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Abstract. Each gauge invariant generalized free state w, of the anticommutation
relation algebra over a complex Hilbert space K is characterized by an operator 4 on K.
It is shown that the cyclic representations induced by two gauge invariant generalized
free states w, and wp are quasi-equivalent if and only if the operators 4*— B* and
(I — A)* — (I — B)* are of Hilbert-Schmidt class. The combination of this result with results
from the theory of isomorphisms of von Neumann algebras yield necessary and sufficient
conditions for the unitary equivalence of the cyclic representations induced by gauge in-
variant generalized free states.

Introduction

In this paper we study gauge invariant generalized free states of the
canonical anticommutation relations, and in particular the question of
quasi and unitary equivalence of their induced representations. If K
is a separable (complex) Hilbert space (K) — the CAR-algebra of K —
is the C*-algebra generated by elements a(f), where f—a(f) is a linear
map of K into A(K) satisfying the canonical anticommutation relations.
The gauge invariant generalized free states of A(K) are states w, whose
n-point functions have the structure

wq(@(f)*.. al(f)*... a(gy) ... a(gm)) = O, det((f:, Agy)

for all f, ge K, where A is a linear operator on K such that 0<A<1T.
These states were first defined and studied by Shale and Stinespring [26].

Since the introduction by Shale and Stinespring [26] generalized
free states, which are also called quasi-free states, have been studied by
several authors, see e.g. [3, 4, 8, 18, 22, and 24]. Dell’Antonio [8] and
Rideau [24] have shown that gauge invariant generalized free states are
factor states and have given a characterization of the types of the factors
obtained from these states. It follows from their work that the gauge
invariant generalized free states w, and wy are quasi-equivalent if the
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2 R. T. Powers and E. Stgrmer:

two operators A* —B* and (I — A)* —(I — B)? are of Hilbert-Schmidt
class.

The main new result of the present paper is that this condition is also
necessary for quasi-equivalence. In the proof of this result we derive
some inequalities on the norm differences of states which may be of
independent interest. Using these inequalities we can with little extra
effort rederive the results of Dell’Antonio and Rideau mentioned above.
We include these for the sake of completeness.

Then the main result in this paper (Theorem 5.1) asserts that the
cyclic representations induced by gauge invariant generalized free
states w, and wy are quasi-equivalent if and only if the two operators
A* — B* and (I — A)* — (I — B)* are of Hilbert-Schmidt class. If 4 and
B commute and have pure point spectra this result follows from the work
of Kakutani [16] on equivalence of product measures. Hence our result
can also be viewed as a noncommutative extension of Kakutani’s
theorem. For this see also the work of Segal [257. By a result of Moore [19]
on the types of product states the type of the factor obtained from
o, can easily be characterized, hence the theory of isomorphisms
of von Neumann algebras can be applied to give necessary and sufficient
conditions in order that w, and wy induce unitarily equivalent cyclic
representations (Theorem 5.7).

The proof of our characterization of quasi-equivalence of two states
o, and wgisdivided into several sections. In Section 1 we give the necessary
background from the theory of the anticommutation relations. Then
in Section 2 the problem is solved in the simplest case, namely when A
and B are projections, in which case w, and wp are pure states. The idea
of the proof is to reduce the general case to this latter situation. Note
that if 4 is an operator on a Hilbert space K and 0 < 4 <1, then the

Operator
A, AMI— A
EA = 1 1
AT = A}, I-4

is a projection on K @ K. Furthermore the map f— a(f) has a canonical
extension to a map of K@ K satisfying the canonical anticommutation
relations, such that w, extends to a pure gauge invariant generalized
free state wg, on (K @ K). In Section 3 an analysis of the relationship
between w4 and wy, is given when K is finite dimensional, and then an
inequality relating the norm difference of w, and wj to that of wg, and
g, is proved. In order to complete the proof some results on Hilbert-
Schmidt operators are obtained in Section 4. Then in Section 5 the
developed techniques are used to show that w, and wg induce quasi-
equivalent representations if and only if wg, and wg, induce unitarily
equivalent representations. By Section 2 this is equivalent to E, — Ep
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being Hilbert-Schmidt. By Section 4 this holds if and only if A* — B*
and (I — A)* — (1 — B)* are Hilbert-Schmidt operators.

The reader who is only interested in understanding the main theorems
and not their proofs is advised to first read Section 1 and then to proceed
directly to Section 5.

The second named author is indebted to J. Glimm for arousing his
interest in the subject and for conjectures which were close to the final
result, and to R. Kadison for his kind hospitality at the University of
Pennsylvania while the author is visiting from the University of Oslo.

1. The Algebra of the Canonical Anticommutation Relations

Let K be a complex Hilbert space. The CAR-algebra, A(K), over K
is a C*-algebra with the property, there is a linear mapping, f —a(f),
of K into (K), whose range generates A(K), as a C*-algebra such that
for f,geK

a(f)* a(@ +alg) a(f)* = (f, 91,
a(f) a(g) +a(g) a(f)=0,

where (., .) is the inner product on K, and I is the unit of A(K). If A(K)
and W' (K) are both CAR-algebras over K. generated by the a(f) and a'(f),
fe€K, respectively, then these C*-algebras are *-isomorphic. In fact,
the mapping a(f)—d'(f), f € K, uniquely extends to a x-isomorphism
of A(K) into W (K). We refer to [22] or [26] for a general discussion of,
the CAR-algebra. Taroughout this paper K will be separable, however
we believe all results are valid for non-separable Hilbert spaces as well.

If K is n-dimensional then A(K) is a (2" x 2")-matrix algebra (the
algebra of all operators on a 2"-dimensional Hilbert space). If MM C K
is a linear subspace of K, we denote by A(IM) the C*-subalgebra of
A(K) generated by the a(f) with feI. If K is infinite dimensional.
A(K) may be taken as the inductive limit, in the sense of Guichardet [13],
of the subalgebras A(IM) for all finite dimensional subspaces M C K.
It follows that if K is an infinite dimensional separable Hilbert space
A(K) is a uniformly hyperfinite (UHF) algebra of type (2") as defined
by Glimm [11], ie. A(K) is generated by an increasing sequence of
(2" x 2"-matrix algebras.

A state of A(K) is a positive linear functional on (K) normalized
so that w(I)=1. We denote by =, the cyclic representation induced
by the state . We will use the following equivalence relations on states.

Definition 1.1. Two states, w; and w,, of a C*-algebra are, respectively,
unitarily equivalent and quasi-equivalent, denoted w, ~ w, and w; 3 w,,

1%



4 R. T. Powers and E. Stermer:

if the induced representations, m,, and m,, are, respectively, unitarily
equivalent and quasi-equivalent.

We recall that two representations, n; and =,, are quasi-equivalent
if there is a x-isomorphism ¢ of the von Neumann algebras, 7, ()
onto 7, ()", such that ¢(r, (4)) = n,(A) for all 4 € A. Unitary equivalence
implies quasi-equivalence, and for pure states quasi-equivalence implies
unitary equivalence (see, e.g. [10]).

Since every state is norm continuous and since polynomials in the
a(f) and a(g)*, f, g € K, are dense in A(K) it follows that every state of
A(K) is uniquely determined by its values on polynomials. In fact a
state of A(K) is uniquely determined by its n-point functions, '

Wan(f1s -os fs 915 o G = 0(@(f)* ... a(f)* algy) --. a(g,y)

The n-point functions of a gauge invariant generalized free state have
the following structure.

Definition 1.2. The state w4 is a gauge invariant generalized free state
of the CAR-algebra W(K), if the n-point functions of w, have the form

wA(a(fn)*' . a(fl)* a(gl) te a(gm)) = 5nm det((fu Ag])) ’
where A is a linear operator on K satisfying the condition 0 < A< L

The generalized free states were developed and studied by Shale
and Stinespring [26]. The state wy(4 =0) is the well-known Fock state
which induces the Fock representation [7].

If A has pure point spectrum then the gauge invariant free state w,
is a factor state, i.e., it induces a factor representation of (K). This
can be seen from the fact that the state w, can be factorized as follows.

Since A has pure point spectrum there is an orthonormal basis { f,}
of KsuchthatA4 f, =4, f,forn=1,2, .... Wedefine a sequence of mutually
commutative (2 x 2)-matrix units as follows.

Let n
V0=1> Vn=H (I_Za(fz)* a(fz)): ngl:
and -
egnl) :a(fn) a(fn)* > n) _a(fn) V -1
el =a(f)* Va1 ") y=a(f)* a(f,).

Using the anticommutation relations one can show that the (e!?;i,j=1,2)
form a set of (2 x 2)-matrix units, and for distinct n and m, ¢{} e(’”{ =elm e,
From the definition of w, and the construction of these matrix units,
it follows that

(ny) (n) (ny)
wA(eST;)l : elrJr) an 51111' an 511‘]7-

for all n, <n,<---<n,, where ¢ =1— 4, and oy’ =1,
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Therefore, w, factorizes with respect to the (2 x 2)-matrix algebra
N, generated by the {e{?}. Since A(K) is generated by the {N,;n=1,2, ...}
it follows that w4 is a factor state (see e.g. [23, Lemma 4.1] or [13, Corol-
laire 2.17).

We summarize this result in the form of a lemma.

Lemma 1.3. If 0< A <1 is an operator-on a Hilbert space with pure
point spectrum, then the generalized free state, w , of W(K) is a factor state.

We remark that the generalized free state w, is pure if and only if 4
is a projection (i.e. A2= A) (see [3, 18 or 22]). Furthermore, if w is a
state of A(K) and w(a(f)* a(g))=(f, Eg) where E is a projection, then
= wy. This follows from the fact that the requirements w(a(f)* a(f))=0
for all feRange (1—E) and w(a(f)a(f)*)=0 for all feRange E,
uniquely determines all the n-point functions of w. We will make frequent
use of these facts in the following sections.

In the next section we will frequently make use of the projections
X+ (E), x—(E) € U(K), defined for all finite dimentional hermitian pro-
jections in K. The projections are defined as follows.

x+(E)=a(f)* a(f1) a(f2)* a(f3) ... a(f,)* a(f,)
1-(E)=a(fy) a(f)* ... a(f,) a(f,)*

where {f}, ..., f,} is a complete orthonormal basis for EK. Using the
anticommutation relations one can show that y, (E) and y_(E) depend
only on E and not on the particular basis {f, ..., f,} used to define them.
Using the anticommutation relations one can show, if E and F are finite
hermitian projections and EF = F E, then
(1) x+(E)* =x+(E), x-(E)*=x_(E),
(ii) x+(E)*=y+(E), x-(E)*=y_(E),
(ii)) x+(E) x+(F)=x+(E+F—EF) and
x-(E) x-(F)=x-(E+F—EF),
(iv) x+(E) x-(F)=x-(F) x+(E) and
1+(E)y_(F)=0 if EF=0.
It follows from these relations that y.,(E) <y, (F) and y_(E) < x_(F)
if EXF.
If w, is a gauge invariant generalized free state of A(K), then, by
a straightforward computation one can show that

w4 (x+ (E))=det(I —E(I —A)E) and w,(x_(E))=det(I —EAE),

and

where these determinates are defined as follows.
If0<A <1 is an operator on K, we define

det(I.— 4) = inf(det((1 —A)|9M); all finite subspaces MCK),
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where (I — A)|9N is the operator I — A restricted to M. If A is of finite
rank, we have det(I — A)=[](1 —A), where {4,,...,4,} are the non-

i=1

zero eigenvalues of 4 repeated as often as their multiplicity dictates.

In the following sections we will have occasion to compute det(I — A)
when A is not of finite rank. We state here some inequalities which can be
easily verified from the definition of the determinant.

Let A be an operator on K such that 0 < A <I. Then, the following
inequalities hold.

(i) det(I —A)=1—||4]|,

(i) det(I —A)=(1—]|A]||)", where m is the smallest integer such that
mz || 4|7 Tr(4),

(iii) det(I —A4) <exp(—Tr(A4)),

where Tr(A)= ) (f;, A f;) and (f;) is an orthonormal basis of K. Con-
i=1

dition (i) is obvious. Condition (ii) may be proved as follows. First

suppose A is of finite rank. Then det(I — 4)= [ (1 — 4;) where (1,) are

i=1
the non-zero eigenvalues of A. A minimization of this product subject to
the conditions > ;4;=Y 4; and 1 < || 4| is achieved by setting 4;,= || A|

for i=1,...,m—1, 1,=YA;—(m—1)||4]| and 1,=0 for i>m. Then,
we have det(I—A)=[] 1—-)ZA— 4" *(1-74,) = (-4

i=1

Since condition (ii) is valid for all finite rank operators it follows from the
definition of the determinant that it is true for all 0 < 4 < I. Condition (iii)
follows from the fact that det (I — A) = exp(Tr(log(I — A4))) < exp(—Tr(4)).

It follows from condition (i), (if) and (iii) that for0 < A < I, det(I — 4)>0
ifand only if |4} < 1 and Tr(A) < c0. Another property of the determinant
we will use in the following sections is the property. f 0<A <1 and E
is a hermitian projection, the det(I — E A E) = inf(det(1 — P A P); P finite
projection, P < E).

This last property is a consequence of the following lemma, when
the projection E is chosen to be finite dimensional.

Lemma 1.4. Let A be an operator on the Hilbert space K such that
0<AZI. Let E be a hermitian projection on K and F a hermitian pro-
jection of finite rank such that F £ E. Then

det(I — EAE) < det(I — (E— F) A(E—F)).

Proof. We first assume E is finite dimensional. If P is a projection
on K we denote by detp(A4) the determinant of P AP considered as an



Free States 7

operator on P K. Then the lemma states

det,(I —A)=det((I — E)+ (I — A)E) = det(I — EAE)
<det(I — (E—F) A(E — F))=dety_ (I — A).

If this inequality holds for F of rank 1 then by iteration it holds for all
F < E. We may therefore assume F has rank 1. In order to prove the in-
equality in this case we prove the following more general inequality.
Let B be a positive (n x n)-matrix, and F a hermitian projection of rank
one on the n-dimensional Hilbert space €". Then

detB < det(FBF + (I — F) B(I — F)).

In fact, let P=1—F. We may assume F is the matrix (f;;) with f;; =1,
fi;=01if (i, /) *#(1,1). Let B=(b;;). Let V be a unitary operator on the
space PC"such that V*(b;)); ;», Vis diagonal with entries ¢;;, i=2,3, ..., n.
Let U be the unitary nx n-matrix defined by U=F + V, where V is
extended to be 0 on the complement of P. Then

bll (312 e Cln

&, 0 .::c,m

Now v
det(FBF +PBP)=detFU*BUF+PU*BUP) = by, ]_[ Cii »
i=2
and

det(B) =det(U*BU) =by;, [] cii— Y leg* [] cas-
i=2 i=2 i*j

Since by; and c;; are all positive, det(B)<det(FBF + (I — F) B(I — F)).
In particular, if 0<B=<I, detB<=<det;_p(B). Hence the inequality
detg(I — A) < detg_ (I — A) follows, and the lemma follows for E finite
dimensional.

In particular, the assertion, stated before the lemma, follows, and
we have for E infinite dimensional,

det(I — EAE)=inf{det(I — P AP): P finite dimensional, P < E}
=inf{det(I — PAP): P finite dimensional, F <P < E}
<inf{det(I — (P — F) A(P — F)): P finite dimensional,

F<P<E}
=inf{det(I - Q AQ): Q finite dimensional, Q < E — F}
=det(I —(E—F) A(E—F)).
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2. Pure Generalized Free States

In this section we show that the pure generalized free states, wg
and wy, are unitarily equivalent if and only if E — F is of Hilbert-Schmidt
class. We make use of the following lemma in the proof of this result.

Lemma 2.1. Let K be a Hilbert space and w,, w, two factor states
of W(K). Let M, CIM,, ... be an increasing sequence of finite dimensional
subspaces of K, the closures of whose union is K. We denote by U,
the commutant of A(M,) in W(K). Then the following statements are
equivalent.

() w5 w,.

(i) For every ¢> 0 there is an integer n such that

llooy | UWER,) — 0, | WER) <.
(ii)) There is a finite subspace Mt C K such that
lleog [ AR — oo, | AG)| < 2.

For the proof of this lemma we refer to [23, Theorem 2.7].

A difficulty in the application of this lemma lies with the unwieldy
form of AU(IM)°. However, we will show that for even states, [|w, | A (IM)*
— @, | A = ||y | WEORY) — w, | ANL)||, where M* is the orthogonal
complement of .

A state w of A(K) is even if it is invariant under the % -automorphism y,
i.e. (4) = w(y(4))for all 4 € A(K), where y is the unique * -automorphism
satisfying the condition y(a(f))= —a(f) for all fe K. We begin by
characterizing A (IN)°.

Lemma 2.2. Let M be a finite subspace of a Hilbert space K and
{fi;i=1,...,n} an orthonormal basis of M. Let V=[] (I —2a(f,)* a(f)).

i=1
Then W), the commutant of W(M) in W(K), is generated by the elements
a(f)V for all fe M-

Proof. Let B be the C*-subalgebra of A(K) generated by the elements
a(f) V for all feM*. Since the generators of A(M) commute with the
generators of B (i.e. a(f) Va(g) = a(g)a(f)V and a(f) Va(g)* = a(g)*
a(f)V for all fe M+ and g e M) it follows that B C A(IN).

Next we remark that 2(K) is generated by 2 () and B. To see that
this is true, let 2, be the algebra generated by (M) and B. Now, we
have that Ve, since Ve AM). Since V2 =1, a(f)e Y, for all feM*
and all f'e M, Hence A, = A(K).

Suppose N is a finite dimensional subspace of Mit. Let B(N) be the
C*-algebra generated by the a(f) V for f e 9. Clearly, we have B(9) CB.
Now, B(N)and A(IM) are finite matrix algebras which generate A(IN D N).
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Hence, {A(M), B(N)} is a factorization of A(MD N). Since (M) and
B(N) are type I, factors it follows that this factorization must be paired
[20] i.e. AON) and B(N) are each others commutants in WM D N).
Hence, we have B(N) = AIN)° N AN D N). From the proof of Lemma 3.2
in[23]itfollows that 2 (9N)is generated by the algebras W(IM)° N A(INDN)
for all finite 9t C M. Hence, we have A(IM)° C B. This completes the proof
of the lemma

Lemma 2.3. Suppose w, and w, are even states of W(K) and M is
a finite dimensional subspace of K. Then,

lleog [2ER) — o, | WY || = leog | AER) — o, | A

Proof. Let
o = [Joq | AR — o, | AER)|
and
ot =llooy | WD) — 0, | A

We prove o =at. Let ¢ >0. Since (M) is generated by the a(f) with
fe M there is a polynomial p in the a(f) and a(f)*, f€ M* such that
lipll =1 and |0, (p) — w,(p)| Z " —&. Let z=3(p + y(p)). Since »; and w,
are y-invariant, we have w,(z) = w,(p) and w,(z) = w,(p). Hence, we have
|y (2) = w0, (2)| Z ot —e.

We have that ||z|| £Z (llpll + [[y(@)I) £ 1 and z is an even polynomial
in the a(f) and a(f)* with fe9*. Hence, z commutes with the a(h)
and a(h)* for h e M. Therefore z is an element of A(IM)° with norm less
than or equal to one. Hence o =o' —e. Since € is arbitrary, af=at.

We prove the reverse inequality. From the preceding lemma, it
follows that there is a polynomial p in the Va(f) and Va(f)*, fe M+
such that ||p|| £ 1 and |w; (p) — @,(p)| = o — &. Again, we set z = 3(p +7(p)).
We have, as before, ||z]| £ 1 and |w(z) — w,(2)| = o — &. Now z is an even
polynomial in the a(f) V and a(f)* V. Since V commutes with the a(f)*
for feM* and V2 =1,z is a polynomial in the a(f) and a(f)* with
fe M (i.e. z contains no terms with Vin them). Hence, we have ze A(IM*)
and ot >« —e. Since ¢ is arbitrary ot = of.

It follows from this lemma that for even states w; and w,, the ex-
pressions || |AN)° — w, | WAEN)|| may be replaced by |jw, | ARL)
—w, | AMY)|| in Lemma 2.1.

In the following lemmas we develop techniques for estimating the
norm difference between two states one of which is pure. The first two
lemmas are closely related to two lemmas of Glimm ([11], Lemmas 3.2
and 3.3).

Lemma 2.4. Suppose o, and w, are states of a C*-algebra W and there
is a Be W such that w,(A) = w,(B* AB) for all A€ . Then the following
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inequality holds, ||w; — w,|| £2(1 — |w,(B)[*)%. Furthermore, if w, is pure
the equality sign holds. ‘

Proof. Let © be the cyclic representation of 2 on a Hilbert space
induced by w; andlet f; bea cyclic vector for nsuch that w,(4) = (f1, ©(4) )
for all AeW. Let f,=n(B)f;. Then we have w,(4)=/(f,,n(4)f,)
for all AeU. Let y be the operator on & defined by the relation.

xf=(f01) fi—(f2 f) [, for all fe$H. We have that

1(A) = w,(4) = (f1, 7(A) f1) = (f2s ”(A)fz')
=Tr(n(A) x)-

Diagonalizing y we find y can be expressed as follows, y f=A{(g:, /)91
—(92, )92} where A=(1—|(f1, [ =1 —l|wy(B)?)* and g,,9, are
two orthonormal vectors contained in the span of f; and f,. Hence we
have that

[01(A4) — a2, (A) = A{(g1, T, (A) 1) — (92, ™ (A)g2)}
222 In(A)) = 22)14]) -

Hence, we have ||, — m,|| <24 =2(1 — |w,(B)*)~.

Now suppose w, is pure. Then = is irreducible, and the closure of
(W) in the weak operator topology is B(H). Let E, be the projection onto
g2, 1.e. E, f=(g2,f) g, for all fe$ and let U=1—-2E,. Notice that
Ufi=f; and U f, = — f,. Since n(A) is irreducible it is algebraically
irreducible, and since U is self-adjoint there exists a self-adjoint operator
n(A) e (W) such that n(4) f;= U f; [10, Théoréme 2.8.3]. Replacing A
by 3(4 + A*) we may assume A is self-adjoint. Let h denote the real func-
tion defined by h(x)=x for |x|=<1, h(x)=1 for x=1, h(x)= —1 for
x < —1. Let B=h(A). Then ||B|| = 1. Since f; and f, are eigenvectors for
n(A), 7(B) f; = h(n(4) fi=n(4) fi=U f.. Thus ,(B)— w,(B) =24.
Hence, for pure states we have [|w; — w,|| = 24. This completes the proof
of the lemma.

Lemma 2.5. Suppose w, and w, are states of a C*-algebra W. Suppose
{E,;y €1y} is a decreasing net of projections in U (i.e. E,< E; for a>>f3)
with the property that w,(E,)=1 for all ye I, and if w is any state of A
such that w(E,)=1 for all y € I, then o = w,. Let o= inf(w,(E,); y € I,).
Then, the following inequalities are valid

2(1 =) Slloy — 0, £2(1 —0)? .
Furthermore if w, is pure, then

lloy — wall =2(1 —)* .
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Proof. Let U,=2E,~—I. Since ||U,|| =1 we have
1 = 5ll 2 sup oy (U) = (U
yelo
Zsup (2—2w,(E,)=2(1 —0a).
yely

Hence, we have |jw; — w,|| Z2(1 — o).

In the proof of the other inequalities we assume o > 0, since for « =0
these inequalities are trivally satisfied. Hence, we have w,(E,)Za>0
for all ye I,. Let P,=w,(E,)” 7E for all y e I,.

Letg,(4)= wZ(P AP, )for all A e Uandyel,. We show that llmgy W,
where the convergence is in norm. Let © be a cyclic representation of
W on Hinduced by w, and f € H a cyclic vector such that w,(4) = (f, n(4) f)
for all A4 € . Since (n(E,), y € I,) is a decreasing net of operators bounded
below by 0, limn(E,) exists in the sense of strong convergence ([10],
Appendix II, p. 331). Let g = limn(E,) f. Note g & 0 since (g, g) =a > 0.

Let o(A)=(g,n(4)g)llgll~>. Since =(E,)f converges in norm to
g it follows that g, converges in norm to ¢. We note that ¢(E,) =1 for all
y lysince ¢(E,) = limgy(E,), and g,4(E,) =1 for all > y. From the prop-
erties of the {E,} it follows that ¢ = w,. Hence, ¢, converges in norm to
Wy a8 y— 0.

Now, we have that

llog — w5l Sllw; — @)l +1le, —w,|l  forall  yel,.
From the preceding lemma, we have
lloy, — @2ll S2(1 — Jar, (P} = 2(1 — w,(E,)* .
Hence, we have
lloog — @]l S llwg — @, )l +2(1 — w,(E,))*
llvy — 5|l S llewy — y” + 2(1 —w,(E ))%

for all y e I,. Since ||w; —g,|| and w,(E,) — « can be made arbitrarily
small for sufficiently large y, it follows that, ||o, — w,|| < 2(1 — a)?.

Now suppose w, is pure. Then from the preceding lemma ||g, — w,||
=2(1 — w,(E,)). We have that

[l — sl = “Qy — W, — [log — Qy”
=2(1 — w,(E) — ||, — o,/

for all y e I,. Since [|w; — )|l and |a — w,(E,)| can be made arbitrarily
small for sufficiently large y it follows that, |jw, — w,||=2(1 — ).
Hence, if w, is pure, ||w; — w,|| =21 — «)*.

Theorem 2.6. Suppose wg and wy are pure generalized firee states of
W(K). Let oy =det(I — E(I — F)E) and a, = det(I — (I — E) F(I — E)) and
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o= min(oy, o,). Then
llog — wpll =2(1 —a)?.

Proof. Consider the collection of projections {y. (P) x_(Q) e U(K)}
defined for all finite projections P<E and Q <I—E. This collection
forms a decreasing net of projections, since for P’ = P and Q' = Q we have.

2+ (P) 2-(@) = 1+ (P) (@) = x+(P) x-(Q) -

Furthermore, we have wg(x;(P))=wg(x_(Q))=1 for all finite P<E
and Q <I—E. Hence, we have wg(y,(P)x-(Q))=1 for all P<E and
Q<1-E.

Next, suppose o is any state of U(K) with the property w(x. (P) x_(Q))
=1forallP<Eand Q <1 — E. Weshow that w = wg. Let 4 be the opera-
tor defined by the relation w(a(f)* a(g))=(f, Ag) for f,ge K. We have
that 0< A <I. Furthermore we have w(a(f)*a(f))=(f,Af)=(f.f)
for feRangeE and w(a(f)a(f)*)=(f,I —A4) f)=(f,f) for feRange
(1 — E). Hence, we have A = E and therefore from the discussion in Sec-
tion 1, w = wg. Therefore, the net {y. (P) y_(Q)} satisfies the conditions
of Lemma 2.5. Hence, we have ||owg — wg|| =2(1 — o)* where

o = inf{wp(x, (P) 7_(Q)); P<E and Q<I—E}.

We complete the proof of the theorem by showing a =o'

Now, we have from Section 1 that wg(x, (P))= det(I — P(1—F)P)
wp(x-(Q)) = det —QFQ). Let o =inf{ws(x.(P)); P<E} and
o, =inf{wg(x-(Q)); Q<I— E}. Clearly, we have o; = det(I —E(I - F)E)
and a, = det(I — (I — E) F(I — E)). Furthermore o, =o' and o, >«'. We
assume o; >0 and a, >0, for if oy =0 or «, =0, we have &’ =0 and the
conclusion of the theorem follows immediately.

Since a; >0 and o, >0 we have that

|[E—F)E||<1 and |[I-E)FI—-E)|<1.
Since these operators have orthogonal ranges we have
IE( — F)E +(I —E) F(I - B)]| = (E — FYI| <1.
Hence, ||E — F|| < 1. We will make use of this fact in a minute.
Let tp(A) = wp(x+ (P)) " wp(xs+ (P) A x4 (P)) and o = Il’i/p% p. It follows

from the argument in Lemma 2.5 that 7, converges in norm to a state
w as P7 E. We will show that w = wg. Let 0 < A < I be the operator on K
defined by the relation w(a(f)* a(g))=(f, Ag) for all f,ge K. For f e RangeE
and || f]| =1 we have w(a(f)* a(f))=(f, 4 f) =1, since tp(a(f)* a(f))=1
for all P<E such that P f = f. Hence, we have 4= E. We will show
A=E by assuming 4 % E and arriving at a contradiction.
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Suppose A4 =+ E. Then there is a vector f; € Range(1 — E) with || f1||=1
and (f;, 4 f1)>0. Let E; be the projection onto f;; i.e. E; f=(f1,/)f1
for all feK. Next we show that inf(ws(x.(P)); P<E+E,)
=det(I —(E+E)(I-F)(E+Ey)=(f1, A1) 2, >0.

We have that

inf(wp(x+(P)); P < E; + E) = inf(wp(¢+(P)); E; SP < E, +E)
= inf(wp(x+ (P) x+ (E1) 1+ (P); P < E)
= inf(wp(t+ (P) tp(x+ (Ey)); P S E)
=a; (x4 (Ey)=(f1, 4 f1) 2 >0.

Hence, det(I —(E+ E;) (I — F) (E + E{))>0. Since a, >0 we have
using Lemma 14, det(I—(I —E—E,) F(I—E—E,))>0. Therefore
l|IE+ E; — F|| <1, by the argument used earlier in this proof. Hence,
we have that ||E — F|| <1 and ||E + E, — F|| < 1. The next lemma shows
that this is impossible. Hence, we have reached a contradiction. We
conclude that A =E and therefore w = wg.

From this result, it follows that o' = a;, since

o« = inf(wp(r+(P) x-(Q); PSE,Q <1 —E)
= inf(wp(x+ (P) tp(x-(Q); P E,Q <I—E)
= inf(o‘l o(-(Q);Q<I—-E)=uo

where the last equality follows from the fact that w(y_(Q)) = wg(x_(Q))=1
for all Q <1— E. By interchanging the roles of o; and a5, y,(P) and
2-(Q), we could have equally well argued that o' =a,. Hence we have
o =0y =0o,, when a; >0 and a, >0 (i.e. a; + o, only if a; or a, vanishes).
Hence, we have o =a = min(e,, «,). This completes the proof of the
theorem.

Lemma 2.7. Suppose E and F are hermitian projections on a Hilbert

space K and ||[E—F| <1. Let E, be a non zero hermitian projection
orthogonal to E, i.e. E, E=0. Then ||E; + E— F||=1.

Proof. Let I be the range of F. We begin by showing that the range
of FEis M. Let 6=1—||E — F||%
I—(E—-F?zZ(1—||[E-F|)I1=461>0.

Hence, we have
FEF=F(I—(E—F)*)F=4F

Hence, F EF is strictly positive on 9t and therefore F EF has an inverse
on M. Therefore, the range of FEF and FE is IN.

We complete the proof as follows. Let h4 0 be a vector in the range
of E,, i.e. E;h=h. Since Fhe I there is a ge K and that FEg=Fh.
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Let f=h—Eg. Note f 40 since ||f]|*> =|h||> +||Eg||>. We have that
(Ey+E)f=Eh—E*9=f and Ff=Fh—FEg=0. Hence, we have
(Ey + E—F) f = fand therefore ||[E, + E — F|| > 1. Since ||[E, + E— F|| <1
the conclusion of the lemma follows.

Theorem 2.8. Let wy and wy be pure generalized free states of U(K).
Then, wg and wy are unitarily equivalent if and only if E — F is a Hilbert-
Schmidt class operator.

Proof. Suppose wy ~ wy. Then, we have wg 3 wp. From Lemma 2.1
it follows there is a finite dimensional subspace 9 C K such that

[loog | AER) — oy | AN < 1.

Let 9 be the subspace of K spanned by {EI} and {(I — E)9} and let
P, be the projection onto 9. We note that DI and P E=EP,.
Since MOIM we have [wg| WN) — wp| AM)|| <1. Since w; and wy
are even states of A(K) we have from Lemma 2.3 that

lloog | W) — wp (AR < 1.
Since for all finite projecﬁons P<(1- PO)E we have
22+(P)—TeAM') and |2y, (P)—1I||=1,
it follows that
1> [log| W) — oF | A9
= sup(lwg(2y+ (P) —I) — wp(2 . (P) = I)|; P<(I—Py) E)
=2 -2 inf(wp(x+(P)); P<(I—P,)E)
=2—2det(I — (I —Py) Eq —F)(I — P,)E).
Hence, we have det(I —(I — Py) E(I — F) E(I — P,))>1, and therefore
a) Tr((I — P)) E( — F) E(I — Py)) <o .
Similarly 2y_(Q)—IeAMY), and |2y_(Q)—1I||=1 for all finite
projections Q =<(I — P,) (I — E). Therefore
1> sup(lwg(2x-(Q) — 1) — wp(2x-(Q)—D); Q=(I —Py) (I - E))
=2-2inf(op(1-(Q); Q< ~Pp) (I - E))
=2—2det(I—(I—Py) (I - E)F(I — E) (I — Py)).
Hence, det(I — (I — P,) (I — E) F(I — E) (I — P,)) > %, and therefore we have
b) Tr((I—Py) (I — E) F(I — E) (I — Py)) < 0 .
Addinginequalities (a) and (b), we find Tr((I — P,)(E — F)* (I — P,)) < 0.

Since P, is finite dimensional it follows that Tr((E — F)?) < co. Hence,
E — F is of Hilbert-Schmidt class.



Free States 15

Next we suppose E — F is of Hilbert-Schmidt class. We show wg ~ wp.
Let M, be the subspace of vectors f e K such that (E—F) f = f and M _
be the subspace of vectors g € K such that (E—F)g= —g. Let P, and
P_ be the hermitian projections onto M, and IM_ respectively. Since
E — Fis of Hilbert-Schmidt class, 9, and 9t_ are both finite dimensional.
Let E;,=E—P, and F; =F — P_. Note E; and F, are projections and
l|E, — F{]| < 1; this last inequality follows from the fact that E; —F;
is compact and the spectrum of E; — F; is contained in the open interval
(—1,1). We will show that wg ~ wg,, wp ~ @F, and wg, ~ o,

From Lemmas 2.1 and 2.3 it follows that wgp, v wp and wg, 3 wp,
since wg, |WOMNE) = we | AOMN;) and g, | AERL) = wp | WEARL). Since
these states are pure we have wg, ~ wg and wg, ~ wp.

Since Tr((E, — F;)*) < Tr((E — F)*) < oo, it follows that Tr(E,(I — F,) E,)
+Tr((I—E,)F,(I—E,))=Tr((E, — F;)*) < c0.Since, ||[E, — F;||* < 1 we have
that [|E,(I-F) El < (E,~F)’l < 1 and |(I—-E,) F,(I-El
<|(E, — F)*ll<1. Hence we have that o; =det(I — E,(I — F,) E;)>0
and o, =det(I — (I — E,) F,(I - E,;))>0. Hence, a=min(x,®,)>0 (in
fact a=a; =a,). Then, by Theorem 2.6 we have that [lwg, — wp||
=2(1-a)*<2. Since wy, and wy are pure, we have by Lemma 2.1,
or by [12], wg, ~ wp,. Since wg~ wg, and wgp ~ wy,, we have wg~ wp.
This completes the proof of the theorem.

3. States of Matrix Algebras

Every gauge invariant generalized free state w, of (K) can be
extended to a pure generalized free state of (K@ K). We consider
A(K) as the subalgebra of W(K@PK) generated by the a(f) with
f={f1,f>} and f,=0. Given an operator 0<A <1 on I we define a
projection E,; on K@ K defined by the matrix of operators,

A AX(I — A
AXI—A® I-4 )

ie. E,{fi,[2} = {Afi+ AU — A f,, AU - A fi+(— A) f,}. The
mapping w,—wg, carries generalized free states of (K) into pure
generalized free state of W(K @ K). The main result of this section is the
estimate

%”C‘JEA - CUEBH2 S oy — wgll S l|lwg, — wEB” .

We begin by first considering the case where K is of finite dimension.
Since for K of finite dimension (K) is a finite matrix algebra, we begin
with a discussion of states on matrix algebras.
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Suppose M is an (n x n)-matrix algebra and w is a state of M. Then w
may be represented by a density matrix, Q € M, by the relation.

w(A)=Tr(AQ) forall AeM,

where =0 and Tr(Q)=1. If w; and w, are states of M represented
by Q; and Q, then ||, — || = Q) — Q,ll,, where || Al = Tr(4* 4)*)
=sup{[Tr(BA)|; ||Bl|=1}.

In general it is difficult to compute ||2; — Q,||r,, While it is not as
difficult to compute ||QF — Q3|14 5. =2 — 2 Tr(Q} 23). In the next section
we show that

9f — Allis. SN2 — Ll

where Q,, 2, are positive operators of trace one. We will use this result
to obtain estimates on |jw, — wgll.

We define a mapping ¢ from the states of M to the pure states of
M®M.

Let M act irreducibly on a Hilbert space §, i.e. we identify M as
B(H). We define a linear mapping F of M onto H® $, the tensor product
of § with itself. Let ¥ be an antiunitary operator on $, i.e. V is conjugate
linear, V(hy +hy)=Vh,+Vh,, Vah=aVh, all h, hj,h, €%, and V
is isometric, ||V h||=|lh|| all he . If A is expressed as a linear combina-

tion of rank one operators, ie. Ah= Y (g;, h) f; for he H, we define

n i=1
F(A)= ) f;®Vyg;. The fact that F(4) depends only on A and not
i=1
on the decomposition of A into rank one operators, follows from the
relation, ||[F(A)||* = Tr(A* A). If A, Be M we have (F(A), F(B))=Tr(4* B).
We now define the mapping ¢ from states w of M to pure states ¢(w)
of M ® M by the relation,

¢(@) (A® B) = (F(Q*), A® B F(Q%),
where
w(A)=Tr(4Q).

We note that ¢p(w)|M I =w, i.e. ¢(w)(ARI)=w(A) for Ae M. This
can be seen as follows. Let Q be the density matrix representing w, i.e.
w(A) = Tr(4Q). Diagonalizing 2, we express Q in the form,

Qh="Y" o,(f;h) f;, where (f;) is an orthonormal basis of $. Then,we have

i=1
n

F(@%)= 3} of i®Vf and ¢(w) (AR = i of ai(fi AS) V1 V)

i=1 ij=1

= Yalfd )=o)
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The mapping ¢ depends only on V. Such a mapping, constructed
from an antiunitary operator ¥ in the manner described above will
be called a purification map.

Lemma 3.1. Let ¢ be a purification map from the states of an (n x n)-
matrix algebra M to the pure states of M®M. Then, it follows that
3 l1(w1) — p(@)I? Sy — wall Slip(wy) — P(@)ll, for ), @, states
of M.

Proof. To prove second inequality we note that

ll¢(1) — P(@)l| 2 lp(0,) M QT — p(w2) M|

= |l — ||

To prove the first inequality we identify M as B(H) and M@ M as
B(H®H) and $(w) (4 ® B) = (F(2), A® BF(Q*)), where w(4) =Tr(4AQ)
for all Ae M. Since M ® M acts irreducibly on H® 9 it follows from
Lemma 24 that |¢(w,)— @(w,)| = 2(1 —|(F(23), F(2}))]*)*. Since
(F(Q%), F(23))=Tr(Qf Q23) it follows from simple algebra that

2-2(1 - §lip@y) — $(@)II*)F = [19f — Qilfis.

From Lemma 4.1 it follows that ||Qf — Q3|13 s. 1192, — 2, |l = llo; — @, l.
Hence by simple algebra we have

1 (1) — p(@)I> < lloy — 5l (1 =l — 5]).

Hence, we have [lo; —w,|| Z 2 [1¢(w;) — ¢p(@)lI*.

If K is an n-dimensional Hilbert space M =(K) is a (2" x2"-
matrix algebra. Since A(K @ K) is a (2" x 22")-matrix algebra we may
identify M ® M and UA(K & K). We will construct a purification map ¢
from the states of 2[(K) to the pure states of A (K @ K) such that for gener-
alized free states w4 of U(K) ¢(w,) = wg,.

We identify K as the subspace of K@® K, consisting of all vectors
{fi,f2} e K®K where f, =0. K* consists of the vectors {f;, f,} where
f1=0. We identify A(K) as the subalgebra of AW(K @ K) generated by
the a(f) with fe K. Let U be the isometry of K into K* defined by the
relation U{f;, 0} ={0, f;}. From Lemma 2.2 it follows that the commu-
tant W(K) of A(K)in W(K @ K)isgenerated by theelementsb(f)=a(Uf)V

for fe K, and V=[] (1 —2a(h)* a(h;)) where {hy, ..., h,} is an ortho-
i=1

normal basis of K. By the argument of Lemma 2.2 we have (K @ K)
= A(K) ® A(K)".

Let w, and w§ be the Fock states of A(K) and WA(K), ie.
wola(f)*a(f)=0 all feK and w§(b(f)*b(f))=0 all feK. Let n
and n° be the Fock representations of A(K) and A(K)* induced by w,

2 Commun. math. Phys., Vol. 16
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and w§ on Hilbert spaces $ and $°. And let F, and F§ be cyclic vectors
in $ and H° such that wy(4)=(F,, n(4) Fy) and w§(B)=(F§, n°(B) F§)
for all 4eA(K) and B e (K). We define an antiunitary operator V;
from $ into H° by the relations,

Vim(a(fi)* ... a(f)*) Fo = (r*(b(f)* ... b(f)*)* Fi

for fi,...,f, €K, where F{=n‘(b(h,)*... b(h,)*) F§. V; may be defined
for all F € § since $ is spanned by vectors of the above form. By straight-
forward computation one can show that V; is a conjugate linear iso-
morphism of § onto H°.

We will construct the purification map ¢ using V;. Let wg, be the
Fock state of A(K @ K), n, the induced Fock representation of (K ® K)
on a Hilbert space §, with F,, € H, such that wyo(4) = (Fyo, 7o(4) Foo)
for all A € A(K @ K). We note the following identifications, H, = H® £,
Foo=Fo®F§, woo = 0o ® 0§ and 7y(A® B) = n(4) ® n°(B) for A € A(K)
and B e A(K)"-.

In accordance with the previous discussion of purification maps,
¢ is constructed as follows. Suppose w is a state of U(K), and w(4)
=Y oF,n(A)F) for AeU(K), (F,F)=6; %20 and ) o;=1.

i=1 .

s i=1

Let G= ) af F;®V, F,. Then, we define ¢(w) by the relation

i=1

$(@) (AQ B) = (G, n(4)@7(B) G)

for all 4 e A(K) and B e A(K)". We show that if w, is a generalized free
state of AU(K) then ¢(w,) = wg,.

In the calculations below we will make use of the following results.
Suppose M is a subspace of KO K and (hy, ..., h,) and (ky, ..., k,) are
orthonormal bases for 9R. Then, if

A=a(h)*...a(h)* and B=a(k)*... a(k,)*

we have A=oaB were o is a complex number of modulus one. The
pure generalized free state wg, where E is the projection onto R, is
related to the Fock state w,, by the relation wg(D)=wyo(4*D A4)
for all D e WK @ K).

We proceed to show ¢(w,) = wg,. Suppose w,, is a generalized free
state of A(K) and {f;, ..., f,} is an orthonormal basis of K such that
Af;=4f;fori=1,...,n Let S be the set of subsets ¢ of the integers
(1, ...,n). Note S has 2" elements. By a rather laborious calculation one
can show

w4 (B)= ) a(o)(F,,n(B)F,) for BeAK),

oeS
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where a(a)=<n li) <]‘[ (1- /1,-)> ,

ieo i¢a

A,=[Ta(f)*.

ico

Fazn(Aa')F05

Let G=) a(0)*F,®V, F,. We have that ¢(w,) (A®B)=(G,n(4)@7°(B) G)
(=N
for A e A(K) and B e A(K)".
We begin by computing F,® V; F,. We have
F,@V F,=(n(4,)@n°(B})) (Fo @ F})

where B, = [[b(f)* and F{=n(b(h,)*... b(h,)*)F;. We have that

Ff = 20°(b(f,)* ... b(f,)*) F§ where |z| =1, since (f; ... £,) and (hy ... h,)
are both orthonormal basis of K. Since 7,(4® B)=n(A)®n‘(B) for
A e U(K) and B e A(K), it follows that

F0®V1 FJZZRO(A;)FOO’

where A, = [[a(f)* <H b(fi)*)* f[l b(f)*. Since b(f)*=a(U f)*V

and 7o(V) Fyo = Foo, it follows that
F,@V, F,=zm(C,) Foo ,

where C, =[] a(f)* <Ha(U fi)*)* ﬂ a(U f)*. We can replace C, by

ieo ieg

the matrix "
C:x = I_I qio- s
i=1
where
_ fa(f)* for ieo
7 \a(U f)x for ido.

Hence, we have
G= Z OC(O')%F0.®V1 Fa'=Z Z nO(Da)FOO’
oeS geS

where D, = [[ S;, and S;, =2} a(f))* for ie o and S;, =(1 — 1,)* a(U f))*
i=1
for i ¢ 0. Summing over all ¢ € S, we find
G =2z no(Do) FOO 5

where
Do =[] a(Af fi+(1—2)* U f)*.
Lt

1

2%
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Note that the vectors g; = A7 f; + (1 — 1,)* U f; from an orthonormal set
which span the range of E,. Since ¢(w,)(B)=(G,ny(B)G) for all
Be W(KDK) it follows that ¢p(w,) = wpg,.

Lemma 3.2. Let w, and wg be generalized free states of W(K). Let
E, and Eg be the projections on K ® K given by the matrices of operators,

B A A¥(I — Ay B B B¥(I — By
AT\t —-A4F  1-4 )0 TPO\B¥-BF I-B )’

and let wg, and wg, be the pure generalized free states of (K@ K)
determined by these projections. Then it follows that

1
z “CUEA - C‘)EB”Z Sl —wpll log, — wlzs,,“ .

Proof. We identify K as a subspace of K@K and A(K) as a sub-
algebra of A(K @ K). If N is a subspace of K, we will write "DO to
denote 9N as a subspace of KAOK (e.g. RAOCKPOCKD®K and
AN D0) C A(K ®K)). From the construction of E, and Ez and from
the definition of generalized free states (Def. 1.2) it follows that
0p, | UANRDO0) = w4 |UAN) and wg, | ANDO0) = wp|AN) for all sub-
spaces N C K. Since W(N D 0) C AN D N) we have

(w4 — p) [ A = [(@p, — wg,) | WRDS R . (@)

Setting 9t = K, we have |[w, — wpl| S ||log, — wgll-
* Next we show  [|og, — wg,||I> < |lw, — .

If K is finite dimensional, then there is a purification map ¢ from the
states of A(K) to the pure states of A(K® K) such that ¢(w,)=wg,
and @(wp)=wg,. Then, it follows from Lemma 3.1 that {||wg, — wg,|I*
S llwy — wgll- '

Now suppose K is infinite dimensional and ¢ > 0. Since polynomials
in the a(f) and a(f)*, fe K@K are dense in A(K P K) it follows that
there is a polynomial p such that ||p||<1 and |wg,(p)— wg, (D)l
> |l0g, — gyl —&.

Since p is a polynomial there is a finite dimensional subspace
M CKDK such that pe A(M). Since Mt is finite dimensional there is
a finite dimensional subspace M CK such that IMCRDSN. Let
{N,;n=1,2,...} be an increasing sequence of finite dimensional sub-
spaces of K, each of which contains 9 and the closure of whose union
is K. Let F, be the hermitian projection onto 9%,, and let 4,=F,AF,,
B,=F,BF, for n=1,2,... Since F,—I as n—oo in the strong operator
topology it follows from the work of Kaplansky [17], that 4,—~ A4, B,— B,
A(I—A,)* - A*(— A)* and Bi(I—-B,* » B*(I—B)! as n—»o in
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the sense of strong convergence. Let P, and Q, be the projections on
K@K defined by the matrices,

P = An A%(I —An)% Q _ Bn Bé(I - Bn)%
" Aj(l _'An)%_ I_'An ’ a B%(I_Bn)% I_Bn -

Clearly, we have P,—E, and Q,— Ep as n— oo in the sense of strong
convergence. Let wp and wy be the generalized free states of A(K @ K)
determined by P, and Q,. Since p is a polynomial in the a(f) and a(f)*
and wp, is a generalized free state, wp, (p) can be expressed as a poly-
nomial in matrix elements, (f,P,g) of P,. Since P,—E,, we have
wp, (p)— wg,(p) as n—oco. Similarly we have wg (p)— wg,(p) as n—co.
Since N, is finite dimensional, we have

ll(wp, — g, )| W, DR < 2|[(w 4, — @3,) | AR
=2|w,— CUB”% .

Since pe AN, BN,) for all n=1,2, ... and ||p]| =1 we have

|CUP,.(P) - an(P)| =2, — CU)!;Wir .

Taking the limit as n—oco we have |wg (p)— wg, () £2|lw, — wgllt.
Hence, we have ||wg, — wg, |l <2|lw, — wg||* + ¢. Since ¢ >0 is arbitrary
we have §|log, — wg,|I* <|lw, — wgll. This completes the proof of the
Lemma.

4. Hilbert-Schmidt Operators

In the present section we collect some results on Hilbert-Schmidt
operators which will be needed later. The first two lemmas compare
A*—B* and A— B in Hilbert-Schmidt norms and trace norms. We
denote by ||S|ly.s. and ||S||r, the Hilbert-Schmidt and the trace norm
respectively of an operator S, ie. ||S|lgs. = Tr(S*S)* and ||S||y, = Tr(|S])
where |S] = (S* S)%.

Lemma 4.1. Let A and B be positive operators on a Hilbert space K.
Then

l4* — Bl s < (|4 - Blly, -

Proof. If A— B is not of trace class its trace norm is infinite, and the
lemma is trivial. We therefore assume A — B is of trace class, hence it is
in particular compact. Let S= A% —B* and T=A*+B? Let n be a
representation of B(K) annihilating the compact operators. Then
n(4) =n(B), hence n(A*) =n(A)* =n(B)* =n(B*) by the uniqueness of
the positive square root of a positive operator. Thus n(S)=0, so S is
compact. In particular S has pure point spectrum. Let (f);>; be an
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orthonormal basis for K consisting of eigenvectors for S with eigen-
values ;. Then, since T= + S and 3(S T+ TS) = 4 — B, we have

Tr(l4 - Bl)= Zi%(fi, IST+ TS| f)
2 Z (/i ST+ TS) f))l
=14l fu T
23
=Y (5% f)
= ’Il‘r((A% — BY)?).
Lemma 4.2. Let A and B be positive operators on a Hilbert space K.

Suppose B has pure point spectrum and that there exists ¢ >0 such that
either A=¢l or B=¢l. Then

VellA* — B¥lys <14~ Bllus. -

Proof. If A— B is not of Hilbert-Schmidt class its Hilbert-Schmidt
norm is infinite, and the lemma is trivial. We therefore assume 4 — B
is a Hilbert-Schmidt operator. Let (f;);»; be an orthonormal basis
for K consisting of eigenvectors for B with eigenvalues J;. Then

Te((A - BY) = X (fu (4~ B S)
Y (e A= 27)
= (s (A — A (4 )
2 l;E(fi, (4* =21 f)

= & Tr((4% — B¥).

Von Neumann [21] (see also [8]) has showed that every self-adjoint
operator A on a separable Hilbert space can be written in the form
A=B+ H, where B is a self-adjoint operator with pure point spectrum
and H is a self-adjoint Hilbert-Schmidt operator of arbitrarily small
Hilbert-Schmidt norm. Moreover, the eigenvalues of B are dense in
the spectrum of 4. We first modify this result for our purposes.

Lemma 4.3. Let A be an operator on a Hilbert space K such that
0<A<I, and let > 0. Then there exists an operator B, 0 < B I, with
pure point spectrum such that A* — B* and (I — A)* — (I — B)* are of Hilbert-
Schmidt class with Hilbert-Schmidt norms less than . Furthermore, the
eigenvalues of B are dense in the spectrum of A.
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Proof. Let E be the spectral projection of A such that EA <3E.
If we consider the operators EA and (I — E) 4 separately and use sym-
metry arguments we may assume 0< A4 <1I. Furthermore, if F is the
projection on the null space of 4, and B is defined to be 0 on F K, we may
restrict attention to (I — F) 4, hence we may assume A4 has no null space.
Finally we may assume ¢ <1. Let E, be the spectral projection of 4
such that

27" 'E, <E,A<27"E,,

n=12,..., and let 4,=E,A. By von Neumann’s theorem [21] there
exist a self-adjoint operator B, with pure point spectrum on the Hilbert
space E, K, such that the eigenvalues of B, are dense in the spectrum of
A,, and a self-adjoint Hilbert-Schmidt operator H, acting on E,K
with ||H,|lgs. < €272", such that 4,=B,+ H,. Since ||H,||£||H,llus.,
B,=A,— H,=0. Hence by Lemma 4.2

145 — Billus, S 22"V H, llys. < 227",

Let B= ) B,. Then B has pure point spectrum with eigenvalues dense
in the spectrum of A, and

[ee] [es}
|A* — By 5. < Z |4} — Billus. <& Z 27" =¢.
n=1

n=1
Note that E,—A4,>2(1-2""E,=%E, and E,—B,20. Hence by
Lemma 4.2
I(E, — 4)* — (E, — B)*llus. < V2I(E, - 4,)— (E,— B)llus.
=/ 2IH, 5. <827".

Since E, (I — A)* =(E, — A4,)* and similarly for B,
I — A — (I = Bfllus. = 3., (B, — A)* — (B, — B,)*|lus. <&.
n=1

The proof is complete.

Recall from the previous section that if 4 is an operator on a Hilbert
space K, and 0= A4 <1, then E, denotes the projection on the Hilbert
space K@ K defined by the matrix,

A A — A
E,=( , " .
AT —AF  I-A4

If B is another operator between 0 and I we next give a criterion in order
that E, — E, be Hilbert-Schmidt.
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Lemma 4.4. Let A and B be operators on a Hilbert space K such that
O0=<A=<Iand 0<BZI. Then E,— Eg is a Hilbert-Schmidt operator if
and only if the operator A* — B* and (I — A)* — (I — B)* are of Hilbert-
Schmidt class.

Proof. Let H= A* — B* and G =(I — A)* — (I — B)*. Then

X Y
EA_EB=(Y* ‘—X>’
where

(@ X=A*H+HA*-H?,

(b) Y=A*G+H(I-A*-HG.

Now E, — Eg is Hilbert-Schmidt if and only if X and Y are both
Hilbert-Schmidt operators on K. In particular, if G and H are Hilbert-
Schmidt wehave by (a)and (b)that E , — Egis Hilbert-Schmidt. Conversely
assume E, — E is Hilbert-Schmidt. By, Lemma 4.3 there exists an opera-
tor C with pure point spectrum such that 0 < C < I and such that A* — C?*
and (I — A)*—(I—C)* are Hilbert-Schmidt operators. By the first
part of the proof E , — E is Hilbert-Schmidt. If we can show that B¥ — C*
and (I —B)* — (I — C)* are Hilbert-Schmidt, it follows that A*— B?*
=(A* — C%)+(C* — B¥)is Hilbert-Schmidt, and similarly (I — 4)* — (I — B)*
is Hilbert-Schmidt. Hence in order to prove the lemma we may assume B
has pure point spectrum.

Let Ry=A*+(I—A)* and Rz=B*+(I—B)*. Then R,=I and
Ry = 1. Furthermore Ry, and hence R, has pure point spectrum. Thus
by Lemma 4.2 we have

IG + Hlly.s. = IR 4 — Rllers.

< IR% — Rillus.

=2||43(I — A)* — B¥(I — B){lys.

=2||Y s, <00,
so G+ H is Hilbert-Schmidt. Then by (b) —A*H + H(I — A)* + H?
is a Hilbert-Schmidt operator. Adding this operator to X we obtain
from (a) that H R ; is Hilbert-Schmidt. Since R, is invertible H is Hilbert-
Schmidt, hence so is G. The proof is complete.

If we combine this lemma with Lemma 4.1 we have the following
corollary.

Corollary 4.5. Let A and B be operators on a Hilbert space K such that
0<AZI,0=<B=I,and A— Bisoftrace class. Then E ;, — Eg is a Hilbert-
Schmiidt operator.

Lemma 4.6. Let w, and wg be gauge invariant generalized free states
of W(K). Suppose 0<e<2. Then if ||A* — B¥||ys <&/12, and ||(I — A)*
— (I = B)*ly.s. <&/12, then ||, — wgl| <e.
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Proof. By Egs. (a) and (b) in the proof of Lemma 4.4
X1, S 1A* Hllys. + 1H A¥lgs. + 1H |5, < /4
and similarly ||Y||y s. <é&/4. Therefore we have

|E4— Egllfs. = 1X* + Y Y*¥|lp + IY*Y + X3,
21 Xls. + 211 Y s,
<4(g/d) =¢2/4.

Now ||E4 — Eglly.s. = Tr((I — E ) Eg(I — E »)) + Tr(E4(I — Eg)E,;). Hence
(I—E,)Eg(I—-E, and E,(I—EpE, are of trace class. Let (f);5;
and (g;);>, be orthonormal bases for K@ K consisting of eigenvectors
for(I—E ) Eg(I—E,) and E,(I—Eg)E, respectlvely with respectlve

eigenvalues 4; and y;. Then 4,=0, u; =0, Z A <82/4 and Z w; < 2/4.
Hence i=1 i=
det(I —(I—E,) Ex(I—E,)= ﬂ (1-A)=z1- Z Ai>1—¢*/4,
i=1 i=1
and similarly det(I — E, (I — Eg) E,)>1—¢*/4. Since ¢<2 it follows
from the proof of Theorem 2.6 that the two determinants are equal, and

llwog, — wgyll <2(1 — (1 —e*/4)F =e.

Since [|w, — wpl| Sllwg, — wgll by Lemma 3.2, the proof is complete.

5. The Main Theorems

In this section we shall give necessary and sufficient conditions for
quasi and unitary equivalence of two gauge invariant generalized free
states of the CAR-algebra A(K), K being, as before, a separable Hilbert
space. Recall that if w is a state of a C*-algebra ¥, and =, is its cyclic
representation, we say o is a factor state if 7, ()" is a factor.

Theorem 5.1. Every gauge invariant generalized free state of the
CAR-algebra A(K) is a factor state. Two gauge invariant generalized free
state w4 and wy are quasi-equivalent if and only if the operators A* — B*
and (I — A)* — (I — B)* are of Hilbert-Schmidt class.

Proof. Let w, be a gauge invariant generalized free state of U(K).
By Lemma 4.3 we can choose a sequence of operators 4, on K with
pure point spectra with eigenvalues dense in the spectrum of A4, such that
0<4,<I, ||4* — Afllgs. <1/12n, and |[(I — 4)* — (I — A,)}{lus. <1/12n.
By Lemma 4.6 liancoA—a)Aanlinm 1/n=0. By Lemma 13 w, is a

factor state. Since the factor states of a C*-algebra form a norm closed
set by a theorem of Combes [6], w, is a factor state.
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Suppose wy is another gauge invariant generalized free state. Suppose
A*—B* and (I —A)*—(I—B)* are Hilbert-Schmidt operators. By
Lemma 4.4 E ; — Eg is a Hilbert-Schmidt operator, hence by Theorem 2.8
g, ~ wg,. By Lemmas 2.1 and 2.3 there exists a finite dimensional sub-
space M of K@ K such that

(g, — wg,) | AW <2.

Now there exists a finite dimensional subspace 9 of K such that
IMCNRDN. Since NP N C(NDN)L CIMY, it follows by inequality (a)
in the proof of Lemma 3.2 that

»”(wA ~ wp)| QI(W)II = H(CUEA - (DEB)WI(m‘L DN
< (wg, — 0gy) [ A< 2.

By Lemmas 2.1 and 2.3 w, 3 wp.
Conversely, suppose w, 3 wg. Again by Lemmas 2.1 and 2.3 there
exists a finite dimensional subspace I of K such that

(4 — og) | ALY <1

Let E denote the hermitian projection on M. Let A, =EAE+ (I —E)
“A(I—E) and By=EAE+(I—E)B(I—E). Then A— A4, and B— B,
have finite rank. Hence E,—E, and Ez— Ep are Hilbert-Schmidt
operators by Corollary 4.5. Therefore by Theorem 2.8 w;, ~ W, and
gy~ 0p, - Now @4, | A = | A and similarly for B and B,.
Therefore

e, = e03,) | AR <1

But 4, and B, coincide on M, and both w,, and wp, are product states
in the sense thatif S € (M) and Te A(IMH) then w4, (ST) = w4, (S) w4, (T)
and similarly for B,. Therefore [lw,, —wgl|<1, so by Lemma 3.2
we have

g, — g, | S2llw,, ~ gl <2.

By Lemma 2.1, or by [12], wg,, ~ wg,, . By transitivity of unitary equiv-
alence wg, ~ wg,. By Theorem 2.8 E, — Ey is a Hilbert-Schmidt operator.
Hence by Lemma 4.4 A* — B* and (I — A)* — (I — B)? are Hilbert-Schmidt
operators. The proof is complete.

In the course of the proof we showed

Corollary 5.2. Let w, and wg be two gauge invariant generalized free
states of W(K). Then w4y wy if and only if wg, ~ wg,.

Our next objective is to study unitary equivalence of two states w,
and wg. For this a more detailed knowledge of the factors obtained from
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w, and wg is necessary. Let m, denote the cyclic representation of
A(K) induced by w,. Let R, =7 ,(A(K))". By Theorem 5.1 R, is a factor.
We say w, is of type X if R, is of type X, X =1, II,, Il ,, III. Our next
lemma gives characterizations of the type of w, in terms of 4. An equiv-
alent result has been obtained by Rideau [24], see also the paper of
Dell’Antonio [8].

Lemma 5.3. Let w, be a gauge invariant generalized free state of the
CAR-algebra (K). Then

(i) w, isof type I if and only if there exist a spectral projection E of A
and a trace class operator T such that A=E+T.

(il) w, is of type 11, if and only if there exists a Hilbert-Schmidt opera-
tor H such that A=%I1+H.

(i) w, is of type 11, if and only if there exist two orthogonal spectral
projections P and Q of A with Q and I — Q of infinite dimension, a self-adjoint
trace class operator T such that T Q =0, and a self-adjoint Hilbert-Schmidt
operator H such that HQ = H, such that A=P+ T+ }Q + H.

(iv) wy is of type III otherwise.

Proof. Suppose first A has pure point spectrum. Let (f});»1,i=1,2, ...,
be an orthonormal basis for K consisting of eigenvectors for A. Let
A fi=2; fi- Let w; be a state on the complex 2 x 2;matrices 2; defined by

o, <<j z>> —(=A)a+id.

%
Use the notation in [13]. Let w = (X) w; be the corresponding product
i1
" z
state on A = @ A;. Then W~ A(K) and w can be identified with w,,
i1
see Lemma 1.3. Let E denote the spectral projection of 4 such that
AE = 1E. For P any spectral projection of A we write ie P if P f; = f,.
Then by a result of Araki [1] and Bures [5], see also [19], w, is of type I
if and only if
a) Y (1-A)+ Y A<oo,
icE iel-E
hence if and only if E(I — A)+ (I — E)A is of trace class. Since this is
equivalent to A = E + T with T of trace class (i) as follows.
By a result of Moore [19] w, is of type II, if and only if

YA -27HH(1-2)F-27H <0
i1 .

hence if and only if A* —27#I and (I — A)* — 2~ *I are Hilbert-Schmidt.
An easy argument using Lemma 4.2 shows that this is equivalent to
A — 11 being a Hilbert-Schmidt operator. Thus (ii) follows.
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If ¢c>0 and x is a real number let |x|, = inf(]x|, ¢). Then by a result
of Moore [19] w, is not of type III if and only if for some, and hence
all, ¢c>0
2 2
b) Z(I—Ai)l——l—i——l ) Ail——/li—ll <.

ieE 1- }'i c iel-E Ai c
Let F and G be spectral projections of 4 such that AF <iF and
AG=3G. Assume w, is of type II,, and put ¢ = 1. Then by b) we have

o> 3 0-2)(t2 1)+ Tu-a

icE-G ieG
1—4 2
+ Y i <—J— —1> + YA
iel -E—F Ai ieF
2 Z M=0=2+ Y A=)+ Y (=2 =P+ 24
-G ieG ie]-E—F ieF
z% Z {(/1?— A= =273% 4 YA+ Y (1= 4y,
b ieF ieG

since 2(1% (L= = (AF — 2792+ ((1 — A)* — 27 })% Therefore, if w,
is of type II, then dim(F + G)=dim(I — F — G) =00, and by using the
arguments employed in the proofs of (i) and (ii),

A=G+T+iI-F—-G)+H,

where T is a self-adjoint trace class operator such that T(I — F — G) =0,
and H is a self-adjoint Hilbert-Schmidt operator such that H=H(I—F—G).
Letting P=G and Q =1 — F — G, A has the form in (iii). Conversely, by
(i) and (ii), if 4 has the form in (iii) then w4 is of type II .

Finally, if 4 does not have pure point spectrum then from the proof
of Theorem 5.1 w, can be approximated in norm by states w,,, where
A, has pure point spectrum, and its eigenvalues are dense in the spectrum
of A. By cases (i), (ii), and (iii) w4, is of type III for all n, hence w, is of
type I11. The proof is complete.

Remark 5.4. From the proof of Theorem 5.1 if A does not have pure
point spectrum then w, is quasi-equivalent to a state wp, where B
has pure point spectrum and its eigenvalues are dense in the spectrum
of A. By the work of Araki and Woods [2] the factor Ry obtained from
wg belongs to the class S, defined in [2]. Since all factors in the class S
are isomorphic [2, Theorem 7.6] it follows that if 4 and 4" do not have
pure point spectra then the factors R, and R, are isomorphic, i.e.
w4 and w,. are algebraically equivalent.

In order to study unitary equivalence of two states w, and wy one
needs information on the commutants of R, and R. For this the follow-
ing definition is convenient.
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Definition 5.5. Let A be an operator on the Hilbert space K such that
0<A<I Let N be the hermitian projection on the null space of A(I — A).
We say A is elementary if A=P+3(I — N)+ H, where P is a hermitian
projection, P< N, and H is a self-adjoint Hilbert-Schmidt operator such
that HN =0.

Lemma 5.6. Let w, be a gauge invariant generalized free state of
A(K). Let m, denote the cyclic representation of W(K) induced by w,,
and let R, =m,(U(K))". Then R, is a finite factor if and only if A is
elementary.

Proof. Let N denote the null space of A(I — A). Let P=AN. Then P
is a hermitian projection. By Lemma 5.3 R, is semi-finite if and only if
A=P+P +T+%0Q+H, where P, and Q are orthogonal spectral
projections of A(I — N), T is a self-adjoint trace class operator such that
TQ=0, and H' is a self-adjoint Hilbert-Schmidt operator such that
H'Q = H'. Use the notation introduced in the proof of Lemma 5.3. For
A;e W, let wi(A) = (f;, m;(4)) f;), where m; is a cyclic representation of the
2 x 2-matrices U; with f; as a cyclic vector. Let R=I—N—Q. Let
fN=§<]>vf},fR=®f;~, and fp=(X) f;. Put

JE

jeR jeQ

R, = (éﬁv ﬂi(mi)>”, R,= (é)fR ﬂi(ﬂi)>”, and Ry= <éfQ ni(mi))’ .

ieN ieR ieQ

The R, =R, ® R, ® R;, where the tensor product is that of von Neumann
algebras. By Lemma 5.3 R; is a finite factor. Since the eigenvalues of
70+ H’ are all different from 0 and 1, R, has a separating and cyclic
vector (see e.g. [2, Lemma 2.10]). Then it follows from [9, Théoréme 5,
p- 235] that Rj is finite. For i€ N, m;(2;) equals all bounded operators
on the two dimensional Hilbert space. Therefore R, is all bounded
operators on a Hilbert space ([13], Corollaire 2.1). In particular R; is
finite. Now, by a result of Araki and Woods [2, Lemma 6.10]

* frR //
2= <® ”i@L’)’) .
ieR

Let k=dimR. Since all the eigenvalues of P, + T are different from 0
and 1, R, has a separating and cyclic vector by [2], Lemma 2.10.
By Lemma 5.3 R, is of type I. In fact it is of type L« by construction.
Since R,=~R,, R} is of type Ix. By [9], Proposition 14, p.102,
Ry =R; ®R,®Rj;. Therefore R/ is finite if and only if k < oco. But if
k < oo we canreplace Q by I — N and replace T+ 3Q + H' byi(I — N)+H,
where H is a Hilbert-Schmidt operator. This completes the proof of
the lemma.
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We are now in the position to give characterizations in terms of A
and B for unitary equivalence of the states w, and wg. Due to the highly
complicated situation which occurs when R, and Ry are of type II,
with finite commutants, we cannot give a satisfactory characterization
in that case. We are indebted to E. Effros for pointing out the relevance
of Ref. [14].

Theorem 5.7. Let w, and wy be gauge invariant generalized free states
of A(K), K a Hilbert space. Let N and N' denote the projections on the
null spaces of A(I — A) and B(I — B) respectively. There are two cases.

(1) If A is not elementary (see Def. 5.5) then w4 is unitarily equivalent
to wy if and only if A*— B* and (I — A)* — (I — B)* are Hilbert-Schmidt
operators and B is not elementary.

(2) If A is elementary then w, is unitarily equivalent to wg if and
only if A*—B* and (I — A)* — (I — B)* are Hilbert-Schmidt operators,
B is elementary, and

(i) if dimN < oo then dimN’= dimN,
(i) if dim(I — N) < oo then dim(I — N')=dim(I — N),
(iii) if dimN = dim(f — N)= oo, then dimN’' = dim(I — N')= o0, and

Tr(d[R) f4])) = Tr([R3 f5)

where 1, is a cyclic representation of W(K) and f, a cyclic vector such
that @ 4(S)=(f4, m4(S) f4), Ry=7n(W(K))", and similarly for B, a is the
isomorphism of R, onto Rg such that ng=ac-n,, and Tr is a normal
trace on Rg.

Proof. If Ry and R, are factors on separable Hilbert spaces with
infinite commutants then every #-isomorphism of R, onto R, is unitarily
implemented ([9, Corollaire 7, p. 321]). Since in our case R, and Ry
act on separable Hilbert spaces, since A(K) is norm separable and f,
and fj are cyclic vectors (see [11, Theorem 3.5]), case (1) follows from
Theorem 5.1 and Lemma 5.6.

Suppose A4 is elementary. Let a=dimN, b= dim(I — N). From the
proof of Lemma 5.6 R, =M, ® N ,, where M, is all bounded operators
on a Hilbert space of dimension 24 and 9, is a finite factor of coupling 1,
having a separating and cyclic vector. If b < oo, N, is of type I,,, other-
wise it is of type II,. Since unitary equivalence is a stricter property
than quasi-equivalence we may by Theorem 5.1 assume 4% — B* and
(I — A —(I — By* are Hilbert-Schmidt operators. Furthermore by
Lemma 5.6 R/, is finite, hence if w , ~ wy, R} is finite, hence by Lemma 5.6
B is elementary. We may therefore assume B is elementary. Let o denote
the isomorphismof R, onto Ry suchthata o 7, = ng,foundby Theorem5.1.
Consider the three cases separately.
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(1) Suppose a<oo. T hen b =00, so R, is of type I1I; with coupling 2°.
By [9], Proposition 10, p. 286, « is unitarily implemented if and only if
Ry has coupling 2% hence if and only if dim N’ = dimN.

(ii) Suppose b <oo.Then R}, =N, is of type I,. By [9, Proposition 3,
p. 253, o is unitarily implemented if and only if R} is of type I,», hence
if and only if dim(I — N') =dim(I — N).

(iii) Suppose a=b = co. Then R, is of type I, with finite commutant.
As shown by Kadison [14] this case is much more complicated, indeed
by [14, Theorem 2], « is unitarily implemented if and only if the condi-
tions in (iii) hold. The proof is complete.

It should be noted that if 4 and B are bounded away from 0 and 1
then the study of unitary equivalence of w, and wp is greatly simplified.
Indeed, we have the following corollary.

Corollary 5.8. Let w4 and wy be gauge invariant generalized free states
of A(K). Suppose 0 and 1 do not belong to the spectra of A and B. Then
w 4 and wy are unitarily equivalent if and only if A — B is a Hilbert-Schmidt
operator.

Proof. By assumption it follows from the compactness of the spectra
of A and B that there exists ¢>0 such that e/ <A=<(1—¢)I and
el £BZ(1—¢)l. This the corollary is an immediate consequence of
Lemma 4.2 and Theorem 5.7.

Remark 5.9. In applications of Theorem 5.7 the case 2 (iii) in the theo-
rem is fortunately a very special case. The condition we have given, essen-
tially requires that one must know the isomorphism o in detail in order to be
able to conclude whether w, and wg are unitarily equivalent. We give a
simple example in which « is not unitarily implemented, thus pointing
out that no simple criterion seems available. For a detailed analysis of
this problem the reader is referred to the work of Kadison [15].

Let K be as in Theorem 5.7. Let E be a projection on K such that
dimE = dim(I — E)=o00. Let F be a one-dimensional projection ortho-
gonaltoE,andletG=1—E—F.LetA =1E B= 4(E + F).By Theorem 5.1
w4 and wy are quasi-equivalent. Let (f;) be a basis for K consisting of
eigenvectors for A and B. As before we say i e P if P f; = f; for a spectral
projection. P of A and B. Use the notation introduced in the proof of
Lemma 5.3 with the addition that we put primes on the corresponding
representations for B. Then we have

e (ire)ol)o 3

icE ieF ieG

* f& * fE * f&
e (&) () o (7))
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where for example fz=(X) f;, where w;(4)=(f;, n;(A) f;) for i€ E, and
icE
AeU,. If ie E then 7; and 7; are both of the form A—-A®I with I
the identity on the 2-dimensional Hilbert space. If i € G n; and =} are both
irreducible; hence if i€ E+ G then =; and =; are unitarily equivalent.
Ifi € F then r;isirreducible while z; has multiplicity two. Let R , = n , (U(K)”
and Rp=ng(A(K))". Since n, and ny are quasi-equivalent there exists
an isomorphism a of R, onto Ry such that aen, =mp. If 4;€ W;and 4, =1
for all but a finite number of i’s then a(®n;(4;)) = ®7i(4;), hence an easy
argument shows the existence of isomorphisms a; of 7;(2;) onto 7:(21;) such

ES
that oo, =m; and such that a7z, (A(K)) = X) «;. Let P (resp. Q) denote
the one-dimensional projection in

(é'i)”ni(%))" (resp. (é’tn;(%))')
icE h ieE

onto fg (resp. fz), and let [y] denote the one-dimensional projection in
(W), ie F, on y = f;. Then we have

[Ryfl=PR[yI®I,
[Rp /5] =0®I®I,

where the identity I to the right is the identity in the algebra obtained
from the portion in G. Let Tr denote the trace on Ry. Then, if ke F,

Tr(u([R f41) = Tr(Q @ u([y]) ®I)
=3Tr(QRI®I)
=5 Tr([R; f5)) -

By [14, Theorem 2], o is not unitarily implemented.

It should be remarked that in this example there exists a unitary
operator U on K such that B=U AU '. In all other cases than 2(iii)
in Theorem 5.7 it follows from that theorem that if B=UAU !, and
A* —B* and (I — A)* — (I — B)* are Hilbert-Schmidt, then w, and wg
are unitarily equivalent.
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