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An Inequality on S Wave Bound States,
with Correct Coupling Constant Dependence
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Abstract. We prove that the number of S wave bound states in a spherically
symmetric potential gV(r) is less than

[oo oo "11/4

\r2V-(r}dr\ V-(r)dr\
o o J

where V~ is the attractive part of the potential, in units where tι2/2M = 1.

I. Introduction

It is well known that in the limit of large coupling constants the number of S wave
bound states in a potential V(r) behaves asymptotically like [1], [2]

π o

where V~(r) is the attractive part of V(r\ in units such that h2/2M = l. This
asymptotic theorem holds under various sufficient conditions. One of them is that
V(r) should be piecewise monotonous [1] with a finite number of monotony

intervals. Another [2] is that j[F~(r)~\dr converges and that V decreases fast
o

enough at infinity. However, it is clearly impossible to turn the asymptotic equality
(1) into a strict bound because bound states can easily be produced by delta function
potentials; however the integral of the square root of a delta function is zero,
crudely speaking. One way out is to require monotony of the potential, which
excludes delta functions. Then one gets the Calogero bound [3]

n<g112- f [F~(r)]1/2dr (2)
π o

V~ monotonous decreasing.
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In other classical bounds monotony is not assumed but the coupling constant
dependence is in g, like in the Bargmann bound [4]

n<g]rV-(r)dr (3)
o

or worse [5].
Here we want to show that it is nevertheless possible to get a strict bound with a

g1/2 dependence.

II. A Bound for Finite Intervals

As always, we count the number of bound states by counting the number of zeros of
the zero energy radial wave function. Let rp_ 1 and rp be two successive zeros of the
reduced zero energy wave function u(r). We have

0= I lu'2 + gVu2]dr^ J [u'2-gV-(r)u2~\dr
rp-i rp-ι

> Γf u'2dr-(Supu2) ] gV~(r)dr.

Now

f w'rfr
ί p- l

p-i

J w'2

uf2dr

1/2

1/2

(4)

(5)

(6)

and taking the half sum of (5) and (6) and using then the Schwarz inequality, we get
11/2

Wr)<i|rp-rp_1 |
1 / 2 | f u'2dr\ (7)

Γ rp 1
^-r,^!1/2 J u'2dr\

\-fp-i J

ΓP

(8)

Suppose now that we have n bound states. We get n inequalities of the type (8)
with r0 = 0. Hence, for any m^n:

^12 Σ kp-Vil
P = 1

βV~(r)dr
1/2

or, using Schwarz inequality

01/2 Γrm 11/2

^—- (rj1/2 J F-(r)
z Lo

(9)

(10)

So if we take a finite interval 0<r<R with the boundary condition u(R) = Q,
corresponding to an infinite wall at r = R we see that the number of solutions with
negative energy is less than

l/2

(11)
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On the other hand, if we take a potential of finite range jR, with exactly n bound
states, the last one being at zero energy, we have u'(R) = 0. We get n— 1 inequalities
of the type (8), but the last one is

Γ R 11/2

l^-^-iΠ f dV-(r)dr\ £1.
Lrn-i -I

Hence, combining (12) and (8), we get

l/2 ΓR 11/2

(12)

(13)

This inequality is saturated by n equally spaced delta function potentials, the last
one having a strength which is a half of the others.

It is possible to get also another inequality by changing r to

z=l/r (14)

defining

tt(r) = w(z)/z

one gets the equation

_
dz2

with

W(z) = V(r)/z4. (15)

Equation (15) has again the form of the Schrδdinger equation and therefore,
between two successive nodes we get, returning to the original variables, in analogy
to (8):

1 1 1 1/2 Γ rp -11/2

J gr2V-(r)dr\ >1. (16)

If one has n bound states, the last one being at zero energy w(r)-+const for r-+ oo
and hence W(z)->Q for z-» oo. Combining inequalities of type (16) with the Schwarz
inequality, we get

I \ l / 2 [ o o 11/2

'
P

III. A Bound for Potentials Extending from r=0 to r= oo

The bounds (10) and (17) diverge when, respectively, rw-*oo or rp->0. To get an
inequality which gives a finite result we have to combine the two inequalities. The
number of bound states satisfies

/rp \ l / 2 / 1 X 1 / 2 / 0 0 \ 1/2]
2 f V-(r)dr) +- J r2F»Jr (18)
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for any rp where the zero energy wave function has a node. It would be tempting to
minimize with respect to rp, which would give the desired result. However, rp takes
only discrete values, and we must proceed more carefully. A first method will give a
result which will be improved later on. Let us distinguish n even and n odd.

i) n even
Take p = n/2, (10) and (17) give

n 1

/1±
(rp

1/2

Taking the product of the two inequalities, we get

11/4

n<g 1/2

.0

7 l/2

V-(r)drr2V-(r)dr

Supj>-(r)dr J

f V-(r)dr$r2V-(r)dr\ .
o o

1/4

(19)

(20)

(21)

ii) n odd

Take p = (n—1)/2 then exactly the same method gives

1 2^ °° 2 - ]1/4

LO rp J
Γ R °o 11/4

<flf 1 / 2 Sup J V~(r)dr f r27»dr
L * o R J
roo oo 11/4

<01/2 j F-(r)dr j r2F-(r)

(22)

(23)

(24)

Here we see already that the case of n odd should be improved. Indeed, for n = 1
the Bargmann bound gives [4]

[oo 11/2 Γoo oo 11/4

J rV-(r)dr\ <gί/2 J V~(r)dr J r2F~(r)dr . (25)
0 J LO 0 J

To improve the case of n odd, we must take into account the loss from inequality
(23) to inequality (24):

(n2 - l)2<g2 ] V~(r)dr J r2V~(r)dr
o o

-fif2|V-(r)d/fr2F-(r)dr
o o

-9z]v-(r)dr]r2V-(r)dr

withp = (n-
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For n = 3,

0 0

from (25), and

g2 V-drr2V~dr>ΐ6
rp rp

from (21). (The interval of application of these inequalities need not be 0— oo.)
Hence we get

8l = 34<g2v-(r)drr2V-(r)dr (26)
o o

For n ̂  5 we have

Hence we get

(27)
o o

In summary, in all cases we have

[oo oo Tl/4

lV-(r)dr\ r2V-(r)dr\ . (28)
o o J

In fact it is clear that this is not an optimal result and that for large n the coefficients
in (28) can be improved. However, the improvement is not considerable:
asymptotically, for large n, one gets

Λ Λ l / 4 Γαo oo 11/4

n< (-) g112 j V~(r)dr J r2V-(r)dr\ . (29)
W L O 0 J

IV. Discussion

The bounds we have obtained, such as (28) or (13), are somewhat reminiscent of the
bound obtained in the three-dimensional case [6]

312

2d*x]112. (30)
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The difference is that (30) is not the best possible result in the three-dimensional case
[7]. In fact, the best possible result is

AΓ<Const.^3/2j|F-(x)|3/2d3x. (31)

In the one-dimensional case, on the other hand, there is no hope to obtain a bound
in the form of a single integral, with the correct coupling constant dependence
except if the potential is monotonous. Let us also notice that the present bound is in
all circumstances better than the one proposed long ago by Calogero [3]

n<i + ̂ [f7"(r)drjr27-(r)dr]1/2. (32)

The same product of integrals appears in (28) and (32) but it is not raised to the same
power.
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