such that B = A*.) We
will use this in Section 3 where we will prove a version of Theorem 1.13 for Θ^. A
different proof of 1.13 for the case n= oo could also be given using methods similar
(but more complicated) to those employed in the proof above.

2. Representation of Θn as a Crossed Product

2.1. Let n^2 be finite and letjeZ. Then J^n can be represented as an infinite tensor
product [17, 1.23.11]

&n = (g) jr. = jrf where JT. ̂  Jin for all i.
ί=j

Define embeddings

by s/j3Xh+e11(g)Xes/j_1=Jifn<g)j!/j9 where {eij\ij=l9...ή} denotes a self-adjoint
system of matrix units in Jin. If we take the C*-inductive limit [17, 1.23] of this
sequence we get a C*-algebra cβn isomorphic to J f ® ^ " . We may, of course,
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continue the above sequence of embeddings to positive integers

in the same way by si pX\-^eγi®Xesi j_1 (]£%)> Since all si ^ are isomorphic we
may consider the automorphism Φ of c€n which is induced by the shift to the left,
mapping an element in si j to the corresponding element in sij+ί. One may express
the action of Φ somewhat informally by Φ(X) = e11®Xeeίί®sij = sij for

Let the crossed product C*(#n, Φ) be faithfully represented on the Hubert space
Jf. Then there is a unitary U on j ? such that Φ(X) = UXU*(£e<#n) and <?*(#„, Φ) is

N

the closure of the set of finite sums of the form Λ= Σ X^1 (X^e^). With
i=-N

X^U'^JJ1 this expression becomes

A — V TPΫ 4-Y 4- V YΓP fY" Γ c ^ ^

ί < 0 i > 0

Let P be the unit of si0 C C*(ί?π, Φ). Since UPU* = e11®Pesi0 = J{n®si1 we have
UP = PUP and PXiU

ίP = (PXiP) (UP)1 for i>0 and PUX^^iUPY'ΨX^ for
i<0. With F=l/P we get

Thus δn = PC*i<βn9Φ)P is generated by s/0 = P^nP together with V.
n

Let S ^ ^ O P J K O ^ l , . . . , ^ . Then SfSt = P and ^ StSf = P. Further J / 0 is

generated by all elements of the form SμS* where μ, ve W1^ and £(μ) = t{y). In fact, if
μ = (jv...Jk) and v = (i1,...,ifc), then SμSΐ = ehiι®ej2i2®...®eJkiit®Pej*0 =
Jίn®...®J(n®srfk. Hence <?II = C*(S1,...,SII)^β?w.

Let Pk be the unit of &tk (fe^O). Then C*(<$n,Φ) is the inductive limit of
P k C*(^ π , Φ)Pk (fc-> - oo). It is not hard to see that Pk_ 1 C*(Ήn, Φ)Pk-1 is generated
by P f cC*(^n, Φ)Pk together with {eίj®Pk\lShJ^n}Cs/k_ x and that, consequently,
C*(tfn,Φ) is isomorphic to J f <g)0n.
2.2. Let now n=co. For j e N let si^ be the C*-subalgebra of 0^ defined by
jtfj = S{&rooS*j. Then sij_1 ^ C i e f / ® ^ ) . On the other hand we also have
<stfi = si0 = ϊFco for all ΐeN. Define ^ . for negative j inductively by
J / J . _ 1 = C 1 © ( J Γ ( X ) J / J . ) . We fix a minimal projection R in Jf and consider the
sequence of embeddings

- i

defined by sipX±->R®Xe^®s^jCsij_v Let <$^ be the inductive limit of this
sequence. Clearly <€^ is an ^IF-algebra. If as above we let Φ be the automorphism of
%> ^ which is induced by the shift to the left on the above sequence (continued to
positive integers) then Θ^ ^PC*{$^ Φ)P where P is the unit of si0 C C * ^ , Φ).
2.3. We have seen that Θn (w = 2,..., oo) is isomorphic to the crossed product of an
^IF-algebra by a single automorphism, cut down by a projection. By recent results
of Connes [7, 6.8, 6.5, Theorem 6] and Choi and Effros [4, Corollary 3.2] this



Simple C*-Algebras Generated by Isometries 181

proves that Θn is nuclear. I am indebted to A. Connes and S. Sakai who called my
attention to this fact. We show now that Θn can not be obtained as an inductive limit
of type I C*-algebras.

Proposition. Let n be finite and let Slf...,Sn be isometries on a Hilbert space Jf
n

satisfying £ SiSf=P^ί. Suppose that j/CJ^G^f) is a C*-algebra containing

elements Aί9...9An such that \\At — St\\ <ε. If ε is sufficiently (depending on n) small
n

then there are Al9...9Anesi such that AfAt = l and £ AtAf^l. If P = l then

Aί9...9An can be chosen such that the sum of the range projections of At equals 1.

Proof Let ε < 1/10. We have

Hence AfAt is invertible and

Now V—A^AfA^'* is an isometry and

\\ViVr

Further

(^)iι+
+ \\ViVf(VJV*-SjS*)\\<2Ωε for ί+j.

Given ^ > 0 , by [12, 1.7], if ε is sufficiently small there is a family of pairwise
orthogonal projections El9...,En in s/ such that | |£ f — Vyf || <δ. Then
H E ^ - ^ I I <δ. Thus VfE^ is invertible for small δ and the elements λ^E^

) " * are isometries. Moreover the elements AiAf==Ei are pairwise

orthogonal projections and Q — ]Γ AtAf is a projection such that
ί = l

In particular Q = 1 if P = 1 and ε and δ are sufficiently small.

Corollary 1. Let si be a C*-subalgebra of Θn (n finite) containing elements Aί9...9An

such that || At — S( || < ε. // ε is sufficiently (depending on n) small then any such si must
contain a C*-subalgebra which is isomorphic to &n.

Corollary 2. An infinite simple C*-algebra £8 with unit can not be an inductive limit of
type I C*-algebras.

Proof By [8,2.2] & contains isometries Vl9 V2 such that Vί V% + V2V%^ 1. Let ri be
a C*-subalgebra of $ containing elements Aί9 A2 such that \\Aj—1^|| <ε. If ε is
sufficiently small, then si contains isometries Aί9 A2 such that AxA1[ + A2A%^t.
Since a quotient oϊC*(Aί9 A2) is isomorphic to Θ2 (3.1) and Θ2 is clearly not of Type
I, si can not be of type I.
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2.4. As On is simple, so is J»f®Θn. But Jf®&n is even algebraically simple (i.e. has no
non-trivial not necessarily closed two-sided ideals). This follows from the following
general theorem.

Theorem. Let si be a simple C*-algebra with unit. Then Jf®si is algebraically
simple if and only if there is fceN such that Jίk®si is infinite.

Proof "Only if part". We use the notation of [8]. Assume that Jίk®si is finite and
let P be a projection of dimension r and β a projection of dimension 1 in Jίk, Then
(P®l/Q®ΐ) = r in Jik®si. In fact, we have a = (P®l/Q®l)^r. On the other hand
a<r would imply (P®1/#®1) = 1 for any projection R^P of dimension a in Jik.
Since P®\ is a finite projection in Jίk®si [8, 2.4], this is impossible [8, 2.1].
Assume now that Jίk®si is finite for any fee N. If P is a projection of dimension r
and β a projection of dimension 1 in JΓ then (P®l/β®l) in 3Γ®si equals
(P®l/β®l) in (P®1) {Cfc®si) {P®l)^Jir®si hence equals r (we may assume
β ^ P). Let P x, P2,... be a sequence of one-dimensional orthogonal projections in j f

00

and let H= £ AfPf where λ f>0 and λf->0.

Then for any reN and for any one-dimensional projection β in Jf we have

and

This shows that the ideal generated algebraically by β ® l in C/f®si does not
contain H®1.

"If part". The proof is essentially contained already in [10, 3.1.4]. We have only
to combine Dixmier's argument with [8, 2.2]. We may assume that si itself is
infinite. Let El9 E2,... be a sequence of pairwise orthogonal one-dimensional

k

projections in Jf such that the sequence {Hk}^v defined by Hk= £ Ei9 is an
i=l

approximate identity for Jf. It is easy to see that Hk® 1 is an approximate identity
for Jf (x) J / (it is enough to check this for the algebraic tensor product of Jf and si).

Let / b e a non-zero ideal of C/£®$i. If X + O is in β then there is k such that
(Hk® l)X(Hk® 1) Φ0 hence there are i, j , l^ijύ k such that (E ^ ^ X ^ . ^ ^ φ O . If
E^eC/ί is a partial isometry with support projection E. and range projection £. then
(Ef®l)X(Efj.®l)* is in y and is non-zero. Thus βr\E{®si is non-zero, hence
equals Et®si since si^E{®si is algebraically simple.

From [8, 2.2] using induction we get the existence of infinitely many pairwise
orthogonal projections Ft and elements V{m si such that VfVt = l and I^Ff ^i7^
(i = 1,2,...). We have E1 ®Fi~Eί®l~Eί®ΐ in Jf®si. Let C7f be a partial isometry
in Jf®si with range projection E1®Fi and support projection £ f ®l. With Gk =

k k

X Ft and Yk= ^ t7f we have YkY* = E1®Gk and y*7k = i ϊ f c ®l.
i=ί i = l

To complete the proof it is enough to show that any positive element X of
Jf ®si is in β. Since (fίfc®l)X^ is a Cauchy sequence also l̂ X^ is a Cauchy
sequence converging to an element 7of Jf ®si. Since (£ x® 1) 7= Yand £ 1 ® l e t /
we have ί; 7*e/ . Therefore 7*7=X is in / .
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Remark. Let A, BeJf®Θn and £ φ θ . There are i, j e N such that
(EjOl)5(^.(8) 1)ΦO. Let C = (Eli®ΐ)(Ei®ΐ)B(Ej®l)(Ejί(g)l)(Eij= partial isom-
etry in Jf with support projection Ej and range projection E,.). Then CφO and

^ . There are F, G in 0n such that (£1®F).C(£1®G) = £ 1 ®1 (1.13, 3.4).

Further there are Z l9...,Xr and Yl9...,Yr in Jf®0 r t such that A= £
i = l

X^EiOl) Yt (the ideal generated by £ X ®1 in j f ®0Π consists exactly of all finite
sums of this form). Let Vl9...9 Vr be isometries in Θn such that FjFf,..., VrVf are
pairwise orthogonal projections in Θn. Then

Together this shows that there areX, YeJΓ®0M such that A=XBY.

3. Extensions of (9n

n

3.1. Proposition. Lei Vl9...9Vn be isometries on a Hubert space ffl such that ^
n i = l

P^Ff ^ 1 (n finite). Then the projection P = l— ]Γ ϊ^Ff generates a closed two-sided
i=l

ideal J in C*(yί9...9Vn) which is isomorphic to Ctf and contains P as a minimal
projection. The quotient C*(F1 ?..., Vn)/e/ is isomorphic to Θn.

Proof. Define, given μeW1^, an isometry Vμ in the same way Sμ was defined in
Section 1. The closure of the set β of all linear combinations of elements of the form
VμP

 v* (β, VG W"n) is clearly a two-sided ideal in C*(Vl9...9 Vn). On the other hand /
is contained in every two-sided ideal containing P.

Consider the product X = (FμPF*) (V^PV*) (μ,v,α,jBe»O After cancellation
we have V*Va = VyV* (y,δe WJ in lowest terms (1.3). But PF γF*Pφ0 if and only if
7y7? = l, since Pl^ = O(i = l,...,n).TΊiusXφOif and only if PF*7βPφ0if and only if
v = α (1.2). Hence

and

In other words the set {V^V^μ.veW1^} is a self-adjoint system of matrix units
generating /. Therefore f can be mapped isomorphically onto a dense star
subalgebra of JΓ which is an inductive limit of finite-dimensional C*-algebras,
hence carries a unique C*-norm. This mapping must be isometric and extends to an
isomorphism of <?=/ onto Jf.

Remark /.It seems to be interesting to study more general extensions of Θn by the
compacts.

Remark 2. In the situation of the proposition, given i (1 ̂  i g n) and μ, ve W^, there is
fceNsuchthat FffeFμPF*F^ = 0. This shows that VfAV\ tends to zero as fc-κx) for
each AeJ.
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3.2. Let si be a simple C*-algebra with unit. It follows by induction from [8, 2.2]
k

that si contains a sequence Vl9 V29... of isometries satisfying £ VjVf ^ 1 for every
i=ί

ke M We know already from Section 1 that C*(Vί9 V29...)^ΘO0. From 3.1 we see that
C*(Vl9...,Vn) (n^2 finite) contains a closed two-sided ideal β such that
C*(Vl9..., VJ//^Θn. Therefore 0^ is contained (with the same unit) in j / and Gn is
for any finite n ̂  2 contained up to quotients in J / .
3.3. Consider Θ2 = C*(Sί9 S2). We put ^ = S\9 S2 = SXS2, and S3 = S2. Then SfSt = 1

3

and Σ Sβf = l so that Θ3^C*(Sl9S29S3)cΘ2. By induction we get the following
i = l

chain of inclusions

3.4. We use 3.1 to prove a version of 1.13 for Θ^.

Theorem. Let X be a non-zero element of Θ^. Then there are A, BeΘ^ such that
AXB = 1.

Proof. We may assume t h a t Z ^ O and ||F0(X)|| = l . L e t Ybe a positive element of the
star algebra generated algebraically by Sl9S29... such that \\X— Y\\ < ε < l / 4 .
Without loss of generality we may assume that ||F0(Y)|| = 1.

There is a finite subset I of IN such that Y is a linear combination of words in Si9

Sf (/eΠ). We assume that Θ ̂  is represented on the Hubert space ffl and choose an

isometry S on J f such that SS* = 1 - £ SA* Further we fix i oe N such that io^K
iel

We consider the C*-algebras sil9 generated by St (/eΠ) together with S9 and j ^ 2 ,

generated by St (iel) together with Sio. The projection P = l - £ Sβf-S^Sζ

generates a non-trivial closed two-sided ideal /" in j / 2 (3.1) and si2jβ is
canonically isomorphic to J3/X (1.12).

We may assume that 1 e l and define F in siλ with respect to Sx and F f in si2jβ
with respect to ρ(5J (where ρ\si2-*si2lf is the canonical mapping) in the same
way in which Ft was defined in Section 1. Then F0(Y) = F0(Y) since Y is an
expression in Si9 Sf (iel) only. Therefore

By the remark in 1.13 there are A9Besi2/f such^that Aρ(Y)B = l and
| | 5 | | < l + e . Then A, B can be lifted to elements A9 B in si2 such that
| | β | | < l + 2ε. We have AYB = 1 + K with Ke/. By Remark 2 in 3.1 we get
Sfk(AYB)S^l as fc-^oo for each zeΠ. Since

this shows that S*k(AXB)S1ϊ is invertible for sufficiently large k.
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