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Abstract: We consider a class of Hamiltonian systems which posses integrals
expressible in terms of the eigenvalues of some associate matrices. Moreover,
these systems will be solved explicitly and their scattering behavior investigated
using additional associated matrices whose eigenvalues change in time during
a flow.

1. Introduction

We consider Hamiltonian systems of n particles on a line interacting with each other
where the Hamiltonian is of the form:

HΛ(χ,y)= ^Σy? + Σ V(*ι-χj)+ Σ W(xj. (l.l)
z i= l l^ i<j^« i = l

The examples of such pairs of potentials (V(x), W(x)) to be considered are:

(*-2,-α2x2/2), (A)

Ί \2 \
-cothx/2J,αe*J. (B)

Calogero and Marchioro [1] and Sutherland [2] have studied some of these
potentials in the context of quantum mechanics, and their work suggested looking
at the classical systems. For the case α = 0, Moser [3] has shown that both of the
above examples are integrable systems, i.e., possess n integrals whose associated
Hamiltonian flows commute, and in addition the integrals are rational in (xf, yt\
(eXi, yt) respectively. The method he used was based on the isospectral technique of
Lax [4], first applied by Flaschka [5] to the Toda lattice. This consists in the
construction of a matrix function of (x,y) whose spectrum remains fixed in t if
x = x(t\ y = y(t) are solutions of the above Hamiltonian system. We then take the

* Part of this research was done while at the Courant Institute of Mathematical Sciences, N.Y.U.,
with the Office of Naval Research, Contract no. N00014-76-C-03-01. In addition, it was sponsored by the
United States Army under contract No. DAAG29-75-C-0024, and the National Science Foundation
under Grant no. MCS75-17385
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eigenvalues of the matrix to be the desired integrals, and study systems whose
Hamiltonians are functions of these integrals.

We extend this method to some new systems. Moreover, we construct a second
matrix function of (x, y, t) whose spectrum is invariant under the Hamiltonian flow,
which allows us to describe the solutions more or less explicitly.

In this way we show for solutions x = x(t) of the above Hamiltonian system, in
Case (A), α φO, that the symmetric homogeneous polynomials in χ.(ί) of degree v are
polynomials of degree v in e±αίl, which implies that all solutions of the system
for α purely imaginary are periodic. Furthermore, for a class of systems whose
Hamiltonians are integrals of the above system, the symmetric polynomials of xf(ί)
are polynomials of at most n exponentials eλit. The same result is true for system (B),
for α = 0, if we replace xt by eXί, as first proven by Olshanetzky and Perelomov2, and
moreover for systems which we will construct such that their Hamiltonians are
integrals of (B), α = 0. For (B), αφO, we find that the symmetric polynomials in
eXί are rational in n exponentials eλlί, ...,eλnt.

It is then easy to discuss the scattering behavior of the above systems quite
explicitly in case the particles ultimately disperse, as in the case α>0, and to
construct scattering maps. For instance in Case (A), α>0, the solutions behave
asymptotically like :

2^)}, (1.2)

for ί-»±oo, and for all fc, q£ <^+1, if *fc(0)<xk+1(0). We include the artificial
factors 2~1/2, a~12~ί/2, for a later purpose, to make (x,y)-^>(p,q) a canonical
transformation. On the other hand for Case (B), α>0, the solutions behave
asymptotically like :

xk(t)=±λkt + β£+0(Γ1), for ί-> + oo, (1.3)

where A t < λ2 < . . . < λn < 0, if X;(0) <xi + ̂ 0) for all i.
The scattering maps which we construct are canonical, given by polynomial

relations, and lead to surprising algebraic transformations between the above
systems (1.1). Moreover, they are found to agree with their own inverse, i.e., they are
involutions. For instance in formula (1.3) we find

&++j3k-=21og«). (1.4)

It is surprising that the scattering map for the system (A), with α>0, which
relates data at t = — oo with data at t = + oo is precisely equal to the scattering map
for the same system (A), with α = 0, but which relates data at t = 0 with data at t = oo.

1 Some of this work was announced and presented at the conference on Theory and Application of
Solitons, held January 1976 in Tuscon, Arizona, and will appear in the proceedings of this conference
[13]
2 I am indebted to F. Calogero for communicating to me the then unpublished results of Olshanetzky
and Perelomov at the above mentioned conference. Their work, which was done independently has
meanwhile been published in [11, 18]. Part of their results overlap with some results presented in
Sections 2-4 of this paper. The proofs presented are those of the unpublished preprint [12], which was
handed out at the above mentioned conference of January 1976, in conjunction with a brief research
announcement. The results of the preprint can be found in [13]
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Another interesting fact is that the scattering map for the system (A), with α>0,
which relates data at ί=0 with data at t — oo, transforms the Hamiltonian of that
system into an integral of the system (B) with α=0, after a trivial change of
coordinates.

In Section 4 we show that Hamiltonian systems near by to system (1.1), Case (A)
with α purely imaginary, have at least n geometrically distinct orbits on each energy
surface. While such results are easily derived in case the periodic solutions of the
unperturbed system are isolated, they are quite delicate for manifolds of periodic
orbits, which we encounter. This result follows directly from the perturbation
theory of Weinstein [8].

2. Integrability

To construct the integrals of Hα(x, y) defined by (1.1), Case (A), we use the matrices
of Moser's system, Y=L(x,y), B = B(x\ where (x,y)eΩ = {(x,y)eR2n\xi<xi+i for
i = 1, 2, ..., n— 1}, Ω defined once and for all. We introduce

Yjk = [L(x, y)-]jk = δjkyj + /(I - δjk)(xj - xfc)~ *

and the diagonal matrices X = diag(x1?x2, ...,xπ), D(j;)=4iag(y1,y2, ...,yw). For
future use, we observe the crucial fact that L(x, y) has n distinct real eigenvalues. (See
[3].)

We observe the commutator relation [X, Y} = C, Cjk = i(l— δjk), noting that iC is
n

the identity operator on the subspace in Rn specified by Σ (̂ = 0.
< = 1

Define DG = Σ (Gyfixi ~~ GXidy) to be the Hamiltonian vector field acting on
i = l

functions of (x, y), i.e. if xt = Gy., yt = - Gx., ί = 1, . . . , n, then dF(x, y)/dt = DGF. As an
operator on matrices, DG acts componentwise. Let δ be the operator acting on
matrix functions of (x,y), and ί, defined by

Note that δ is a derivation, i.e., it satisfies the sum and product rule of
differentiation, respecting order, for it is the sum of three derivations. We observe
that in the case where t doesn't occur explicitly in Z, then δZ = DHoZ- [B,Z]. We
also note for future reference, that I ited shall stan^ for the n x n identity matrix.

Theorem 1. // x9y obey xt = dHJdyiy yt= —dHJdx^ i=l, ...,n, then the matrices
M± =(Y±(xX)e+0ίt satisfy the isospectral differential equation

δM±=0, (2.1)

and consequently so does the time independent matrix
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Proof. We establish the following partial differential equation.

a)δX=Y, b) δY=a2X. (2.2)

Note if we neglect the commutators, these equations become scalar harmonic
oscillator equations. Since x = y, we have X = D(y\ and (2.2a) is just
D(y)=Y+lB,Xl i.e., Y=D(y) + [X,Bl and since

[XΉ^Xj-xJBjt^l-δjάxj-x,)-1, where P=-

the definition of Y yields the result. To prove (2.2b), we note

and so DHaY=DHoY+DpY, but in [3] it is computed that DHo7=[β, Y] (a
straightforward computation), and since

we have

DHJ=DaJ+DPY=lB9Y]+x2X,

and (2.2b) is proven. Now (2.2) immediately implies

hence

and thus

δM±=0.

That E satisfies δE = Q is an immediate consequence of δ being a derivation.

Remark */. We note that the operator equation δD = Q, or equivalently
U'\δD)U = 0 = (d/dt)(U~1DU)9 where ύ = BU; this is equivalent to
U(t)' lD(ήU(t) = U~ l(0)D(Q)U(Q)9 provided l/(ί), t/(ί)" 1 exists. We say D undergoes
an isospectral deformation in time. Thus the constants of the derivation δ, i.e., the
algebra which forms the kernel of the operator δ, are nothing but the isospectral
matrices which evolve through their similarity class via the infinitesimal generator
B. Their eigenvalues and all functions of them remain constant in time.

Remark 2. In our case B + B* = Q, and U(t) exists for all finite time, and
UU* = I if it holds at some time ί0. If in addition U(t) converges for ί-> oo, we may
set the value of U at ί=oo to be /, the nxn identity matrix. Thus

00

U(t) = I - j B(x(s))U(s)ds, and we now redefine U(x, y) as the solution of the integral
* 00

equation U(x, y) = I— J B(x(s))U(x(s), y(s))ds, as a function of x = x(0), y = y(0) on Ω,
o
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rather than by Ult=0 = L In other words we construct U via the above integral
equation, thus directly exhibiting its dependence on Ω. Then U(x, y) is a solution of
the partial differential.equation DHχU = BU.

Thus for every point (x,y) of Ω we have U(x,y), B(x), and that
U~ i(x, y)Y(x, y)U(x, y) is constant along orbits and equals lim^^ Y(x(t), y(t)). If, as
in Case (A), α = 0, lίmt^QOY(x(t)9y(t)) is a diagonal matrix, then the columns of
U(x,y) are the eigenvectors of Y(x,y).

If in some way we can find a normalization of the eigenvectors, and hence of
U(x, y), we may dispense with its definition using the partial differential equation in
(x,y) space. For instance, if B satisfies an equation of the form TB = 0, with T a
constant matrix with no column identically zero, then automatically TU = T
is the desired normalization. For dTU/dt = DH(TU)=TBU = 0, but
lim, _»^ U(x(t), y(t)) = / by definition, and TI = T, hence TU(x, y)=T for all (x, y), i.e.,
U(x,y) is a member of the Lie subgroup of the unitary group specified by TU—T.
This symmetry coupled with the fact that U diagonalizes L, algebraically defines the
matrix function U if the eigenvalues are distinct. The above happy situation of
simple eigenvalues occurs for all cases we will consider, and T will be of the form
Tkj=i for all fe, j, and U is algebraically defined by U'1Y U = diagonal matrix,
andTU=T.

Remark 3. We note that E does not contain time explicitly and so Ij(E) = trEj,
j = 1,..., n are n rational integrals of the motion.

Letting z = (x,y\ we define

{f>g},=<Jrj,r,gy= £ 8(f,g)/8(xi,yi),
J = l

i.e., the Poisson bracket of/, g, computed in z = (x, y) coordinates, where < , > is the
ordinary scalar dot product in R2n, Vz the gradient operator in R2n equipped

0 —I]
I with / thewith the dot product < , >, and J the 2n x 2n constant matrix

. 5

nxn identity matrix. Note Dgf = {f,g} by the previous definition of Dg.

Theorem 2. The Ij(E) are in involution, i.e., {IpIk] =0for j, k — 1,2,..., n. The Ij are
algebraically independent, i.e., the system Ha in Case (A) is classically integrable.

To prove the theorem, we use the asymptotic description (α>0) of the orbits.
Clearly it suffices to prove that φjk = {Ij,Ik} vanishes in some neighborhood, since
Φjk(χ>y) are rational functions of their arguments. Also it suffices to consider the
case of α>0, as α enters rationally into φjk. The algebraic independence of the
Ij(x,y) is easily seen upon letting xi+i — x be large for all i. For α>0 we use the
asymptotic behavior of the solution, letting α = l for simplicity.

Lemma 2.1. For (qι<q2<- «ln)> (Pι,P2> ->Pn) varying in some appropriate
neighborhood N of R2n, there exists solutions of our system for ί^O, satisfying:
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where y is any number such that 2 < y < 3, and where the above expression may be
differentiated with respect to (p,q) and still remains valid. Moreover, the map:
(p, g)-»(;c(0), y(0)) is canonical

We sketch the proof. For uj(t9 p, q) = xfa p, q) — 1/2 (qjtf + pf ~ '), we have the
following integral equation

Uj= J k(s-t)Vj\:u, s]ds = K[u] (2.4)
ί

where fc(ί) = sinht,

u(t,p,q):R+xN=W-*Rn,

where R + = {s\s ̂  0}, and N is the neighborhood in R2n to be determined. For ε > 0,
we apply the contraction principle to the set & = &(ε) of vector C2-functions
u = u(t,p,q) of W, with the restriction that supw(\u\ + \du/dt\)eyt = \\u\\^ε. We then
pick Mε sufficiently large depending on ε, fix a q° having the property
mm^qf-q^M^ q?<qf+l9 and define N = {(q9p)\\p\ + \q-q°\<M^}. Then
one verifies in a standard manner that K[B~] C [£], and
||K[wJ — K[w2]|| < ί/2\\uί —u2 1| for ul9 u2e&. Hence via the contraction principle,
u = K[u\ possesses a unique solution w0. If we define the vector v = (u, du/dq, du/dp\
\\v\\ ^sup^ (\v\+\dv/dt\)eyt

9 then a similar argument with this new norm will yield the
existence oΐdu/dq, du/dp, their derivatives with respect to time, and the asymptotic
estimates on these quantities stated in (2.3).

Thus a solution to (2.3) has been constructed, and only the last statement of the
Lemma 2.1 remains to be proven. We now have the map τf, where

By the statement of the first part of the lemma, for t sufficiently large, τf is C
invertible, on perhaps a smaller neighborhood, and

Now the map <^(x(0),y(0))-»(;x(ί), y(t)) is canonical and hence C invertible, thus
τ0 = φ~tτt is C' invertible in N. If we denote the Jacobian matrix of these maps by 7,
we have

b) f(τt)Jj(τt)= -J + O(e~7t), as a consequence of (2.5),
c) 7Γ(<^V7(0ί) = Λ since φl is a canonical map,
d)

As a consequence of a)-d) we conclude j(τ^ l)TJj(tQ l}= — J + O(e~(y~ 1)|ί|) for
all t. Hence 7'(τo1)TJ/(τo1)= ~Ά and thus τ = τ0 is canonical, and the lemma is
proven. We observe a map preserves the form of the previously defined Poisson
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bracket if and only if its Jacobian at every point belongs to the symplectic group
Sp (2n, R) of 2n x 2n matrices satisfying Aτ JA = J, which is easily verified using the
definition of { , }. More generally we consider a transformation whose Jacobian A
satisfies AτJA = μJ, with a constant μφ 0 and call it a canonical transformation
with multiplier μ.

Proof of Theorem. So far we have proven the map (x(0), y(0))-»(g, p) is canonical, but
with multiplier - 1, i.e. { , }z = - { , }r, r = (q, p). We define the map ψ : (q, p)-+(ξ9 η) by

5, = log ft, f/^-ftp,, (2.6)

in the domain Q<q1< ... <qn. This map is clearly canonical with multiplier — 1,
and hence ιp°τ~ 1 :τ(N)-+ψ(N) is canonical with multiplier 1.

Now we recall that (α = l, for simplicity),

E= ^M+M- = l-(Y+x)(Y-x)= l(r2-*2)+ Ipr, y] ,

hence

where the prime indicates that undefined terms are to be left out. Using (2.3), (2.6),
we conclude

E(x(t), y(t)) = £(oo) = (δuηk + f i(l - δkl) coth±(ξk - ξ,)

(2.7)

= Z(η, ξ) + ί

2C = Z+(ξ, η) , Cu = i(ί - δkl)

where Z(ξ,η), Z+(ξ,η), are defined by this relation, and we define Z~(η,ξ)
= Z(ξ,η)-$C. Now if

F(ξ,η)=i-trZ2=ί-Σ »??+ jΣcoth2^^, (2.8)
L Z i = l ^i<j L

i. e., F(ξ,η) = HΛ(ξ9η) of (1.1) Case (B), α = 0, then the flow defined by

- dF/dη, = η, ,

can also be expressed by an isospectral deformation of the form Z = DFZ = [K, Z],
see [3]. Here K has off diagonal elements

Kkl(ξ) = i&smh ί(ξk-ξl)]2 = ίqkql(qk-ql)
 2, (2.9)

and the sum of the rows, (and columns) is zero, as was the case for B. Hence
CK=-iK = KC implies [C,K]=0=DFC, and therefore Z+(ξ,η) = Z(ξ,η)+^C,
[and similarly Z~(ξ, η) = Z(ξ, η)—^C], satisfies the same isospectral differential
equation as Z. In addition, under the flow induced by F, we find

)? for s-> + oo (2.10)
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with αf < at +19 and in fact the transformation (ξ, η)-+(β, α) is canonical by a similar
argument as in Lemma 2.1, see [3] for details. However, we will sketch a proof that
the oCj's are in involution. By (2.7), (2.10), the distinct α/s constitute the simple
spectrum of the matrix Z+(ξ, η) [and also Z~(ξ, T/)], which undergoes an isospectral
deformation. Hence {αί? αj}ζ, £ = (£,*/), is a constant of the motion, which we
evaluate at 5= oo. But since ̂ -x^, for s-»oo, in the C1 sense, 0= {77,, f77 }ζ-»{αj, α7 }ζ,
and thus 0 = {αί5 oCj}ζ. Now since the matrices E(x, y) and limt^00.E(;>c(f), y(t})
= Z+(ξ, η) and lims^QOZ+(ξ(s), η(s)) are unitarily equivalent via Remark 1, while all
the maps considered are canonical, we conclude that the eigenvalues of E(x, y\
which are the α l 9 ...,απ, are in involution, and hence so are the Ij(E) = Σ α{,

k=l

being functions of the eigenvalues. Thus the proof of Theorem 2 is completed.

3. Scattering Theory

To discuss the scattering theory of the system of Section 2, we need a lemma, which
will be a consequence of the following:

Theorem 3. The solutions of the system xt = ΘHJdyi9 yt = — dHJdxi9 i = 1, . . . , n, obey

Σ *?(*)= Σ 4V2s-v)αί, (3.i)
i = l s=0

v a natural number, c<v) a rational function of initial data. Hence the xt(t) are explicitly
given as algebraic functions of e±Λ\ and initial

Proof. Referring back to the definitions of Section 2, one computes

X=^-1(M+eΛt-M-e-at)y (3.2)

since M± = (Y±aX)e*(*.
Raising both sides of Equation (3.2) to the vth power, and then taking the trace,

we conclude

where 4v) = trCJ, and C^v) is a sum containing all possible v-fold product of the
noncommuting matrices M+,M~ taken s, and v — s times respectively. We recall the
algebra generated by M+, M~ undergoes an isospectral deformation during the
flow, by Remark 1 of Section 2. Thus C^v) undergoes an isospectral deformation
during the flow, and so 4v)(ί) = <4v)(0) is an integral which is a rational function of the
initial data. We amplify Lemma 2.1, and now prove a statement about the scattering
of all solutions. Since the particles can't collide we may order them so that xt <xi+ {

for ΐ=l,2, ...,7i—l, and all real t.

Lemma 3.1. For α>0, every solution satisfies

xk(t) = 2- l'2(qke
M + α- ̂  °") + 0(e~ 3αt) , (3.3)
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as ί-> + oo, qj<qj+ί, 7=1,2, ...,rc— 1, under the hypothesis of Theorem 3, with a
similar conclusion for ί-» — oo.

[oΓ1 ?
We note in Theorem 3 that 4v) = tr — -(Y0-f αX0) , where the subscript

indicates evaluation at f = 0. Since Y±aX = L(x,y±(xx), we conclude Y±<xX has
simple spectrum, for we observed at the beginning of Section 2 that matrices of the
form L(x,y) have simple spectrum. Multiplying (2.1) by e~αvί, we find

Σ (xf-«γ = tf> + cj_ ,e~ 2αί + 0(<Γ4αί) , (3.4)
7

with 4V) = (2~V/2 Σ^P where q^<q2< > <q.n

 are tne distinct time-independent
7

eigenvalues of 2~1/2α"1M+. Since x l 9 x 2 > •• 5 χn are distinct and ordered, they are
n

uniquely determined by Σ *}> anc^ hence by the expression for 4v), (3.4), and by the
7=1

distinctness of the x/s and q?s respectively, we have

This defines the p^ Upon multiplication of both sides of the latter expression by eαί,
the lemma follows.

Remark i. We thus have a map φ+ :Ω~+Ω,Ω defined in the beginning of Section 2,
given by φ+(x,y) = (q,p) for α real. We wish to show it is a bijection of Ω. Given

i' we maY form

and prove the existence of a solution x(ί), for ί^ί0, with the given fep), by the
methods of Lemma 2.1. From the conservation of the energy, Hα(x,y), and the

π n

behavior in time of Σ xf given by (3.1), we conclude Σ (W + biD^Ce'0*1, and
i = l i= l

therefore x(t) exists and is unique for all time, and in particular at ί = 0. Whereas
Lemma 3.1 enables us to define φ+ on Ω, the above discussion shows that Φ + 1 is
well-defined on Ω, and hence φ + is a bijection of Ω, and canonical, by the arguments
of Lemma 2.1.

We now exhibit an important feature of φ+, namely that it is an algebraic
mapping, i.e., it is implicitly given by polynomial relations, and it is an involution,
i.e., φ+ °φ+ = identity. Then we shall discuss a surprising relation of φ+ with the
scattering map in the case α=0, and rational invariants of this map.

The algebraic nature of the map is given by matrix equivalences. Referring to
Remark 2 in Section 2, since \B\ = 0(t~2) along an orbit, B being the infinitesimal
generator of the isospectral flow, we may define the function U(x, y\ and by (3.5)+

and the same remark, in a purely algebraic manner, and thus conclude lim, _ ̂  M ± (t)
exists and equals U~1(x9y)M±(x9y)U(x9y). Since

[M ±(z(ί), ί)ly = δkj(yj(t) ± *xj(t))e ™ + ι(l - δjk)(xk(t) - x
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and upon using yί(t) = xί(t), (3.3), we find for t-»oo,

e-«(xf!) - XjVΓ1 -0 , «-(*, -^Xf)

and so we have (see Remark 2 of Section 2),

ί( + ) U-\

t ^ z = - ( ' )

where β = Diag(^1, ...,0n), P = L(q,p).
It is important to notice that both matrices M±(x, y) are transformed in (3.5) by

the same similarity transformation. Now let Lol(x,y) = 2~1/2(x,~1LT(x,y)
= 2~1/2a~1L( — x,y\ and let ~ denote spectral equivalence, remembering

X = diag (x !,..., xn), we obtain :

Theorem 4. 77ιe scattering map φ+ is given by the following symmetric relations

(3.6a)

(3.6b)

were both equivalences are effected by the same similarity transformation Uτ(x, y).
From the symmetry of (3.6) we see at once φ + ί=φ+, i.e., φ+°φ+=id.

Proof. Line (3.6b) is the transpose of Equation (3.5)+, while (3.6a) is the transpose of
the difference of Equations (3.5) ±

9 thus finishing the proof.
We now study the scattering map φ from £-> — oo to ί-^H-oo, φ = φ+°(φ_)~1,

where φ _ denotes the map from the initial data (x(0), y(0)) into the scattering data
(ςf,p~) for t=- oo, defined by xί = 2~1/2((2Γe-αί + α-1pΓ^ί) + 0(β2αί),^- oo.To
compute φ, we may restrict ourselves to the case α = l. We recall that L^x.y)
= 2~ 1/2LΓ(x, y\ and we conlcude from Theorem 4, that φ + , φ _ are given implicitly
by:

ί ..X=U^(q\p++q+)U-\ X= U.L^q', p~ +q-)U~1

(Ά) T

We may derive (b) from (a) by using the time reversibility of the differential
equations under (t,x,y)-*(—t,x, -y), hence φ_=φ+°ρ, where ρ(x,y)=(x, -y).

Therefore we conclude from (3.7),

and after a similar calculation involving Q+ we conclude:

Theorem 5. For Case (A), α>0, the scattering map
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is given implicitly by

Q-~LT(q+,p+), L(q-,p-)~Q\

where both of the equivalences are brought about by the same unitary map,
v=uτ

+u_.
The case α = 0 has been treated by Moser, but for completeness we include short

proofs in the spirit of the above arguments, and then relate the results of the two
cases. It was shown in [3], that if x, obey xt = dH0/dyiy yt = — dH0/dxt, i = 1, . . . , n, and
if xf(0)<xί+1(0), ί=l, ...,w— 1, then as f-»oo

Xt = 9f + Pi + 0(Γl)9 ?,->«, + 0(r2), qt<qi + 1,

i=l,2,...,n-l. (3.8)

In fact, if we define the map ψ + by ψ + (x, y) = (q, p\ ψ + : Ω-+Ω where Ω is the domain
used in the definition of φ + , then ψ+is seen to be a canonical bijection by arguments
similar to ones given here. We are now in a position to state :

Theorem 6. ψ+=φ, where φ = φ + °φΊ1.
Moreover φ = φ+°φI1=φ + °ρ°φ+ί,soψ+ is "conjugate" to the linear reflection

ρ, and hence is an involution.

The equation ψ+=φ expresses that the scattering map φ relating data at
t= — oo to data at t= + oo for the system f/α, is precisely the scattering map φ+

relating data at t = 0 to data at t = oo for the system H0. Even the unitary maps in the
two cases, which effect the matrix transformations are the same, as they both are
contained in the Lie subgroup discussed in Remark 2 of Section 2.

Proof. We now observe that

are isospectral matrices under the flow HΆ (see Remark 1 of Section 2), and for α-»0
we obtain L(x, y\X - tL(x, y) as isospectral matrices under the flow induced by HQ.
Using (3.8), and the arguments of the Lax formalism used previously, we conclude :

fl = I™, -> oo Ux, y) - £(*(0), )<0))
l ' ;

where ^ denotes unitary equivalence.

Hence ψ+(x(ty,y(Q)) = (q,p) is explicitly given by

where both equivalences are effected by the same similarity transformation. This
completes the proof of the theorem, by comparing this with Theorem 5.

The map φ + linearizes the flow for the case α = 0, and is a algebraic, yet we have
only an implicit description of it. However, we can find some rational functions
invariant under the action of φ+, similarly for φ+.

Theorem 7. (i) Let ffl be the algebra of real valued rational functions of(x,y)eΩ,
generated by

tr [/(X) f(Lx(x, y + ox))] (tr f(X)) tr f(Lx(x, y + ox))) ,
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where f is a polynomial. Then every member of 2tf is an invariant under the action of
Φ+.

(ii) Similarly let $? be the algebra of real-valued rational functions generated by

tr [/PO /(L(x, y)) , (tr/00) - (tr /(L(x, y))) ,

/ a polynomial. Then 2tf is a list of rational invariants ofψ + .

Proof. Let Jί be the algebra of matrix valued functions M(x, y) of (x, 3;), generated by
X = diag(x1? ...,xn) and Lj(x, y + αx). Note that any homomorphism of Jί is
completely specified by its behavior onX, L£(x9 y + αx), through extension. Now the
map φ+(x,y) = (p,q) induces a mapping

(X, Lj(x, y + αx))-»(Lα(g, p + αg), β) ,

explicitly given by (3.7a). By the above remark, this extends naturally to a
homomorphism φ + \Jί^Jί, which by (3.7a) is expressed by

$+(Λf (x, y)) = «- H*, 3θM(x, yWx, y) (3.10)

Since φ + (x, y) = (g, p), we can consider functions o f (x, y) as functions o f (q, p), which
we shall do when we think of Jt as the range of the map φ+9 i.e., we shall regard
φ+(M(x9y)) as a function of (q9p). We note that trace is an invariant of φ + . Hence
defining /(x, y) for any polynomial / by the following line :

/(*, y) = tr [/(Y) -/(Lα(x, y + αx))] = tr (φ + [/(X) -/(Lj(x, y + ox))])

Lα

Γ(x, y + αx)))] =tr

we find/(x, y) = /( ,̂ p) if φ + (x, y) = (q, p\ i.e.,/( , ) is an invariant. The other part of (i)
is immediate, while (ii) is proven precisely as (i).

We remark that an alternate derivation of Theorem 7 can be given, whereby the
invariance of the above quantities is seen to follow from the "invariance" of the
Poisson bracket under canonical transformations, (see [14]).

4. Periodicity of Solutions for α Purely Imaginary and a Perturbation Result

By Theorem 3, the homogeneous symmetric polynomials of degree v in the xt are
polynomials of degree v in e±αί, for the system (A), α Φ 0. On the other hand, the xf

are strictly ordered, x1 <x2 < ... <xw, due to the singularity in the potential, hence
the xf are uniquely given as algebraic functions of e±<xt (and the initial data). We thus
conclude, verifying a conjecture of Calogero's [10] :

Corollary 3.2. 7/(x* y) obey xt = dHJ8yi9 yt= — dHJdxi9 i = 1, . . . , n9 α pure imaginary,
then the solutions are all periodic with (not necessarily primitive) period 2πzα~1.

Remark i. Since the motion is periodic, one expects 2n— 1 integrals of the motion to
exist, which in this case would be rational in (x, y), and indeed they do. Take for the
first n integrals /,.[£] - tr EJ\ and for the latter n - 1 integrals, Real [//M +)I{(M ")],
7 = 2, ...,n. One sees they are algebraically independent by considering the xf far
apart, in which case the matrices are nearly diagonal.
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Remark 2. A linearizing transformation, which is rational in one direction, algebraic
in the other direction, is given by3 τ: (x,y)-+{tr(L + αX)v}"=1 =(zl9 ...,zπ) = z,
(x, y)e Ω, Ω defined at the beginning of Section 2, and maps the flow into z =j(x,zp (see
[9]). The mapping τ may not be invertible, but for xi + 1—Xi large, L + αX is close to
diag (xί + αy1? . . . , xn + ayn) and thus by the implicit function theorem, knowledge of
z enables us to recover (x,y) from z and z. Hence z1? ...,ZM are algebraically
independent, complex valued rational functions of x,y.

Theorem 8. For every sufficiently small C2 perturbation ofHa, there exists at least n
geometrically distinct periodic solutions on every energy surface

While such results are easily derived in case the periodic solutions of the
unperturbed system are isolated, they are quite delicate for manifolds of periodic
orbits which we have encountered. We shall use Theorem 1.4 of [8], a beautiful
theorem of Weinstein. Instead of stating Theorem 1.4 in its full generality, which
requires much terminology [8], we shall just list an immediate consequence of it,
which will suffice for our purpose, and then we shall verify that the necessary
hypothesis are satisfied in our situation.

Corollary of Theorem 1.4. Given : The Hamiltonian system H(ε} = H + εP(x, y, ε), (x, y)
in a neighborhood of the manifold given by the relation H(0) = E, and FΉ°ΦO on
JFί(0) = E, P being C2 in its arguments, while for the value E, H(0} = Eisa manifold which
is homotopic to the sphere, free of equilibria, of only periodic solutions.4 Then, for small
ε, the system with E = H^ contains at least n geometrically distinct periodic orbits.

Proof of Theorem 8. We shall apply the corollary to the case H=HΆ, α purely
imaginary, £>£α=minx yHΛ(x,y).

Thus we just have to check for E>EΛ, the manifold HOC = E is diffeomorphic
(homotopic would suffice) to S2""1, with no fixed points. Now

and we see that Va(x) is strictly convex, since

(η, Vxxn) = (d2/dt2)Va(ξ + tη)=- oc2£ η2) + 6 £ (ηt - !,//(£ - £/ > 0 ,

for purely imaginary α. Thus VΛ(x) assumes a strict nondegenerate minimum at some
unique xΛ9 where VΛ(κΛ) = EΛ. We conclude Hx(x, y) is strictly convex in (x, y)e Ω, and
now consider the surface H(X = E> Ea, which by the above contains no fixed points
of the flow. The smooth surface H^ — E is thus the boundary of the convex body
H^E, and hence is diffeomorphic to a sphere, the diffeomorphism being given by
spherical projection through an interior point of the body to some large fixed
sphere. Clearly FΉα Φ 0 on H = E, for E > Ea.

Remark 3. For n = 2, 3, one can show that for energy surfaces near the equilibrium
point, one has distinct orbits of primitive periods 2πiα~1. {IjZ"1, ...,n~1}, and
Gallavotti and Marchioro [7] conjectured this to be true for all n. Thus HΛ is quite
different from the system H = ̂ yf-^oc2Yjxf, for which all solutions have the
same primitive period.

3 This result is contained in a recent note by Sawada and Kotera, see [9], which, moreover., motivated
Theorem 3
4 We assume here that all orbits have a common period to avoid technicalities
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5. Associated Flows

The integrals found for the system Hα, Case (A), were of the form trEp (see
Theorem 2). More generally Hf = trf(E), for any polynomial /, gives rise to an
integral. It is thus natural to consider Hf as the Hamiltonian of a flow, which we call
associated with HΛ = tr E. For these more general flows trEp or also tr/(£) are, of
course, again integrals since all these functions are in involution, and therefore E is
isospectral under all flows Hf. We will (determine another isospectral matrix, which,
however, depends explicitly on ί. This will allow us, as in the case of the system HΛ, to
describe the solutions of the system Hf explicitly. The result is stated in Theorem 10
below.

We will determine these isospectral matrices, first for another flow, and later
translate the results to the Hf flow. For most of this section we will study this other
system, which is closely related to the Sutherland system, (1.1), Case (B), α = 0, and
carry out the above plan for it. The system to be considered now is given by the
Hamiltonian :

7 Σ («, + *//(*-*/> fep)eβ, (5.1)
*

Ω defined in Section 2.
Notice that G(q,p) is, after the trivial canonical change of coordinates (2.6),

transformed into the system given by (2.8), i.e. Ha of (1.1) Case (B), α = 0. For the
matrix description of the flow we introduce :

q, P)}jk = δjktijPj) + έ*(l - δj^qj + qj/(qj - qk\ (5.2)

R± =R±C where Cjk=^i(l-δjk\ and therefore

, p) = δjk(qjPj) + z(l - δ^qjKqj - qk}

, p) = δjk(qjPj) + z(l - δjk)qk/(qj - ' ( ' }

We observe that R(q,p) = Z(ξ, -η\ R±=Z±, with Z,Z* defined in (2.7), and
(q,p)-*(ζ,η) defined in (2.6) for ^>0, z=l,2...,n. Thus by the discussion
immediately following (2.10), R±, for the case gf>0, i=l,2, ...,n, has simple
spectrum. We note that by definition CR+)* = β~, R+Q = QR~, where
Q = diag(q1,q2, ...,#„). Thus it is clear that R+, R~ have the same spectrum if Q is
nonsingular, or equivalently that tr(#+)v = tr(.R~)v, for all v. Since the latter
equation is rational in (q,p\ it holds for all (q,p)eΩ. Similar QR~ =R+Q implies
Qf'(R-) = f'(R+)Q for /' a polynomial, and so

«,[/v(Λ )]y = LΓ(Λ+)]y«r (5.4)

If/' is real, then lQf\RΊY = U'(RΊ']*Q*=ff(R+)Q = QΓ(R-\ ie., Qf(R~) as
well as f'(R+)Q are Hermitian, and §o in particular q^f^R J]u as well as

]«9

 and C//(^~)]ίί = [//(^+)]H are real. Thus we conclude

f i Σ C/^Ί]7Λ>^[/^+)^ΊJ,-[/^+)]j7^ = H
Ί k*J (
[-WjUW+Hjj}, J (5.5)

with g(s) = sf(s\ is purely imaginary.
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An easy calculation shows that for G(q,p) defined in (5.1),

G(q,p) = tr(%R-)2 + cI) = tr£(R+)2+cI), c=-n2(n-l)β.

Theorem 9. Under the flow q^dF/dp^ pt = — dF/dqί9 with the Hamiltonian

which is associated with G(q,p) of (5.1), the symmetric polynomials in q^q^t) are
rational in exponentials eλjt,,j= 1, ...,n, provided <2, >0. This is a consequence of the
fact that the four matrices,

(5.6)

undergo isospectral deformations as (q, p) = (q(t\ p(t)) evolve under the F flow.

Proof. These matrices satisfy an equation of the form L = \_A,L\9 where
A = A+=A~,A = —A*, A± defined by the two equivalent relations

The identity of A+, A is an immediate consequence of (5.4), (5.3), while A = — A*
follows from the fact that/(#+)Q, hence Qf(R~) is Hermitian, and from (5.5). To
prove the matrices of (5.6) are isospectral, it is sufficient to prove

because taking the adjoint of (5.8), the fact A = A± = — A* implies a statement
analogous to (5.8) for R~, M+. We first prove (a), i.e., DFR

+ = \_A~, K+]. Using (5.3),
and defining [ff(R~J]ίj = tίj.> we make a few preliminary calculations:

— trΓffp-ϊ.;} &--} — „+ Ί
(5.9)

where we have used tδqR"]jk = δjk(pjδjs)+l- — -^(qfiks-qkdjs\ Hence
\Άj ~ w

=i qjq(t-*) But

lA~,R+-]kk=

j ~ 9k/ \9k - 9j/ \9j - 9k,

and so we have shown DF^ = [̂ 4 ,R+\k, and we now must show
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We compute

ίqj

hence

= [A~9R
+~]jk — DpRfk (defining Ajk by this equation)

(***-*//)

-'ΪAtoF*
We now wish to show Δjk = Q, and for that we shall use the addition law,

(gj-flj = 1 , 1

(^-t)fe-«k) (4; -4s) fe-^fe)'

inside the bracketed term. So we compute

4* = tjk(Rίk - R +•) + iG4 Γ. - Aώ + iqk ̂ L^
—

We compute the bracketed term separately :

q' q

_|_

(βj-«j
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Hence

-ΣΛ*]+ Σ (tjs^k-Rβtsk)
s J sΦM

kWΰk — *//) + ^/fc^jj ~~ ***)

, by (5.7).

So we just have to show i^AJs = 0, i.e., that ^4~~C = 0, where Cjk = i for all 7, fc. But
s

since £ ̂ s~ = 0, for all k, we have CA ~ = 0, and so 0 = (CM " )* = A ~ C, as was to be
s

shown, concluding the proof of (5.8a). It remains to prove (5.8b) i.e.,
M- = [A",M"].

We first compute

where we have made use of DFR~ =[^4~,R~], which implies DFg(R~)
= [,4~,#CR~)]. On the other hand,

and thus in order to have M~ = [>4~,M~], we must have

DpQ = Qf'(R-) + lA-9Q]. (5.10)

In other words, we must have

(5.11)
(l -δjύ-qfjfr-δjύ,

but (5.11) is an immediate consequence of (5.9), (5.7), and (5.3). We have thus proven
(5.8), and the statement of the theorem concerning the rational character of the
solutions will be easily shown to follow from

Q(t) = W(t)Q^'(R^W-\f), (5.12)

where W is a matrix satisfying W0 = I, W = A~ W, which we quickly verify. Indeed,
as a consequence of (5.8),

where the subscript shall now, and in the future indicate evaluation at t = 0, and no
subscript indicates evaluation at t. Hence

We note that Olshanetsky and Perelomov (see Footnote 2) have proven (5.12) for
f(s)=^s2, in slightly different coordinates,
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The rational character of the solutions now follows, for by previous remarks,
R± has simple spectrum v1<v2< ... <vn Ϊor0<q1<q2< ... <qn, and so by (5.12),

trβv= Σ qΐ = Pv(ef'Mt),
i = l

where Pv is a polynomial of degree v in the n exponentials ef'(Vs)t.

Remark i. In the language of Remark 1 of Section 2, the matrix equations of motion
under the F flow may be expressed as :

(a)δR±=09 (b) δQ = Qf'(R-) = f'(R+)Q9 (c)δM±=Q, (5.13)

where the derivation δ is defined by

. (5.14)

Remark 2. If we introduce xj9 yj9 by qj = eixj

9 Pj=—iy9j=l9...,n, a canonical
transformation, then iRjk becomes

If we take/(s)=^-s2 in Theorem 9, then all solutions are bounded as a consequence
of

being a constant of the motion. To be more specific, we also observe that RQ is
diagonalizable, since Q = WQ0e

tR° W~ 1

9 with W unitary, Q = diag (eixι

9 . . . , eiXn\ and
thus the matrix etR° is bounded for all real ί. Write etR° in diagonalized form and
observe that since etR° is bounded, RQ has purely imaginary, not necessarily distinct
eigenvalues ivl9 ...9ivn. From which we conclude, using (5.12), that

j=ι

where D(ϋ) = diag(ϋ1, ...,ϋn), and the SJ''s are the column vectors of S. Since
necessarily, |det S\ = 1 φ 0, we must have Sj φ 0 for all;. Thus all solutions of the flow

yt=-H Xi9

are quasi-periodic and moreover, in special cases they will be periodic, namely if
the Vj are integer multiples of a number μΦO.

The quasi-periodic character of the solutions would be a consequence of a well
known theorem of Arnold [6], if only we knew that the gradiants of the n integrals
of the compact system H=^tτR2 were everywhere linearly independent. Since we
don't know this, it is conceivable that such phenomena as exceptional points,
hyperbolic tori, etc., occur, which is ruled out by the quasi-periodic behavior of the
solutions. Of course, the rational character of the solutions is a stronger assertion.



Integrable Systems and Scattering 213

Corollary 9.1. Under the same hypothesis as Theorem 9, wίthf(s) replaced by f( — as);
i.e., Hf = trf( — a(R±)τ), we have for the time evolution of (q,p) = (q(t\p(t)\ with the
Hamϊltonian Hf,

^̂

Proof. Since QL(q,p) = R+, Q = WQQe-atfr(~0iRo~)W-\ R+ = WR+W~1 imply
L(q,p)= We^-^L(qQpQ)W-\ we get from Lfap + otf^-^Q + x-^p)),
by substituting the above expressions, the stated result.

Now we return to our original family of systems Hf = tr (f(E(x, y)\ and the plan
of the beginning of this section. The tool is simply the canonical transformation
used to prove Theorem 2, which takes Ff into Hf.

Theorem 10. // xt = dy.H
f(x, y\ yt = - dx.H

f(x, y),i=l,...,n, then the three matrices

(Y-

undergo an isospectral deformation with the same unitary generator for all the
deformations, and we have the time dependence of the solutions given by

^ (5.15)

where ~ indicates unitary equivalence.

Proof. By (3.5), (3.10), and M± = (Γ±αX)eTαί, we have for α>0,

q,p)}, (5.16)

φ+ discussed briefly in the proof of Theorem 7. We recall that φ+ acted on the ring
Jt of matrix valued functions of the variables (x,y) = φ + 1(q,p), generated by

, 7— (xX9 by extending formula (5.16), so that for M(x9y)eJif9 we have
) = <V~ί(x9y)M(x9y)W(x9y). As a consequence of the definition of φ+9 we

found in (3.6a)

and

φ+(E)=-a(R~)τ, where £=^7+αX'χy-αX'). (5.17)

We also note that the mapping φ+ is canonical with multiplier — 1, so we replace t
by — t in the change of coordinates (q9 p)-»(x, y)9 to describe evolution in time. Now
we apply the inverse (φ+)~ 1 of the above transformation to derive from (5.16), (5.17)
that

But by Theorem 9, Qέ*™-"*^ is similar to β0, hence also to (2αΓ1/2(Y0

This shows that e~"tf'(E\Y+aX) is similar to (70 + αXΌ), and thus is an isospectral
matrix for the flow Hf. Formula (5.17) states E is similar to — α(K~)Γ, which by
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Theorem 9 is similar to — a(R^ )Γ, hence E is isospectral. Formula (5.15) then follows
similarly from (3.16a) and Corollary 9.1.

At first Theorem 10 is valid only for α>0, but as all the relations involved are
algebraic, we may take α arbitrary. The formula for X in Theorem 10 yields the
explicit solutions of the motion, and as in Theorem 9, we conclude

tr (L± aXy = P*(e±(*tff(Vs)) ,

for H = Hf (see Theorem 9), the i /s distinct, for α>0.

Corollary 10.1. If H = Hf = trf(E\ the differential equations of motion, written in
matrix form are

(a) δE=0, (b) δX=fylf'(E),X~}+Rf'(E),Y]+, (5.18)

a) Bjk = - ±W(E)~]}k + ([/'(£), YD +)Jk/(xj - xk)}, j Φ k . (5 19)

' ^—J SJ

Proof. From Theorem 10 we have

M-=(Y-aX)e"tf'W

are isospectral under the Hf flow, with one and the same unitary generator. In other
words,

for some B(t\ which depends on initial data, which for the moment we use in the
above definition of δ. On the other hand, δM+ =0 implies

^from which we conclude

<5(Y+αX):=α/'(E)(y+αX) (5.20)

and similarly from δM~ =0, it follows

δ(Y-(xX)= -a(Y-aX)f(E). (5.21)

From (5.20), (5.21), we compute

Formula (5.19a) follows upon subtraction of (5.20) from (5.21), upon writing out the
full expression for δ.

We need only show that we can impose the normalization of (5.19b), which as we
saw in Remark 2 of Section 2, which we shall be constantly referring to, is equivalent
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to requiring that the unitary generator of the matrix flow is contained in the Lie
subgroup of the unitary group specified by CU — C, i.e., with Lie algebra specified
by CB = Q. From the proof of Theorem 10, it follows that the unitary generator of
the Hf flow can be written as the product of the unitary generator of the Ff flow of
Theorem 9, and the IPs occurring in the map φΛ of (5.16), as displayed in (3.10). By
Remark 2, the latter IPs [see the discussion preceding (3.5)] are contained in the
above Lie group. The U of the Ff flow has as its infinitesimal generator the A
defined in (5.7), which clearly satisfies CA = 0, and thus by Remark 2, this U also is
contained in the above Lie group. Thus the unitary generator of the Hf flow can be
written as the product of elements in the above specified Lie group, and so by
Remark 2, we can impose the normalization condition (5.19b). We also observe that
the fact B(t) = B(x(t), y(t)), i.e. that B is really a function on Ω, was not assumed a
priori.

Remarks. For H = Hf = tτf(Ύ), α = 0, (5.18) reduces to

(5.22)

where 5( ) = β|I

We also note that (5.22), (5.19) imply

(57=0, <5(X-£/'(7)) = 0, (5.23)

(5.24)

and so by (5.23), the solutions of the Hf flow obey X(t)~(X0 + tf(Y0)\ hence

the latter equation being a generalization of a result of Sawada and Kotera [9].

6. Another Integrable System

In this section we discuss another integrable system, namely (1.1) Case (B), αΦO,
formally analogous to Case (A), but physically behaving like a system of interacting
particles under the influence of an additional force acting from the right. We shall
make this more precise in the discussion of the scattering theory of the system.
Moreover, we shall show the solutions of the system to be rational in exponentials
by getting a fairly explicit formula for the time evolution of the system.

Theorem 11. The Hamiltonian system

n n

is integrable. Ifx^dHJdy^ yt = — 6HJdxi9 i=l, ...,n, then the matrix

...,e*») (6.2)
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undergoes an isospectral deformation

DFW=[K,W], where Z±=Z±±C,

with Z(x, y\ C, K(x) as defined in (2.7), (2.9). Then the n algebraically independent
functions, τ^tr Wj, j = l, ...,rc, rational in (yt,e

Xi), are in involution.

Proof. We shall actually prove this result for the system

Fαfop)=iΣ(4Λ)2+i Σ - («ι + «j)/(ft-ty) + «Σ«ι> feP)e£,
i = l l ^ i < j ^ n

where g is not necessarily positive, and then perform the usual canonical
transformation,

qi = ex\ qipi = yi, in the component of Ω with ^>0 for all i. (2.6)

We then have

(6.3)

with R, g, A of Theorem 9,/(s) = ̂ s2. We compute the matrix differential equations
of motion, using the derivation <5( ) = DFα( )— £4,( )], namely:

Equation (6.4a) is the same equation you would get for α = 0, namely Equation
(5.13b), for f(s) = ̂ s2, since FQ=±tr(R-)2, QR~=R+Q, and D^q^d^F^ is

independent of α. Since DFa = DFo-a^dpi> while the off diagonal elements of R±

i

are independent of pi9 Equation (6.4b) follows from Theorem 9, in particular (5.13a),
in the case f(s)=\s2. Hence, by (6.4),

ΪR'+aδQ

and so ^1^=0, i.e., DFoW= [̂ 4, W}. The only thing left to prove, returning to (x, y)
coordinates, is that the (tr FF)'s are in involution, as their algebraic independence is
easily seen by considering the case, for all ϊ, of yt very large, xt — xt _ ί very large, and
— xt > 0 very large. As in the proof of Theorem 2, due to the rational character of the
integrals tr Wj in (yb e

Xί\ it suffices to prove their involutive character in some open
neighborhood. We shall pick the neighborhood in the (x, y) space where for α > 0,
the solutions have the following asymptotic behavior :

1), λt<0, λt<λi+ι for al i i ,

As in Lemma 2.1, such a neighborhood is easily found by converting the differential
equations of motion into an integral equation. Then for

-x,)), (6.6)
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we have

lim, _> «, Z(ί) = {λjδjk + iσjj ,

σjk=-l if fe>7,

= +1 if k<j9

= 0 if fc=;,

while lίm^oo e* = 0. Thus the definition, (6.2), of FF implies lim^^ W(t) exists and is
a function of the λ^s. We then apply the same argument as in Theorem 2 to verify
that the trWp>s are in involution. Also, as in Theorem 2, since the integrals are
rational in α, the statement of involution for all α follows from the statement for
α>0.

We now explore this system (6.1) in a sequence of corollaries. Since no collisions
can occur we order the particles Xi<xi+ί for ί = l,2, ...,n — 1, all t.

Corollary 11.1. All solutions of the system H^for α>0, behave asymptotically in the
following manner:

xi=±λίt+βί+0(Γ1),
y,= ±λ,+θ(r2),
β++/?r=21og(0dl?). (6.8)

In words, the scattering behavior of the system is that ofn decoupled particles, each
interacting with the origin under the potential ex. The effect of the interaction is felt
through the strict ordering of the terminal velocities.

Proof. With no loss of generality, assume α = 1. Then dropping the subscript H = HΛ9

for α = 1 [given by (6.1)], we have

x^dH/dy^yt, xt = yt= -dH/dxi9 i=l,...,n,

implies

*Ί= Σ Φfri-xj)-?*, 0(x) = i(coth^)(sinhiχ)-2. (6.9)

_ 2 ί->±oo, λ^<λ2< ...<λn<0, (6.7)

We first show that for all ί, lim^ ̂  y^t) exists and is nonpositive, for which we use
only the following properties of φ :

φ(-x)=-φ(x), xφ(x)>0,

From (6.9) we have

*Ί= Σ Φfri-x^-e*1,
j>ι

and we note φ(x1 — Xj)9 — eXί are <0, while the energy relation, (6.1), gives an upper
bound on |xt.|. Hence

2(2H)1/2^| J x1dt\=- ] x1dt=γj ] φ(xj-xί)dt+ J e^dt,
— oo — oo j> 1 — oo — oo

and so φ(xj — xί)>09 exι are integrable on (—00,00). From this it follows
00

= J x1(ί)Λ-hx1(0) exists. Now from (6.9) we have x"2 + φ(x±— x2)
o
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= Σ Φ(X2 ~ xj) ~ β*2> where again we note φ(x2 — x7 ), — eX2 are < 0 for j > 2. By the
j>2

previous step and the upper bound on [x^l, we have that the left side of the above
equation is integrable in t on (— oo, oo), and thus so is the right side. Since all terms
on the right hand side of the equation are of the same sign, each one of them is
integrable, i.e. φ(x2 — x^jφ 2, e*2 are thus integrable, and so as before, x2(oo) exists.
Inductively we climb our way up to i = n, and conclude x^oo) exists for all7, and eXj\
φ(xi — Xj) are integrable on (— oo, oo) for all iή=j. Setting At = x/oo), since xj<xj+1,

00

and J eXj(t}dt exists for all;, we must have λ^^λ^^ ... ^λ* ^ 0. We now wish to
— oo

show λf <λ~2 < ... </ίn

+ <0, but first we make some preliminary observations. We
compute

8 φ(xi-xj) = -^sinh-^^-x^ + Bsinh-^^-x^))]^-^),

and so by the energy relation (6.1), φ(xί — xj) is bounded. We now claim
limt_ ̂  φ(xi — Xj) = 0. To see that, we give without proof the following easy estimate,
true for unbounded intervals /,

for /eZ^nL00, (6.10)

where

\f\ι=ί\f\dt, l/L=supte/|/|.

We shall apply (6.10) by picking our interval / = (ί, oo), f(t) = φ(xi — xj), and then
letting ί->oo we see \φ(xt — x7 )|̂ ->0, as was to be shown. Since /(ί)->0, ί->oo, we
must have lim^^ coth(^x^ — x^)) = +1, depending on whether i>j or i<j. We are
now ready to show λ± <λ2 < ... <λ* <0.

First we show λj<0. By (6.6), (6.2), and the asymptotic behavior of yi9

coth (jfai — Xj)), exι, discussed above, it follows that

lim^^ Z±(x(t),y(t))= T± , h'm^^ W(x(t,y(t)) = ̂ T+T~ (6.11)

exists, where T1 equals respectively a lower, upper triangular matrix, with the λ/s in
the diagonal, and ± ί respectively in all the lower, upper entries respectively. Hence

-)(detΓ-)

j = l / \ i=ι

but since W(t) undergoes an isospectral deformation in ί, det W(0)
= detW(t) = detW(ao). On the other hand W=:

2{Z+)(Z~) + aex, but since
(Z+)* = Z~, and as α>0, Wis a positive definite Hermitian matrix, which implies
det W(oo) = dQt W(0)>0. Thus by our evaluation of det W(oo)9 and since λf ^0, we
have shown λΐ <0 for all I

We now show λf<λf+ί for all /, using an argument in [3]. From (6.9) we
conclude
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and since 0<eXn — eXn^c^eλnt=0(t~\ the function ψ = xn — x1+c2t~
1

>xn — x1>Q, with some constant c2 >0, satisfies

Ψ^2φ(xn-x1)^2φ(ψ)>0 for ί^ί0,

where we have made use of φ'(x) ^ 0, xφ(x) > 0. Thus φ is monotonic increasing and
-φ(oo) = An

+ — λ^ ^ 0. If φ(oo) = 0, then φ(ί) < 0, and since φ > 0, φ would be bounded.
This implies φ(ψ) is bounded away from zero, which in turn implies ψ(i) is
unbounded. This contradiction implies 0<φ(oo) = A* — A^, and since
^-ί ^^2 = -" =^n^ there must exist an 5 such that As

+ < As

+

+ ί . From this it will follow
that λf < As

+, As

+ < Aw

+, and proceeding inductively we can conclude that all the A*'s
are different. We show λ1<λs assuming s> 1, the other case being proven in the
same way. Since A ί" > λ* J>s, xj — xs ̂  c3 t, c3 > 0, t ̂  t09 j > s9 we have by (6.9) and
As

+<0, that

Thus we are in precisely the same position with xs — xl as we were in before with
xn — xi9 and so conclude λ*>λf. We have thus shown A f <AJ. . .<A* <0 and
similarly for ί-> — oo, i.e., iJF xt(— co) = λ^, we find λ± >λ^> ... <λ~ >0.

Using arguments similar to those of Lemma 2.1, we easily show

* +0(Γ 1), ί-> ± oo , for all i

and so we must prove λ* = —λ^. We first prove this fact for all \λ*\ very large. In
that case by (6.11), the spectrum of 2Wis 'relatively' close to (λf)2, (λ^)2, ... (λ2)2,
and by the implicit function theorem there exists a C diffeomorphism τ, completely
determined by (6.11) and defined by τ((λί)2, (Aί)2,...,(^+)2) = (ρ1,ρ2,...,ρll),
Qi >Q2>-> •••> >^«? where (ρ1?ρ2, ..., ρn) equals the spectrum ofl^C For the domain AT
of τ, we fix a point defined by (λf )2 = vί = (n — ί+ 1)M, ί = 1, . . . , n, M sufficiently large
and positive, and let N = {((A+)2, ...9(λ^)2)\\(λ^)2-vt\<μ(M)}9 μ(M)<l, and being
picked sufficiently small to ensure τ is a diffeomorphism. On the other hand, in the
above neighborhood, since the spectrum of Wis very large, by (6.11) in the case of
λ~9 we know that the (λ^)2, ί=l,...,n, must be very large and "relatively" close to
the spectrum of W. In fact, using the implicit function theorem once again, and
(6.11), in the case of λ~9 noting that the form of (6.11) guarantees that the spectrum
of W is unchanged upon the inversion λ*~*—λ*9 i = l,2, ...,n, we must have
τ((Λ,^)2,(Λj)2, ...,(A~)2) = (ρl5 ...,ρn). While by the uniqueness clause in the implicit
function theorem and (6.11), this implies (Aί

+)2 = (Aί~)2, and hence λ+ = —Aj".

We now wish to prove Af

+ = — Af~ for all (x, y) e Ω. For that we observe that (6. 1 2),
as in Lemma 2.1, enables you to construct a canonical diffeomorphism of Ω, φ+9

defined by

φ+(x,y)=(λ+,β+), λ+ =(A1

+, ..., Aκ

+), /» = (/»+, ...,/?;),
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and similarly one defines </>_(x,y) = (λ ,β ). We can then define φ = φ+°φ_1, a
canonical diffeomorphism of Ω, by φ(λ~,β~) = (λ+,β+), which, in particular, is
continuous. Now by (6.11),

W(± oo) = oo)T-(± oo)= I

0-0

(6.13)

and so the coefficients ak of the characteristic polynomial, det(z/— W(±oo))
n

= Σ z^kίΛ-*) depend on Aj1" or A T only. Thus since FF( + oo)~ FF( — oo), the map
k = l

/ί~->/l+ is given by the rc algebraically independent relations ak(λ~) = ak(λ+\
k = 1, ...,n. On the other hand, we have shown —λϊ=λ£9 for all fe in some
neighborhood, and thus by the continuity of φ, and the identity theorem for
analytic functions, —λk=λk,k = l,...,n, for all Ω.

To prove (6.8), we observe once again, applying an argument of Moser's [15],
that the maps (x,y)-^(β±

yλ
±) are canonical, and hence

Σ dβ+Λdλ+ = Σ dxtAdyi= Σ dj8f ΛdλΓ ,
i = l i = l i = l

which implies, along with the self explanatory definition of u,

du^dΣtff+βDdλt =0, A i = Ai

+ = -V
ί

By the Poincare Lemma for the convex domain β, we find u = dS(λ), and so

^
We first show S = Σ S(Af), and then we evaluate S explicitly. To see S has the

i = l

above decomposition, we note that the one particle system with

(6. 14)

has for its most general solution

x = log [2/ί2 sech2 (λt + δ}]9 λ > 0 ,

and hence

x(t)=+2λt + β±+0(Γ1), f-*±oo, (6.15)

where β± =(log(2A2) + 2^ + 21og2). Thus if we have the rc-particle system with

(6.16)

we would have

(6.17)
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where the notation obviously comes from (6.14). Now fixing λi>λ2> ... > λπ > 0, if
δi_ί—δί = m>0, sufficiently large, for all i, we conclude from (6.17) that
xί+ι(t)>Xi(t) for all i, t. If we let m-»oo, or what comes to the same thing
β*+ i — β*-+co for all i then inf. ί(χ.+ 1—xj-^oo. We are now in a position to
perform a scattering experiment with the system Ha. Namely, to evaluate S, since it
only depends on the terminal velocities, we may choose a set of scattering data for a
fixed set of final velocities, i.e.,

xl(ί)=-2V + A++0(r1), ί->oo,

where β^+l-β^ =m, m large. Then by the above considerations, the system Ha

decouples as w-»oo, hence

dS/dλ^β* +βΓ = 21og(2λl)
2 + 0(m-1). (6.18)

But since (d/dλi)S(λί,...,λn) does not depend on m, we must have /f^+jSf
= 2 log (2/y2. Lifting the requirement that α = 1, and returning to the notation of the
theorem, we find β+ + j8r~ = 2log(αλf).

Corollary 11.2. The explicit solution of the equations of motion for α=t=0 are given
by

ex~(2χ-1pp-1), p=Ale
λ'A2 + A3e-ΛtA4, (6.19)

where ~ indicates similarity equivalence. Here the At's are constant matrices
described in the proof, and in case α > 0, we have

2/l = diag(-A1, -λ2,..., -λn), (6.20)

with λi being the same as in (6.7). Thus the symmetric polynomials ofeXi,for α>0, are
rational ine± ̂ 2λ*\ j —1?... 9 n. Moreover, if we define the In x 2n matrices J, K by

o,κj'

= i(l — δjk), and W(x9y), K(x) as defined in (6.2), (6.3),

= [£j], (6.22)

i.e., J is isospectral. For a > 0, ίfte spectrum ofj is ± ̂ λi9 i = 1, . . . , rc, fcwί m awy case, the
spectrum occurs in ± pairs. Finally A satisfies the quadratic matrix equations

(6.23)

where

w=v+lwv±, c=v+1cv±,
respectively, for some nonsingular n by n matrices V± .

Proof. We first compute the time dependence of ex, i.e. (6.19), and for that we go over
to (qi9 ...,qn,pι, ...,pπ) coordinates, as in the proof of Theorem 11, using the same
notation as in that proof. We define the matrices q,r± by

r± = U~1R±U, (6.24)
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where U is a matrix satisfying (7(0) = /, U = A (7, A as in (6.3). This matrix q is not to
be confused with the coordinates (ql9 ...,#„). The Equations (6.4) are respectively
equivalent to (see Remark 1 of Section 2),

IΓ =r+^j (6.25)

Since R+ — R~=C, [C,yl]=0, U = AU, it follows that U~1CU = C, and so we
have

r+-r~=C.

That Wis isospectral is equivalent to (see Remark 1 of Section 2)

where the subscript shall now, and for the remainder of this section, indicate
evaluation at f = 0. By the above we have

-r- = PF0,i.e.

r - = W0-±Cr-.

Defining p as the solution of the linear differential equation,

r- = -2pp- x , p(0) = J, [hence p(0) = ~K = - ]̂ , (6.27)

and substituting this into (6.26), we compute

which implies

Defining the n by 2n matrix P = ( 1, we conclude
\P/

P = J0P, hence P = eJotP0, (6.28)

with J defined in the statement of this corollary.
Recalling β = diag(#1, ...,#„) = diag(e*S ...,βXn) = ̂ x, see (6.3), we compute,

using (6.24), (6.25), and (6.27),

)' =2α-1(pp-1)' , (6.29)

hence

Assuming for the moment the statement of the corollary concerning the spectrum
of J, we may write, using (6.28),
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with A = diag(yl, — Λ\A an n x n matrix which takes, for α>0, the form given in
(6.20), and E a matrix which block diagonalizes J0. This expression for P, in
conjunction with the above expression for UexU~1

9 yields (6.19).
We now analyze the spectrum of J, but first we must verify (6.22), i.e.

DH<J = [K, J]. We compute

' . °

while by (6.21),

r£π =
L ' J

=ι 0, 0 1 Γ 0,

and thus by Theorem 11, (6.22) is verified,
We now assume α > 0, returning to (x, y) coordinates, and proceed to prove that

the spectrum of J (which by (6.22) is constant along an orbit) is ±^λi9 i, ..., n. Now,
since J(t) is an isospectral matrix, it is sufficient to prove

_
1 , .

[see (6.13)], has the above spectrum. Defining the matrices A, λ, by

if

(6.13) implies

, C = A-A*.

Thus to prove that the spectrum of J(oo) is ±^λi9 i= 1, ..., n, it is sufficient to prove
the seemingly stronger, purely algebraic statement :

Lemma 11. 3. If

<6 30)

where λ = diag (A19 . . . , λn), the spectrum of Mε(λ) is independent ofε, and in particular
the spectrum ofM0(λ) agrees with the spectrum ofM1(λ) = J(oo).

Proof. For the proof, which need only be given for the case λ± < λ2 < . . . < λn < 0, we
employ the asymptotic description of the orbits of #α, formula (6.7). First we make
some preliminary observations. Defining

^ X V , ^ ,

IP, ε/J

we compute

εjBMiWB-^M^A'), i.e., εMiW-M^λ'). (6.31)
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For the rest of the proof of Lemma 11.3, we fix λ'9λ'1<λ'2< ... <λ'n<0.
We then pick δί = δί(λ') so that

\Mε(λ')-M0(λf)\<±δ2, if |ε|<51<52<l, (6.32)

with δ2 = δ2(λf) to be determined in the course of the discussion, and

\A\ = sup Σ Mίjl ^e now ^x ε ^or ̂ e remainder of this lemma, ε only having
; = ι,... ,«V/=ι /

the property lε^^.

Observe that for any matrix of the form M0(Λ') + S, S a small matrix with |S| < δ2,
we may find a matrix D such that

(6'33)

In addition, D may be taken to be of the form

=[ \:χ 41 +w[ — 2 Λ , 2Λ J

and so (6.34)

Note that all the O's which appear now, and for the rest of the discussion, depend
only on λ'.

We proceed with the proof of Lemma 11. 3, having fixed λ', and then ε, and
therefore λ = ε~ lλf, as previously discussed. We first consider a particular orbit with
asymptotic behavior given by (6.7), and any choice of β = (βί, ..., βn). We then pick
the origin of the orbit, i.e., replacing t by t + t, with t chosen so large that

|S2|<1 l ' ;

Since by (6.7),

such a F can always be chosen.
With the above chosen orbit, we rescale time, t^>ε~1t = tf, and so in (6.7), the

terminal velocities λ are replaced by ελ = λ'. In what follows, we shall indicate the
transformed quantities by primed letters. We compute

Ho:
while
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which may be conveniently written as

-1. (6.37)

Using (6.35), (6.31), we compute

with

S3=Mε(λ')-M0(λ'),

Since by (6.32), |ε| < 1, |S4| ̂  |B| |SJ |εB" x | g |SJ <%δ29 and so, again by (6.32), we
find

J'0 = M0(λ') + S, |S|<52. (6.38)

We are now in a position to use (6.33), as (6.37) implies, with D defined in (6.33),

p = eJό<p>o = β{eχp [(D- 1 j'0D)f|}(zr IFO) ,

and so by (6.38) applied to (6.33), (6.34), we find

1 - ' -
and so conclude

P' = d11^
+ίp1+rf12^'ίp2. (6.40)

We shall now come to the determination of δ2 =δ2(λ'\ and then we will finish the
proof of this lemma. By (6.36), (6.27),

and so by (6.39), (6.34), we find

Pi =(i/)(/) + (-A')-1(

From (6.35) we have

while

Since by (6.32), (6.35), \ε\<δ2, |S2|<1, we conclude from the above

p^I + Ss, with \S5\<σ(δ2),

^2)=Kr^2(n + l) + 0(^2)(l+i|A'1|+^2(n+l)).

We now choose δ2 =δ2(λ'\ so that 0<δ2 < 1, σ(δ2)< 1, and in addition δ2 is in the
domain of validity of the estimates in (6.33), (6.34). The remark concerning the λ'
dependence of 0 ensures δ2 = δ2(λ').
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We now compute the positive spectrum of J'0. Recalling q=U~ίexU.> [see
(6.29)], and substituting £->ί', λ->λ'9 in the asymptotic description of the orbit, (6.7),
we conclude, using (6.24)

t/(ί)=

and so

gμi,...,^))U(c)θ)].(l + 0((0"1)), (6.42)

where these O's depend on our fixed initial data. On the other hand, using (6.40), and
the nonsingularity of the matrices d l l 5 pί9 implicit in (6.34), (6.41) respectively, and
since by (6.25), (6.27), q~lq = r~ = —2pp~l

9 we conclude

This expression coupled with (6.42) yields

We thus find that the positive eigenvalues of J'0, μ* = — -jAJ, i= 1, ..., n, with no
error term 0(δ2\ as in (6.33). Thus μf , i = 1, . . . , n, is contained in the spectrum of [see
6.37],

where ~ denotes similarity equivalence, since J(x(ί), Xί)) undergoes an isospectral
deformation by (6.22). By (6.7), J(oo) = M ̂ A), and thus by (6.31),

We have thus shown for arbitrary ε satisfying \ε\<δ1=δl(λ')9 that the positive
spectrum of Mε(λ') contains — ̂ , / = 1, ..., n. By the same argument for t'-> — oo,
after having first shifted our origin appropriately, we also conclude that ^λ'i9
j = l, ...,n is contained in the spectrum of Mε(λ'). Hence, Mε(λ') has full spectrum
+%λ'i9 ί = 1, ..., M, at least for |ε| <<?! =δι(λ'\ We therefore have proven Lemma 11.3
for ε small, but since Mε(λ) is a polynomial in ε, the proof is finished.

To complete the proof of Lemma 11.2, we must verify (6.23). To accomplish this
end, we shall construct a meromorphic invertible matrix function of (x, y\ which
diagonalizes J, namely

(6.43)
•21 > e22J

possessing the property that e{J, i,j= 1,2, is invertible. Assuming for the moment the
construction of such an E, by (6.21), (6.20), and the spectral resolution of J, we have

0, I]\ellt e12\_\ellt e12\\Λ, 0 1

15 e22\[Q, -A]'
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which implies

, e2 = -eA

, $Wei2+

from which we conclude

= -e22A
1

which clearly implies (6.23), with V+=eίl9 V_=el2. Note by (6.45) and the
nonsingularity of A, that once we have constructed E(x, y) satisfying (6.44), the
invertibility of en, eί2 implies the invertibility of eip i,j=ί,2.

First we shall construct E(x, 3;) satisfying (6.44), and then proceed to show the
invertibility of its blocks. The construction shall proceed in two steps, i.e., we shall
take E of the form Eί(x9y)E2(λ). To construct El9 we first observe that using the
arguments of Remark 2 of Section 2, we may algebraically construct a global
unitary matrix U(x9 y) such that

U~1(x9y)W(x9y)U(x9y)=ϊ(λ + Δ)(λ + Δ*)9 CU=U*C = C, (6.46)

C = C + iI9 with λ9Δ defined as in Lemma 11.3, %(λ + Δ)(λ + Δ*) being the limiting
value of W(x9 y) along an orbit with initial data (x, y). It follows by (6.21), (6.46), that
if we define the 2n x 2n unitary matrix

M^λ) defined in (6.30). Moreover, we may uniquely construct an invertible analytic
matrix E2 = E2(λ\ so that

\A 01
E2

 ίM1(λ)E2 = ' , A as in (6.20),

with E2 normalized in the following way: Pick a λf and fix it, defining λ = ε vλ', but
unlike the situation in Lemma 11.3, we shall think of ε->0. By (6.31), (6.33), we have

eBMι(λ)B~1 = Mε(λf) = M0(λf) + O(ε)

-D47T', with Λ-β' _°,], Λ — &,

with 0 depending on λ', and where we have employed Lemma 11.3 to conclude

From this we infer
[D)=Λ, A=\λ, (6.47)

where by (6.34), and B= ' L we conclude
[0, ε/J

•-Hi- .-c
[U, fc

/ , /] , [ 0(ε) , 0(ε)
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0 depending on Λ/, and similarly from (6.34) we find

[0(ε) , βO(e)l

), eO(ε)J

The above estimates allow us to normalize E2, so that, again keeping λ' fixed, and
thus fixing the behavior of 0(ε) as ε->0,

ί' °rl'i£2-i ia' /J l-0asβ^0as 0(β),
υ, ει\ [ L~2 / l > 2/LJJ

or equivalently

' 3-1 i n ' -i ~*° as ε^° as °̂, Λ JJ [U 5 ε -/J

We thus have constructed the invertible meromorphic matric function
E(x,y) = E1(x9y) E2(λ), and so we have from (6.28), the time dependence of the HΛ

flow (6.1) given by

(with E depending on the initial data),

=EeΛ\E~ 'Po) , P0 = [ / ] , by (6.44) , (6.27) ,
l~2ZΌ i

*, o ιrPlι [P1|_£-lp .
0 > '

e12e-Mp2. (6.48)

The invertibility and meromorphicity of E implies that etj, p^ , p2 are mero-
morphic functions of the initial data. By arguments similar to the ones given above,
and in Lemma 1 1.3, we can easily show that eλ 15 p t are invertible on some open set in
(x, y) space, and similarly for e12, p2 We thus conclude the proof of (6.23), and
therefore of Lemma 11.2, by proving the following statement:

Corollary 11.4. Under the hypothesis of Theorem 11, we have

(a) Σ & + = Σ xff>)~ 2 log (det(ellPl)),

with ell9 eί2, pί9 p2 as in (6.48), ^+, βr as in (6.7).

Remark. This easily implies e^1 exists for 1,7 = 1,2, by the meromorphicity of
eir Pι> P2» and of/?*, in initial data.
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Proof of Corollary 11.4. We shall just Prove (a), (b) follows similarly. Clearly it
suffices to establish (6.49a) in some open set where eίίp1 is nonsingular, and mero-
morphically continue. Since pp"1 = — jr~ ', p(0) = /, we compute, using (6.3),

dlog(detp)/Λ= -

Hence log detp+^£x; = constant, and thus

=lim,^β) {log(det(ellPl)

+(iΣ^ + iΣft++0

where we have used (6.48), (6.7), from which we conclude

and the corollary is proven.

I wish to thank Professor J. Moser for his many suggestions in both formulation and technical
specifics, and last but not least for his enthusiasm and encouragement.
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Note added in proof: In a recent preprint, Kazhdan, Kostant and Sternberg have shown how to relate
the Cases A, B, for α = 0 to symplectifcactions of the unitary group.




