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Abstract. For classical TV-particle systems with pair interaction
N"1 X Φ(^ΐ~3j) trιe Vlasov dynamics is shown to be the w*-limit as

l^i^J^N
N-+QO. Propagation of molecular chaos holds in this limit, and the fluctuations
of intensive observables converge to a Gaussian stochastic process.

§ 1. Introduction

Consider the Newtonian equation

x(ί,α,μ) = fμ(dfc)f(jc(ί,α,μ)-2c(ί,&,μ)) (1.1)

for a particle with initial condition

z(0, α, μ) = (x(0, α, μ\ x(0, a, μ)) = a = (q,p) (1.2)

interacting via a regular 2-body force F(q) = —Fφ(g) = — E ( — %) with other particles
having initial conditions distributed over a real Borel measure μ on IR6. This
framework contains the canonical dynamics of N mass points

*;,(*,«*) = Σ f (*„(*, αtf)-xjί,%)), (1.3)
m= 1

where l^n^N and with initial condition aN = (al9...,aN). For, let μaN(dd)

= £ δan(da) and 2c(ί,α,μα2V) be the solution of (1.1). Then
n

xn(ί,αjv) = x(t,αn,μ
aN) (1.4)

is the solution of (1.3). On the other hand for μf(dά) = f(ά)da the Newtonian
Equation (1.1) also solves the Vlasov Equation [1]:

(ί, α) = -E (ί, α) - (ί, α) J dcίf(t, a')F(Q -f) (1.5)
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with initial condition/(O, a) = f(a)e C1, if J da\f(d)\ ^ 1. For this purpose we observe
that the mapping a-^z(t, a, μ) is canonical. Then an easy calculation (2.11) shows
that /(ί, z(t9 a, μf)) = f(a) satisfies (1.5).

We remark that the JV-particle dynamics (1.3) and the Vlasov dynamics (1.5)
represent disjoint specializations of (1.1) for measures μ"N and μf(da) = f(a)da. We
expect that the Vlasov dynamics describes asymptotically the time evolution of the
particle number density in 1R6 of the ΛΓ-body system with initial condition <%,
whenever

μ^N-1 Σ <5an—/ (i 6)
n=l

for JV->oo. The Newtonian equations for μ*N are equivalent to (1.3) if the 2-body
force F is replaced by N'1^. We shall see in Section 2 that (1.6) implies
z(ί,α,μ#)->z(ί, α,//). Hence the Vlasov dynamics does indeed describe the con-
tinuum limit for point particle configurations where the interaction energy is scaled
down to retain a finite energy per particle.

The Vlasov dynamics should also describe asymptotically the time evolution of
JV-particle systems, where the probability measure μt

N(docN) = fN(t,ocN)docN satisfies
"molecular chaos" for ί = 0, i.e. fN(Q,aN)= Y[f(an). This follows heuristically from
the BBGKY hierarchy for the s-particle correlation functions with N'^Σφij
interaction

/£(ί, al9...9as)=$das+ί.. daNfN(t, UN) (1.7)

_1 v _ g/N (t

N < τ , τ = l " ~σ ~T fyσ

_ N Z L S y f d α _ a/Γ1

 ( t f l a }
JV σtΊ J s+1~ σ s+ί dpσ

Formally, one obtains the "Vlasov hierarchy" for N-^co:

d^f(t,a,,...,as)

- Σ ίΊ«,llC(3.-3,fί}-(t,α1 «„,)• (W)
σ = l °Pσ

While the BBGKY hierarchy is incompatible with molecular chaos for all times if

F0ΦO, the dynamics (1.9) has factorizable solutions f^(t9αί9 ...,αs)= Y[f(t,ασ)9 if
σ

f(t,ά) is a solution of the Vlasov equation. The asymptotic propagation of
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molecular chaos has been established by Kac [2], Grϋnbaum [3], and McKean [4]
for the "N molecule gas" and by Grad [5], Lanford [6] and King [7] for the
Boltzmann limit. In Section 3 we shall prove the convergence of/^(ί,α l5 ...,αs) to

s 1
Yl f ( t , aσ) in the —limit, and we shall show that for factorizable initial conditions

σ= 1 ™

the fluctuations of intensive observables converge to a Gaussian stochastic process,
rather similarly as it has been shown in [8] in a quantum mechanical context.

Acknowledgement. The authors are grateful to Prof. R. Jost for stimulating discussions.

§ 2. The Vlasov Dynamics

In this section we shall prove global existence, uniqueness and regularity of
solutions of the Newtonian Equations (1.1), and we shall establish the connection
between z(ί, a,μf) and solutions f(t,a) of the Vlasov equation.

Let Ji be the set of real Borel measures μ on R6 with |μ| < oo and Jl\ the subset
of probability measures. Let Cf be the set of all potentials φ(q) = φ(—g^ with
continuous and bounded derivatives up to order k and C^u the subset with
uniformly continuous derivatives.

Theorem 2.1. Let φeC% andF — — Vφ. Then (1.1} has a unique solution z(t, a, μ) for all
(ί, α)eIR7 and μeJt. z(t, a,μ) is C1 in (ί, a) and weakly continuous in μ, uniformly for
αeIR6 and bounded sets in t. The mapping z(t,μ):a->z(t,a,μ) is canonical and
Tt:(a,μ)-+(z(t,a,μ\μ°z(t,μ)~ί) is a 1-parameter group.

Proof. Let T>0 and let Bτ be the Banach space of all continuous bounded
mappings g : [ — 1, 1] x IR6 -»]R3 with the norm

\\3\\τ= SUP Il0(ί,a)ll (2.1)
| ί |iΓ,αeIR6

Let U(μ):Bτ^Bτ be the mapping

= I ds ί dr J μ(da')F[_g(r, a) +5 + rp -g(r, a') -q'- rp')] . (2.2)
0 0

Then x(t,a,μ) = q + pt + g(t,a,μ) establishes a 1 — 1 correspondence between so-
lutions of (1.1) and fixed points

μ)) (2.3)

For φeCl there exist constants c1; c2 such that

|μ|

JΓ£c2 7*11^ -02||Γ|μ|.

For small T, U(μ) is a contraction mapping and hence there exists a unique solution
z(ί,α,μ) which is C1 in (t,a) with uniformly bounded derivatives w.r.t. α. The
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mapping z(£,μ) is canonical, since z(ί, α,μ) is a solution of the canonical equations

.en . dπ
- x = > J^-

(2.5)

Hence ΌetDz(t,a,μ)—l and μ(f) = μ°z(t,μ)~^eJt. The composition law Tt

= Tt°Ts holds, if z(ί + s,μ) = z(ί,μ(s))oz(s,μ) or if

z(ί + 5, α, μ) = z(ί, z(s, α, μ), μ(s)) . (2.6)

Since |μ| = |μ(s)|, both sides are well-defined for max {|s|, |ί|, |s + ί|} < Γ For ί = 0, (2.6)
is true and both sides satisfy the same differential equation. This proves (2.6) and
allows one to extend z(f,μ) for all ίeR

Consider now a sequence μNEJί which converges to μ in the w* sense. Then
uniform convergence z(t α, μN)-»z(ί, a, μ) holds, if we can show that the fixed points
g(μN) and #(μ) satisfy \\g(μN) — g(μ)\\τ-*® Now, for sufficiently small Tand large N

\\g(μN)-g(μ)\\τ

N)) - U(μN9g(μ))\\ τ + || ̂ (μ^ ί̂μ)) - U(μ,g(μM τ

+ II U(μN9β(μ))-U(μ,g(μ))\\τ, (2.7)

and hence we have to show that the last term converges to zero. If μN-*μ in the w*-
sense, then \\μN — μ\\$L^>0 [10], where

(α)|+ sup (/(αJ-^α^lK-αJ-
αeR6 αι,Λ2elR 6

(2-8)

l lμ | l lL= sup \lf(d)μ(da)\.
l l/ l | j s i=ι

Using the BL norm in the variable α' one obtains

\\U(μN,g(μ))-U(μ,g(μ))\\τ

^K-A sup ]dsldr\\F(3(r,a,μ)+q+2r-S(r,a',μ)-2'-S'r)\\BL. (2.9)
αeIR6 o 0

The second factor on the right-hand side is bounded, because g(r,a,μ) has
uniformly bounded derivatives #.r.t. α. Π

Theorem 2.2. For F= —Vφ, φeCl and μεJίl μ(t) is a weak solution of the Vlasov
equation with μ(0) = μ. Ij μ = μf with O^/eC^R6), Jy(α)dα = l, then j(t,a)
= /°z(ί,μ)~1(α) is a strong solution oj the Vlasov equation with /(O, a) = J(a).

Remark. We have not proved the uniqueness of these solutions.
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Proof. Let /ίeCj?(R6). Then

d Λ-\μ(t,dά)h(a)

= —\μ(da}h(z(t,a,μ))

= j μ(da) If- (z(t, a, μ)) y(t, a, μ) (2.10)
[OX

+ — (z(t, a, μ)) ί μ(db)F[x(t, a, μ)-x(t, b, μ)]

If μ = μf, then Det Dz(t, a, μ) = 1 implies μf(t) = μf(t), where f(t,z(t,a,μf))=f(a).
Hence

= (ί, z(ί, α, μO) + (ί, ̂ (ί,

+ (ί, z(ί, α, μO) ί /(Λ'Wα'f Dc(ί, *, //O -2P(ί, «',

(2.11)

Now the last integral equals

Jdz'/(ί,z/)f[x(ί,fl,μO-2c'] (2.12)

and the substitution a = z(t, μ)~1(z) leads to (1.5). D

In the next section we shall need stronger regularity properties of z(t, a, μ) in μ,
which we can prove under additional smoothness assumptions on φ :

Theorem 2.3. Let ke~N,F= — Vφ and φeCl*k, then z(t, α, μ) is k times continuously
differ entiable vv.r.ί. μ, where for μ, ve^

lim Γ 1 (z(ί, α, μ + ίv) - z(ί, α, μ)}

sfvίdft^zίί^fc,//) (2.13)

Djz(t, α, b1? ..., ί>7 , μ) similarly. For every finite t Djz is uniformly bounded

sup |^z(ί,αΛ, .Λ >μ)l^(ί) ; = l . . . f c (2.14)

, α, ft, μ) - (Dlx(t, a, b, μ\ Dly(t, α, ft, μ) Ξ D1 jfo fl, 6,
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is Ck in t and Ck~l in α,b and is the solution of the linearization of (1.1) around
z(t, a, μ):

t s

D^(t9 α, ft, μ) = j ds f drF[x(r, α, μ) -x(r, b, μ)]
o o

+ f ds J dr f μ(dc) -f- [x(r, α, μ) -x(r, c,
o 0 t f *

(2.15)

Proof. The well-known proof for ordinary differential equations using Gr on wall's
inequality (see e.g. [9], p. 302) can be applied without complications. The
boundedness of DJz follows immediately from the linear Volterra equation for Djz,
by applying J^-1 to (2.15). G

§ 3. The Weak Coupling Limit for Infinitely Many Classical Particles

In this section we shall investigate the weak coupling limit for a classical JV-particle
system with pair potential N~lφ. First we shall consider pure initial states:

Theorem 3.1. Let F = -gφ and φeC^. Let zn(t, OLN) be the solution of

(3.1)

Letωκ(t, Uκ)=(2ι(t, aN), ..., ̂ ς ̂  j f ^ J . ^ then fi%

=μ°z(t,μ)~1 is a weak solution of the Vlasov equation.

Proof. We use the fact that ztt(t, t*N) = z(ί, an, μ*N

N) is the solution of (1. 1) and estimate
°(for/*eC&°(IR6)

N" 1 £ h[_z(t, an, μ^ - I μ(da)h{_z(t, a, μ)]
N

w = l

= I J M# v"#)ri[z(f, α, u^J] — j μ(da)h[z(t, α, ji

= I J (μN~μX^v"LX£, #? μ)]| + I j μa^(dd){h\_z(t^ α, μJίfO] —/ι[z(ί, α, μ)]}|. (3.2)

By assumption, the first term tends to zero. Since μ^ converges weakly, there exists
for every ε > 0 a compact χ(ε) c R6 such that μff(K(&)) ^ 1 - ε. On K(ε), Λ is uniform-
ly continuous and the supremum of h[_z(t,a,μ«/)~\-h\_z(^a,μ)\ tends to zero by
Theorem 2.1. D
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Corollary 3.2. // μ*/-^μ and /zeC£(IR6s) then the "intensive observable^

N

0'n(*N) = N~S Σ tfcnfr %)> -I *„.(*> %)]
ni ...n s= 1

(3.3)
converge :

im 0'n(αN) = f μίdαj . . . μ(das}h[_z(t, α1? μ), . . . , z(ί, αs, μ)] . (3.4)

Next we shall investigate the time evolution of symmetric product measures μ(daN)

= Y[μ(dan) on the N-particle phase space with μtJl\. Let μt(docN) be defined by
«

J μt(doιN)g((xN) = J μ(daN)g(ωN(t, <XN)) .

We shall see that "molecular chaos" propagates for JV-»oo, if we only look at
intensive observables of the type g(ocN) = Oh(ocN):

Theorem 3.3. Let he C£(IR6), μtJl\ ana μt(daN) be the solution o/(3.1) wiίft μQ(d^N}

= l\μ(dan\ Then
n

lim J Oh(aN)μt(daN) =$h(al9...9aj f\ μ(t, daσ) (3.5)
N~"co σ = l

where μ(t) = μ°z(t,μYl is a weak solution of the Vlasov equation.

Proof. At time ί = 0, (3.5) is obvious:

N~° Σ $h(anι,...,aJ~μ(daN)
«l...«s= 1

= jΛ(f l ι , . ,aJ Π MdαJ + OίJV-1). (3.6)
σ = l

For ί Φ 0 we shall use (3.4) and the strong law of large numbers : Let ̂ 6 be the Borel
OO

σ-algebra on R6 and (Ω, 3$) be the probability space J"J (]R6, J*6) with the product
n = l

00

measure μ(da) = J~J μ(dan). Here α = (019 . . . , αn, . . .)e Ω and αN denotes its projection
n = l

on IR6ΛΓ. For every μ-continuous set zlc^6 [i.e. μ(<9zl) = 0] with characteristic
function χΔ, the independent random variables in (Ω, J*,μ) χ^(α) = χzl(αn) have
mean μ(Δ) and variance μ(zl) — μ(zl)2. Hence

μl(Δ) = N-ί^l"Δ(<ή Ί^^μ(Δ\β a.e. (3.7)
n= 1

Since μe^+, there exists a countable set 9Ϊ of intervals

which is closed under finite intersections, such that for every zeIR6 and every ε>0
there exists an (an, ftJeSί with ze(αn, bn)C {z'\ \z-z'\ <ε} ana such that (3.7) holds.
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Since $1 is countable there exists a set Q C Ω with μ(Q)= 1, such that /4((αn, bj)
-»μ((αn, bj) for all αe Q and all (αn, b J e 91. Hence μ^ converges in the w*-sense to μ
([11], p. 14) for all αeβ. Now

J μt(dvN)On(<xN) =

For all JV,

lOiίM ̂  sup \h(al9 . . . , αs)| < oo ,

and for αeβ

by (3.4). Since μ(Q)=l, one obtains (3.5) by the dominated convergence
theorem. D

For more general initial states, which do not factorize, one has the

Corollary 3.4. Let πbea symmetric probability measure on (Ω, 28\ πN its projection on
the N -particle space and π^ its time translation by (3.1). Then

Jim SffN(daN)On(aN) = f βs

t(da^ ..., ώs)/ι(α1? ..., as) (3.8)

where {βs

t} is a weak solution of the Vlasov hierarchy (1.9).

Proof, π can be uniquely decomposed into product measures μ [12], π = J σ(π, dμ)μ.
Hence

μ(t9daσ)h(ai9...9as)
σ ^ l

= J/ί?(dfl1,...,ώβ)fcK...,fl s) (3.9)

ί s 1by Theorem 3.3 and the dominated convergence theorem. Since < f] μ(ί, das)>is a
U=ι J

weak solution of the linear Vlasov hierarchy, the convex combination {βs

t} is also a
solution with initial condition βs

0 = πs. Π

By the law of large numbers the solutions z(ί, α, μ^) of (3.1) converge to z(ί, α, μ)
in the probability space (Ω, J*5 μ). We shall now establish a central limit theorem for
the fluctuations

ζN(t, a, μ>N) = ]/N(z(t9 a, μ*N) - z(t, a, μ)) (3. 10)

ζN(t, a, μ"N) describes the deviations of a deterministic N-particle orbit from its
"mean field" approximation.
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Theorem 3.5. Let F = -Vφ with φeC%u. Then

ί κ \
lim Jμ(dα)exp[i Σ ukζN(tk,ekίμ

a

N)\
N^oo \ fc=i /

/ i V n=eχp -i Σ Qkk w
\ k k' = 1

/ X \

= £exp ii Σ wkC(ίk,ek,μ)l, (3 n)

ρ ,̂ - J μ(db)D1z(tk, ek, b, μ)Dlz(tk,, ek,, b, μ)

κe{k,k'}

The convergence in (3.11) is uniform, if the ek vary over Rό and the tk and uk over
bounded regions. The Gaussian stochastic process ζ = (£,£) with mean zero and
variance (3.12) can be represented in terms of the Gaussian process φ(μ, db) on IR6 with

dF
+ j μ(dc) - [x(ί, α, μ) - χ(t, c,

ζ(t9a,μ)= ^D1z(t9a^μ)φ(μ,db) (3.13)

and satisfies the stochastic differential equation

ξ(t, a, μ) = J F[x(t, a, μ)-x(t, b,

(3.14)

f. As a consequence of Theorem 2.3 the following manipulations are
legitimate:

k = l

( v= expu 2^ ^
\ fc=l 0

= exp|ι 2, t
k = l

ί ί/5 -r- exp
J ί/5

? \ i / 1 / /\7 I 7j •*• rr( f p h VV11^ —I— | 1 I*S I / / I I / / ^ — / / I ί /7r) I I Λ 1 i I
/ ^ fc I/ ! "̂  \ fc? fc? 5 r^N '^ V /rv \r^N r^J V,'/^^/ v-' -*- ^/

fc=l J

By the central limit theorem, the μ-integral of the first term on the right side
converges to exp(— iΣδkk'^Λ') as N^oo. After having carried out the 5-
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differentiation and having suppressed the inessential dependence on uk9 tk9 ek9 the
second term takes the typical form

(3.16)

Since φeC*u, f and g are differentiable w.r.t. μ and D1f(b9α9μ\ D2/(α,b,c,μ) and
D1g(α9b9c9μ) are continuous and uniformly bounded in α, b, c. Now

]/N J g(b, c, μ«N) (μ«N - μ) (db) (μ«N - μ) (dc)

= ΛT3/2 £ {g(αm,αn,μ«N)-$g(b,αn,μ«N)μ(db)
m,n= 1

- j g(αm, c9 μ^)μ(dc) + J g(b, c9 μ«N)μ(db)μ(dc)} . (3.17)

The sum over the JV terms with m = n is 0(ΛΓ 1/2) and can be dropped in (3.16) for
N

ΛΓ-κχ). For m=M we consider m=l, n = 2. Let fμ^ = N * Σ ^αn Then
n = 3

), (3.18)
n = l

and up to an error of O(N~5/2) in the sum (3.17) we can replace g(α,b,μ"N) by
g(α,b,'μ«N). The factor multiplying the (l,2)-term can also be simplified:

^j ι/(βn? I^<N)~ \ ffa'vfyμtya).
n=l

N
• A T — 1 / 2 V"1 f / Y / α \ f /Y / α \ / J 1

N 2 \ ι

n = 3 m= 1 /J

(3.19) is a sum of terms OίlJ + OC/V'^ + OίN"1). It is easy to see that

0 = Jμ(da) {0(1) + 0(ΛΓ 1/2)}Ar~3/2{^(α1, α2,>«)

+ j gf(6, c, X) μ(db}μ(dc}} . (3.20)

For, the 0(1) term is independent of aί and α2, and the 0(N~1/2) term is a sum of a
term independent of a± and one of α2, and therefore either I μ(dα1) or §μ(dα2) gives
zero. The remainder is again 0(N~5/2) and there are N(N -1) terms of this type in
(3.16), which are together 0(N~ί/2). This proves the convergence of (3.11). The
identification of the Gaussian stochastic process uses (2.15). D
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By similar methods one can prove that for fefceC^u(R6s),xthe fluctuations of the
intensive observables converge:

N-+OO fc=l

K

= Eexpz Σ ^Otfk(b,μ)φ(μ,db)9 (3.21)
k = l

where

s ( s

DO*h(b9 μ)= Σ j ί Π μ(daτ)h(z(t,al9μ), ...z(t9b,μ),...z(t,αs,μ))

Λ dn }-f J } j μ(daτ) -— (z(t9α1?μ),.,.z(t9αs,μ)) Dlz(t,aσ,b9μ)>. (3.22)

One can also prove the convergence of moments, as for instance in

Corollary 3.6. If F= -Vφ and φeC^ (1R3). Then for all K, tl9...tK9el9...eκ,

K K

lim fμXΛx) Π W^ek,μ^) = £ Π C(fto **>/*)• (3.23)
Λ^^oo fc=ι fc=ι

Proo/ Similarly as in (3.15) we have

k=l w ι , . . . « χ = l

= N-i/2 ^ N(N_1)>ί.(N_j+1) £ j?^) (3.24)
j = 0 αe^(K,j)

with

K i
J dsk {D1 z(ίfc, ek9 ank, skμ^ + (1 — sk)μ) — ) D1z(tk, ekί a, Sjju^ + (1 — sk)μ)μ(dά)}

k=ί 0
(3.25)

where every (nlt ...nκ) defines a partition

of (1, ...K) in subsets with equal indices

^αg + % fθΓ

By Theorem 2.3 FN(u) is uniformly bounded in N so we can restrict the summation
overj in (3.24) in the limit Λ^oo toj^K/2.
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and a given partition αe^(KJ) let q be the number of βr in (3.26)
with βr = l, so typically ί? = (α})...(αfXαί+1, α3+1-) (αί ..̂ ), then

A . (3.27)

By expanding the integrand in (3.25) in a Taylor series of order q around

N

n = l
n φ n z , 1 ^ J ^ g

the μ(dα)-integration over every term of order p < q in this expansion gives zero, the
remainder is again by Theorem 2.3 of order 0(N~q\ which implies

-v (329)

Hence the only surviving partitions are those with; = K/2, so K must be even to
give a nonvanishing contribution. By the same argument as before, all partition
with q 2> 1 also vanish in the limit N-» oo, so we end up with partitions ofK/2 pairs of
identical indices, which are pairwise different from one another, typically

nl^n2,...nκ_l=nκ,

n2r*n2s for (3'30)

In every of these terms in the sum over α in (3.24) we can replace up to 0(N~1) μ?, by
'/&

The μ(dα)-integration yields

K/2 ( 2τ

4*2.) Π Dlz(tτ,eτ,a2σ,sτ'μ^
τ=2σ- 1

- s» . (3.31)
t = 2 σ - l J

As we keep K fixed, we have as in Theorem 3.3

w*- lim 'μ"N = μ μ a.e. (3.32)
]V->oo

The continuity property of D1z(t,α,b,μ) with respect to μ and the dominated
convergence theorem prove then the convergence of (3.23). D

§4. Conclusion

The weak coupling limit has the following physically rather attractive in-
terpretation : Take

N Pn
HN= Σ -^Γ + Σ Φ(<lm-<lJ,

n=ί Z.rnN l^m<n^N

mlt = N-1, τ = Nt. (41)
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Then one obtains the time evolution (3.1) in the rescaled time %. In the limit N-> oo,
where the total mass NmN stays finite, the Vlasov equation describes the continuum
theory of infinitely small particles". The limit dynamics is time reversal invariant,
and nevertheless molecular chaos propagates, as in the irreversible Boltzmann gas.
These results can be easily generalized to canonical and non-canonical systems with
weak many-body forces.

For the corresponding quantum mechanical problem, one obtains the Hartree
dynamics in this weak coupling limit. This has been proved in [13] using a family of
coherent states, but similar results hold for density matrices which are JV-fold tensor
products P®N of a 1-particle state JP [14].
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