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Abstract. For quantum systems of finitely many particles as well as for boson quantum
field theories, the classical limit of the expectation values of products of Weyl operators,
translated in time by the quantum mechanical Hamiltonian and taken in coherent states
centered in x- and p-space around h~xl2 (coordinates of a point in classical phase space)
are shown to become the exponentials of coordinate functions of the classical orbit in
phase space. In the same sense, h~112 [(quantum operator) (ί) - (classical function) (ί)]
converges to the solution of the linear quantum mechanical system, which is obtained by
linearizing the non-linear Heisenberg equations of motion around the classical orbit.

§ 1. Introduction

Consider the canonical system with the real Hamilton function

(1.1)

in the 2/-dimensional phase space IR2/ B (π, ξ). If grad V= PF is Lipschitz
around ξ, then the canonical equations

mξ(ή = π{t)9 π(t)=-gmάV(ξ(t)) (1.2)

have a unique solution (ξ(α, t\ π(α, t)) for times |ί| < T(α) (possibly
0 < T((x) S oo) with the initial data

£(α,O) = ξ, π(α,0) = π, α = (ξ + iπ)/|/2. (1.3)

While the classical equations (1.2) have locally unique but globally
possibly nonexistent solutions (escape to infinity in finite times or
collisions in the iV-body problem), the corresponding quantum mechanical
problem

^ ^ (x)ψ(x9t) (1.4)

in I?(W) has always global solutions, if pl/2m and Vh have a common
dense domain 3) and if ψ = y>( , 0) e Q), by taking any selfadjoint exten-
sion Hh of the real and symmetric operator pl/2m + Vh9 Uh(t) = exp( — iHht/h)
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and ψt = Un(t) ψ. However, these global solutions are not unique, if
pi/2m + Vh is not essentially self-adjoint on Q).

The discussion of the connection between (1.2) and (1.4) is as old as
quantum mechanics (see e.g. [1-3]). The WKB method relates an
asymptotic expansion of solutions of (1.4) for ft->0 to solutions of the
Hamilton Jacobi equations for (1.2) [4]. For more than one degree of
freedom, the mathematical difficulties of this approach are considerable
[5]. The Feynman integral approach [6] is very suggestive, but also
difficult in rigorous mathematical terms [7]. The simplest connection
between quantum and classical mechanics, however, goes back to
Ehrenfest [8]: For every ψ e S) and V sufficiently regular,

-jj- (ψt> QhΨt) = {ψt> PhΨt)/™

However (1.5) does not define a solution of (1.2) since (ψty VVhψt)
=t= ^y{(ψt^fιΨt% unless VV is linear, and even if the error is small for
some t, it need not be controllable for all ί, if h > 0.

It is a folk-theorem (see [9, 36]) that (1.5) establishes a rigorous
transition to (1.2), when ft->0 in minimal uncertainty states for ph and
qh, i.e. in coherent states [10] centered around large mean values h~i/2π,
h~ίf2ξ. This becomes apparent in the following symmetric representation
oftheCCR:

where p = — id/dx, q = x and a = (q + fp)/|/2 are ^-independent. Let
α e C and

ί/(α) = exp(αα* — α*α) = expi(π^ — ξp). (1.7)

Because of U(cή a t/(α)* = a - α, one has in the coherent state |α> = ί/(α) |0>
(where α|0> =0) for an arbitrary monomial in the p's and g's:

\ \ , (1.8)

and hence

(1.9)

We shall show that (1.9) (in Weyl form) is preserved under the time
evolution Uh(t) of any selfadjoint extension Hh oίplβm + Vh:

1 / 2 α>-ξ(α,5) . . .π(α,0, (1.10)
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as long as the classical orbit exists. The fact, that along coherent states
the quantum mechanical evolution (h~i/2a\ah(t)\h~ll2a} and the
classical evolution ξ(<x, t) = (h~1/2(x(ή\ah\h~1/2(x(t)y are in "weak
correspondence" (which becomes exact for h->0) has been analyzed
by Klauder [9]. But to the best of the present author's knowledge no
general proof has been given of (1.10), nor has it been recognized that
also (1.8) is preserved under time-evolution (for the technical details,
see Theorem 2.1 and [37] for a probabilistic setting):

Here the q(<x, i) and p(α, t) are solutions of the linearized classical equa-
tions (1.2) around ξ(a, t):

q(0L, t) = p ( α , t)/m, p(α, t) = - VV(ξ(a, t)) q(<x91), (1.12)

with initial conditions q(<x,0) = q,p(oι,0)=p. Both, (1.10) and (1.11) have
an easy generalization to more complicated Hamiltonians and to
relativistic and non-relativistic infinite boson systems. In the latter case
the compensation of singularities for h-+0, when expanding the quantum
dynamics around a classical solution, is implicit in the work of Gold-
stone [11] and Gross [12], but again a mathematical proof is desirable.

Our work has been most strongly influenced by the findings of
Lieb and the author [13] in mean field models, as lasers and strongly
coupled superconductors, that "intensive" quantities aN(t), i.e. space

N

averages N~1 ]Γ An of local observables translated in time by mean field
n = l

Hamiltonians, become classical a(t) in the limit N->cc along classical
states, while the "fluctuations" ]/N(aN(t) — oc(ή) become boson operators
α(α, t), which follow linearized equations of motion, if in the classical
states the fluctuations at t = 0 have a limit. We think that the analogy
between JV->oo and h->Qis significant for the understanding of classical
operations within the framework of quantum mechanics [14]. It is the
pedagogical goal of this paper to elaborate a unified picture of the
classical limit in quantum mechanical correlation functions, which is so
simple that it could belong into an elementary course on quantum
mechanics.

The author is indebted to M. Fierz, J. Glimm, A. M. Jaffe, J. R. Klauder, B. Kostant and
J. Lascoux for helpful discussions and bibliographical information and, last but not least,
to E. H. Lieb whithout whom this paper would never have been written.
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§ 2. Finitely Many Degrees of Freedom

The passage to the classical limit in quantum mechanical correlation
functions can be completely illustrated for the Hamiltonian J f (π, ξ)
= π2/2m + V(ξ) with only one degree of freedom:

Theorem 2.1. Let V{ξ)berealandξ{oc, ή a solution of (12) for\t\ < T > 0
and initial data α. Let V be C2 + δ, δ >0, in a neighborhood of £(α, ί) and
assume that j\V(x)\2 exp( — ρx2) dx<co for some ρ < oo. Let Hh be any
selfadjoint extension of

^ in L2φ}) and l/Λ(ί) = exp -iHht/h.

Then for all (r, 5) e 1R2 and uniformly on compacts in {\t\ < T}:

2π(α, ί

(2.1)

s-lim U(h- 1 / 2 α)* (7,(0* expf[r(g - h~1/2 ξ(α, ί)) + s(p - ft" 1 / 2π(α, ί))]
h~+ 0

ft(
and

s-lim t / ( f t - ) s ( ) p [ g f t pΛ] S ( ) ( )
ft-*° (2.2)

= expi[rξ(α, ί) + sπ(α, ί)] .

Here (p(a, t), q(a, t)) are the solutions of (1.2) linearized around ξ(oc,t)
with initial data (p, q), which arise from the selfadjoint Hamiltonian

= p2/2m+V"(ξ(a,t))q2/2. (2.3)

Proof. One expands HJh around the classical orbit ξ(a, t) = ξt:

Hh/h = H°(t) + Hi (t) + Hi {t) + Hh

3(t), (2.4)

H°(t) = Jί?(π,ξ)/h, (2.5)

Hi(t) = πt{p-h-1l2π,)h-1l2 + V'(ξt)(q-h-1l2ξ^h-1l2, (2.6)

H2(t) =(p - h- ll2πt)
2/2 + V"(ξt) (q - h~ 1/2ξt)

2/2. (2.7)

t

The propagator U^(t) = Texp - z J ds H£(s) exists for all |ί| < T (by the
b

unitary extension of its strongly convergent Dyson series on the linear
hull of all Hermite functions) and defines an automorphism of the Weyl
algebra:

U£(t)*(a* -h-1/2a?)U£{t) = a* - f t ~ 1 / 2 α # . (2.8)

Hence the l.h.s. of (2.1) can be written as

Wn(t9 0)* cxpi[rq + sp] Wh(t, 0), (2.9)
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where
WΛ(t, s) = U(h- ίl2a)* Uϊ(t)* Uh(t - s) Ufa) U{h α)

•expijdr/#(>•)•
S

Hence (2.1) is proved, if on a dense subspace sAimWn(t,s) = W(t,s)
t

= Texp - J dr H(r) holds.
s

The normalized states {ψa(x) = π~1/4 exp — (x — a)2/2\aelR} span
L2(IR). We claim that for every 0<k<T there exists some hk>0, such
that for all ft < ftk and all |s| ̂  fc, the total set of states

(Ψαs = t^(s) l/(ft- 1 / 2 α) W(s, 0) ψβ} C D(p2)nD{h-ι V(]/hq)). (2.11)

For, H(r) is quadratic with V"(ξr) continuous in r. Hence the Dyson series
for W(t9 s) converges for small |ί — s| and

W(s,0)qW(s,0)* =aq + βp,

W(s, 0) p W{s, 0)* = yq + δp , (2.12)

with continuous dependence on s. Since ψa satisfies [_q — a + ip] tpα =0,

0 = U&s) U(h~ 1/2α) W{s, 0)lq-a + ip\ ψa

= l(* + iy)(q-h-ί'2ξs)-a + ί(δ-ίβ)(p-h-1!2πsKψ*a\
 ( '

or

w*s(x)- const expί- J α + ι ^ ix-h~ll2£ - - \ +ίπh~1/2x
ψa (x) - const exp^ ^ _ .β) \x ft ζs ^ + .^ J + ιπsfι x

(2.14)

Since Re(α + ίy)/(δ - ij8) 2 = ί/2(δ2 +β2)>ηk>0 for all |s| ̂  fc, and since
frfx|F(x)|2 exp — ρx 2 < oo for some ρ<oo, one obtains (2.11) for

Therefore Wh(t, s) W(s, r) ψa is strongly differentiable with respect to s,
if 0 < k < T, \s\, \t\ ^ k and if ft < hk, for any selfadjoint extension Hh of
pi/2m + Vn. We obtain the Duhamel formula

W(t, 0) ψa - Wh{t, 0) ψa =\ds~ Wh{t, s) W{s, 0) xpa, (2.15)
Q ds

~ WΛ(t, s) W{s, 0) ψa = iWh(t, s) {ft"' V(ξs + ]/hq)

- ft-1 V(ξs) - ft" ^ 2 K'(ίs) q - V"(ζs) q
2β} W(s, 0) ψa .

 ( 2 ' 1 6 )
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The norm of (2.16) will be estimated as follows: There exists some σ >0,
such that V(ξs + x) is C2 + δ for all \s\ ^ k and |x| ^ σ. We consider

f dx\h~ι V(ξs + ]βχ) - h~1 V(ξs) - h-1/2 V\ξ>) x - V"(ξs) x2β\2

'\(W(s,0)Ψa)(x)\2.

In {\x\^h~ιl2σ}, each term is O(hN) for every N, since |^(ξ s + l/^^) | 2

increases at infinity at most as expfcρx2, while \(W{s, 0) ψa) (x)|2 decreases
as exp — 2ηkx

2. On the other hand, for |x| ^ h ~ 1 / 2σ, one uses the Holder
continuity of V" (δ<Lί):

\h~' V(ξs + )/hx)-h-ϊ V(ξs) -h-1'2 V'(ξs) x - V"{ξs) x2/2|

i (2-18)
^ x 2 \dy{\ -y)\V'\ξs + ]/hxy)-V'\ξs)\^comtx2 + δhδ'2 .

o

Hence \\W(t90)ψa-Wh(t90)ψa\\=O(hδ/2) leads to (2.1). By the same
argument

| |L/(/Γ 1 / 2 α)* UJt)* eilrq*+sp*] UJ

Since s-lim Wh(t, 0) = W(t9 0) and s-lim expi]/h{rq + sp) = 1 , (2.2) follows.
Q.E.D.

Remark. It is helpful for the interpretation of Theorem 2.1 to note the
analogy to time dependent scattering theory [15] between

lim ||l/ft(ί) U(h-ίl2oi)ψ-U(h-ίl2(xt) W(t,0)ψ\\ =0 (2.20)
Λ—• 0

and
lim \\eiHtΩ_ ψ -eiHΌtxp\\ - 0 . (2.21)

If ψ is Gaussian, then also U{h~ll2ot)ip and U(h~ll2at) W(t9O)ψ9 and
(2.20) shows that under the time evolution Uh(t) the difference of
Uh(ή U(h~ιl2a)ψ from a Gaussian wave packet centered around the
classical orbit and with the shape wobbling according to the quadratic
Hamiltonian of the linearized theory goes to zero, as h-+0.

The error in (2.2) between Gaussian wave packets can be reduced
to O(]/h) uniformly for bounded time intervals, if £(α, ί) exists for all t
and if V is C 3 in a neighborhood of this orbit. Hence the Ehrenfest
theorem describes well the classical aspects of the motion of wave
packets for finite times, but not for t-> oo. Our method is complementary
to the WKB-method, which is successful for describing the stationary
states in quantum mechanics.

One learns from Theorem 2.1 that equilibrium points (π0, ξ0) of the
classical motion, π o = 0 and V'(ξo) = 0, are driven by the quantum
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fluctuations in 0{\/h): If V"(ξo)>0, then (2.3) leads to an oscillatory
behavior of Ap2 and Aq2 in any wave packet ψt. For F"(£ o )^0 the
spectrum of (2.3) is purely continuous and the wave packets spread,
for V"(ξ0) = 0 with a power law and exponentially fast for V"(ξ0) < 0.

A slight modification of the kinematics leads to the classical limit for
heavy particles, if λ = h/m-^0 in Hamiltonians

Jf (π, ξ) = π2βm + m V(ξ). (2.22)

Corollary 2.2. Consider (2.22) (under the same assumptions on V as in
Theorem 2.1) around the solution ξ(t) of the classical equation
ξ(t)=- V'{ξ(t)) with initial data α = (£(0) + i£(0))/|/2. Let

pλ = m\/Ίp, qλ = ]/rλq, (2.23)

and let Hλh~x be any selfadjoint extension of p2/2Jrλ~1V(yrλq) with
Uλ(ή = Qxp-iHλt/h. Then

s-lim U*(λ~ 1 / 2 α) Uλ{t)* expi\r{q -λ'ί/2 ξt) + s(p - λ~1/2ξt)~]
λ^° (2.24)

• Uλ(ή 1/2

s-\imU(λ~ll2a)* Uλ(ή* expi[r^λ + sp?/m\ Uλ(t) U(λ~ί/2a)
λ^° β

 fc (2.25)

where q(t) = p{t), p(t) = - V"{ξt) q{t\ q(0) = q9 p(0) = p.

For N-particle Hamiltonians of the type

e
(ξnj)) / n (ξ,ή (2.26)

C I

with nontrivial time-dependence, we have to assume the following
regularity property:

(R): There exists a propagator Uh(t,s) which is strongly continuous
for - oo < 5, t < + oo with Uh(t, s) Uh(s, r) = Uh{t, r), UΛ(t, s)* = Uh{s, t) and
Uh(t, t) = i . For some ρ < oo and all Gauss packets with

sup |φ(x)expρ| |x | | 2 |<oo,

5-limftr-' [l/Λ(ί, 5 + r) - Uh(t, s)~] xp = iUh(t, s) Hn(s) ψ ,
/*-•()

where //ft(5) φ is naturally defined as partial differential operator.

Theorem 2.3. For N-body systems (2.26) with A and V satisfying (R),
a generalized Ehrenfest theorem of the type (2.1), (2.2) holds along every
classical orbit ξ(t), in the neighborhood of which A and V are C2 + δ,δ>0.
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In the classical limit, there is no difference between the coherent and
incoherent superposition of states of the type U(h~ 1 / 2 α n ) φn [with ocn e <Cf

and φneL2{W)]9 if Σ | | φ n | | 2 = 1 and α m φ α n for m φ n : For all (r,s)eIR2

and |ί| < min T(ocn) and

V2an)\φn

h ~+ 0

P f t Όh(tf eί[rq*+sp*] Uh(ή) (2.28)
ft—•()

\\2= £ \\φn\\2 eκpi[rξ{an, t)+sπ(an, ί)]
n

This is important for fermions or bosons, where the (anti-)symmetriza-
tion of spatial wave functions of the type U(h~ 1 / 2 α) φ usually leads to a
classical ensemble in phase space with discrete density. Classical ensembles
with continuous densities ρ(π, ξ)^0, f dπ dξρ(π, ξ) = 1 can obviously
be reached from any density matrix P, by forming

PΛ = \dπ dξ ρ(π, ξ) £/(?Γ 1 / 2 α)

and by passing to the limit as in (2.27) for |ί| < min T(α).
A classical problem is the limit h^O and the related high temperature

expansion in statistical mechanics [16,17]:

H = \dπ dξ e-
β*{π>ξ), (2.29)

Λ-0

(2.30)
= \dπ dξ e-β^π>ξ)πmξn/μπ dξ e-β*<«'*>.

For finite /, (2.29) has been proved by Berezin [18] for a large class of
Hamiltonians. In [19] the limit (2.30) of the correlation functions was
considered for finitely many harmonic oscillators compled linearly to
large systems of multilevel atoms. This method can be generalized to
JV-particle systems in an anharmonic oszillator well and interacting via
regular short range two-body potentials.

Finally let us remark that there exist coherent states on a large class
of Lie groups [20], which allow the passage to the classical limit for
dynamical systems with more exotic phase spaces than 1R2/ [21-23].
One example, 1 R 2 X S U 2 , with "atomic" coherent states [24,25] for
SU 2 , is important in the thermodynamic limit of the laser [13].
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§ 3. Boson Systems of Infinitely Many Degrees of Freedom

Some of the results of the preceeding section can be generalized to
systems with infinitely many degrees of freedom.

The best understood models for a relativistic quantum dynamics are
the scalar boson theories in two dimensional space time with polynomial
interaction (see e.g. [26]). Let Φ(x), x e IR1, be the free boson field of mass
m > 0 at ί = 0, H0(m2) the corresponding free Hamiltonian and
Π(x) = ΐ[i/0, Φ(x)] in Fock space ^ with [Φ(χ), Φ{y)\ = [JI(χ), /7(j/)] = 0
and [Φ{x),Π(y)~]=ίδ{x-y). Let Φ(/) = fdx/(x) Φ(x) for / e ^ I R 1 ) .
For every α e ^ I R 1 ) with the decomposition oc(x) = (φ(x) + iπ(x))/j/2
into real and imaginary part, the shift operator ί/(α) satisfies

= expi[Φ(π)-JI(φ)], (3.1)

[/(α)* : Φ(x)m: ί/(α) = :(Φ(x) + φ(x))m:

C7(α)* :i7(xΓ

U(ot)*H0 U(μ) = H0 + \dx {π(x) i7(x) + P ΓΦ()

where J^0(
α) is t n e classical energy of the free field ( • +m 2 ) φ(x, ί) = 0

with Cauchy data α, and : : is the Wick ordering w.r.t. the free vacuum.
For Cauchy data α e ^(IR1), the classical nonlinear real wave equation

(•+m2)φ(α,ί,x)+ £ nanφ(a, U xΓ1 =0 (3.3)

has for finite times, | ί | < Γ ( α ) > 0 , a unique smooth solution with pro-
pagation speed 1 (see [27-29]), where Γ(α) = oo for N even and αN >0.
These solutions will be compared with the quantum solutions of

(O+m2)Φh(Ux)+ £ na^Φ^Uxf-1: (3.4)
n = 1

with ΦΛ(0,x)-ΦΛ(x) = γhΦ{x\ Πh(09x) = Πh{x) = ̂ i l ( x ) , which have
been constructed by Glimm and Jaffe [26] for N even and aN >0.

Let r > 0 and 0 ̂  #,. e ^(IR1) with gfr(χ) = 1 for |x| g r. Let iίΛ r be any
self-adjoint extension oϊhH0 + ̂ (g,.) from D(H0)nD(Vh(gr)), where

0V)= Σ αn.fdxflfr(x):ΦS(x):. (3.5)
« = i

Let t/Λr(ί) = exp - iίiίΛr/ft. On D ( i ί o ) n ί ) ( ^ y the generator of Uhr{t) is

iΦίxr: . (3.6)
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Theorem 3.1. Let oce^IR1) and <p(α,ί,x) exist for \t\ < T.
be real and r be sufficiently large. Then

s4imU(h-1/2a)*Uhr(t)*expil(Φ(f)-h-1/2φ{oιjJ))
h—* O

{ ) l ί 2 a ) (3.7)

= exp*[Φ(α, t,f) 4- 77(α, ί, #)] ,

5-lim U(h- 1 / 2 α ) * UΛr(t)*expi[ΦΛ(/) + J7Λ(gf)] t/ftr(ί) E/(ft-1/2α)
(3.8)

= expi[>(α, ί,/) + π(α, ί, #)] ,

w/im? φ{oc,t9f) = ̂ dxf(x)φ(θL,t,x\ Φ(α, t,f) = jdxf(x) Φ(α, ί, x),
w/zere ί/iβ Φ(α, ί, x) απrf 77(α, ί, x) = Φ(α? ί, x) are ί/ze unique global solutions
of (3.3) linearized around φ(a, ί, x):

JV

0 = (Π+m2)Φ(a,ί,x)+ X φ-l ί^^^xf-^ί^^x) (3.9)
n = 2

wfί/i initial conditions Φ(x), 77(x) at t = O.

Proof. The proof of Theorem 2.1 applies with few changes. (3.6) is
developed around φ(a, t, x) in an obvious way. Again

Q f 2 (3.10)

has a propagator VΓr(ί,5), which generates (3.9) for r sufficiently large.
Wr(t, s) has for small |ί — s\ a controllable action on # Q , the subspace of
finite particle states with momentum space wave functions of compact
support, by its convergent Dyson expansion. Here one easily sees that
5-lim WΛr{t9s)ψ = Wr(t,s)ψ for Λ->0, \t-s\ small, using the Duhamel
formula. Hence, using unitarity and the composition law,

Wr(t, u) Wr{u, s) = Wr(u s), 5-lim Whr(t, s) = Wr{t, s)

for all |s|, |ί| < T. Q.E.D.
Remark that by the Wick reordering automorphism one can transfer

mass from 77O to V. In the translation to the classical limit the coefficients
in (3.6) are ft-dependent and make that only the unique highest order term
in the transition from Φ(x x)... Φ(xΠ) to a Wick product j Φ(x)n \ contributes
in the limit ft->0.

The classical limit in Theorem 3.1, which in perturbation theory
corresponds to the sum over all tree graphs (see e.g. [30]), gives a rigorous
meaning to the Goldstone picture [11] as the leading asymptotic term
in an expansion in ]/h. The O(|/fi)-correction gives an interesting
instability, whenever the classical field equations have a non-zero
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stationary solution φθ9 e.g. for 2a2 < — ra2, α4 > 0 and an = 0 for n Φ 2,4.
In this case, (3.10) with 0ί(x) = φ0/]/2= ±(-2a2 -m 2 ) 1 / 2 (24α 4 )~ 1 / 2 for
| x | ^ r is locally equivalent to H0( — 4a2 — 2m2) with positive mass
elementary excitations, while for the unstable stationary state φ(x, t)~0
one has local equivalence to H0(m — 2a2) with purely imaginary mass.

In more than 2-dimensional space-time, the renormalized local
Hamiltonians for Φ% [31] and Φ\ [32] are for h > 0 defined in non-Fock
representations of the CCR. Perturbation theory indicates that the
classical limit is again of the structure of Theorem 3.1. In Φ 4 one can
introduce an ultraviolet cut-off at \k\ ^κ = consth~il3 and obtain the
classical limit without any renormalization.

In non-relativistic many-body theory, the classical limit for bosons
with the second quantized Hamiltonian (in Fock space over L2(1R3))

+ \\dx dy a*(x) a*(y) V(x-y) a(x) a(y) (3.11)

[α(x), aiyft = 0, [a(x), a*(y)] = δ(x - y),

has been discussed by Gross [12] as the first step in a series of canonical
transformations for diagonalizing Hh in the thermodynamic limit.

We shall assume V(x) = V(-x)= V(x)* to be a Kato potential [15]
and dV/dxi9 d2Vldxidxj to be —zl-bounded. By a fixed-point argument
one can show that for every initial condition β e D(Δ) there exists a
unique solution of the classical non-linear wave equation

^ ^ β,t,y)\2*(β,t)x), (3.12)
ot 2μ

with u(β,t, )eD(Δ) for | ί | < T > 0 and α(j8,0, •) = β. Furthermore, Hh

is essentially self-adjoint on J v Let β e D(Δ\ a*(β) = §dxβ{x)a*(x) and
l/()S) = exp[α*()8)-fl(j8*)]. In an almost coherent state U(h~1/2β)φ9

φG«f0, the particle number is O(h~ι) for ft-^0. However, h~1Hhis not
extensive, as in Theorem 3.1, since h~ιH0fι = O{\) and h~1Vh = O(h~3)
for h->0. A non-trivial classical limit can be obtained by setting m = h^μ,
t = h2τ and by keeping μ > 0 and τ fixed. This leads to Uh(τ) = exp — iKhτ
= exp — ίHht/h, where

Kh= - —\dxa*{x)Δa{x) + -\dxdya*(x)a*{y)V{x-y)a(x)a{y). (3.13)
z*μ z.

For yeL 2 (IR 3 ) we set α#(j5, t9y) = $dxy(x)a*{β,t,x) and a*(β9t,γ)

= jldxy(x)a^(β, t, x), where a(β919 x) are the solutions of the linearization
of (3.12) around α(ί,j8,x) with initial data a(x). Furthermore, let
ah(χ) = \/ha{x) Then
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Theorem 3.2. Under the above assumptions one has for \τ\ < T:

Uh(τ)U(h-V2β) (3.14)

= exp[α*(j8,τ,y)-flO8,τ,y*)],

s-lim U(h~ ̂ β)* UΛ(τ)*expK(y) - α,(y*)] Uh(τ) U(h~ "2β)
h~+° (3.15)

= exp[α*(β, τ, y) - α(j8, τ, y*)] .

Proof. As in Theorem 3.1 one proves s-\imWh(t, s) ψ = W(t9 s) ψ
first for ψ e #"<>> by using the Dyson series for W(t, s) and the Duhamel
formula for small \t — s\.

It is amusing but not surprising that the classical limit is not unique:
in coherent states centered around h~1/2(<x1,...,%) with fixed N, one
obtains the classical mechanics of N mass points by Theorem 2.1, while
in boson coherent states centered in Fock space around a classical field
h~1/2α(x) one obtains a classical field theory, if m ~ h3 and ί ~ ft2.

The transition from the quantum to the classical correlation func-
tions in Gibbs states in the thermodynamical limit is presently only
understood for small activities, where the Kirk wood Salsburg equations
have a unique solution (see [33-34], and [35] for the diagrammatic
analysis).

§ 4. Conclusion

The main objective of this paper was to give a simple and mathemati-
cally rigorous discussion of the classical limit in quantum mechanics.
We hope that our construction can sometimes be used as a reliable
starting point for understanding some of the intriguing features of infinite
quantum systems, as for the boson condensation and the appearance of
broken symmetries.
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