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Abstract. Each gauge invariant generalized free state ωA of the anticommutation
relation algebra over a complex Hubert space K is characterized by an operator A on K.
It is shown that the cyclic representations induced by two gauge invariant generalized
free states ωA and ωB are quasi-equivalent if and only if the operators A^ — B^ and
(/ — A)* — (I — B)^ are of Hubert-Schmidt class. The combination of this result with results
from the theory of isomorphisms of von Neumann algebras yield necessary and sufficient
conditions for the unitary equivalence of the cyclic representations induced by gauge in-
variant generalized free states.

Introduction

In this paper we study gauge invariant generalized free states of the
canonical anticommutation relations, and in particular the question of
quasi and unitary equivalence of their induced representations. If K
is a separable (complex) Hubert space 9I(K) - the CAR-algebra of K -
is the C*-algebra generated by elements α(/), where /-»α(/) is a linear
map of K into $l(K) satisfying the canonical anticommutation relations.
The gauge invariant generalized free states of 2ί(K) are states ωA whose
rc-point functions have the structure

ωA(a(fnT α(Λ)*- flfo) - αfoj) = δnm det((ft, Aβj))

for all f,geK9 where A is a linear operator on K such that 0 £Ξ A ̂  /.
These states were first defined and studied by Shale and Stinespring [26].

Since the introduction by Shale and Stinespring [26] generalized
free states, which are also called quasi-free states, have been studied by
several authors, see e.g. [3, 4, 8, 18, 22, and 24]. DelΓAntonio [8] and
Rideau [24] have shown that gauge invariant generalized free states are
factor states and have given a characterization of the types of the factors
obtained from these states. It follows from their work that the gauge
invariant generalized free states ωA and ωB are quasi-equivalent if the
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two operators A* - B* and (I - A)* -(I- B)* are of Hiibert-Schmidt
class.

The main new result of the present paper is that this condition is also
necessary for quasi-equivalence. In the proof of this result we derive
some inequalities on the norm differences of states which may be of
independent interest. Using these inequalities we can with little extra
effort rederive the results of DelΓAntonio and Rideau mentioned above.
We include these for the sake of completeness.

Then the main result in this paper (Theorem 5.1) asserts that the
cyclic representations induced by gauge invariant generalized free
states COA and ωB are quasi-equivalent if and only if the two operators
A* - B* and (I - A)* ~(I- B)* are of Hiibert-Schmidt class. If A and
B commute and have pure point spectra this result follows from the work
of Kakutani [16] on equivalence of product measures. Hence our result
can also be viewed as a noncommutative extension of Kakutani's
theorem. For this see also the work of Segal [25], By a result of Moore [19]
on the types of product states the type of the factor obtained from
ωA can easily be characterized, hence the theory of isomorphisms
of von Neumann algebras can be applied to give necessary and sufficient
conditions in order that ωA and ωB induce unitarily equivalent cyclic
representations (Theorem 5.7).

The proof of our characterization of quasi-equivalence of two states
ωA and ωB is divided into several sections. In Section 1 we give the necessary
background from the theory of the anticommutation relations. Then
in Section 2 the problem is solved in the simplest case, namely when A
and B are projections, in which case ωA and ωB are pure states. The idea
of the proof is to reduce the general case to this latter situation. Note
that if A is an operator on a Hubert space K and 0:g.A^/, then the
operator

_ _ / A, A*(I-A
A~\A*(I-A)*9 I-A

is a projection on K@K. Furthermore the map /->«(/) has a canonical
extension to a map of Kζ&K satisfying the canonical anticommutation
relations, such that ωA extends to a pure gauge invariant generalized
free state ωEA on 2ϊ(X0JK). In Section 3 an analysis of the relationship
between ωA and O)EA is given when K is finite dimensional, and then an
inequality relating the norm difference of ωA and ωB to that of ωEA and
ωEβ is proved. In order to complete the proof some results on Hiibert-
Schmidt operators are obtained in Section 4. Then in Section 5 the
developed techniques are used to show that ωA and ωB induce quasi-
equivalent representations if and only if ωEA and ωEs induce unitarily
equivalent representations. By Section 2 this is equivalent to EA-EB
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being Hubert-Schmidt. By Section 4 this holds if and only if A* — B^
and (/ — A)* — (1 — B)* are Hubert-Schmidt operators.

The reader who is only interested in understanding the main theorems
and not their proofs is advised to first read Section 1 and then to proceed
directly to Section 5.

The second named author is indebted to J. Glimm for arousing his
interest in the subject and for conjectures which were close to the final
result, and to R. Kadison for his kind hospitality at the University of
Pennsylvania while the author is visiting from the University of Oslo.

1. The Algebra of the Canonical Anti commutation Relations

Let K be a complex Hubert space. The CAR-algebra, 9I(K), over K
is a C*-algebra with the property, there is a linear mapping, /-»α(/),
of K into 2I(K), whose range generates 2Ϊ(K), as a C*-algebra such that
for f,geK

where (. , .) is the inner product on K, and / is the unit of
and 9Γ(K) are both CAR-algebras over K. generated by the a(f) and a'(f\
feK, respectively, then these C*-algebras are * -isomorphic. In fact,
the mapping a(f)-+a'(f), feK, uniquely extends to a * -isomorphism
of 2ϊ(jK) into SΓ(X). We refer to [22] or [26] for a general discussion of
the CAR-algebra. Throughout this paper K will be separable, however
we believe all results are valid for non-separable Hubert spaces as well.

If K is rc-dimensional then 2I(K) is a (2n x 2")-matrix algebra (the
algebra of all operators on a 2"-dimensional Hubert space). If 9W C K
is a linear subspace of K, we denote by 9ί(SR) the C*-subalgebra of

generated by the a(f) with /e9W. If K is infinite dimensional.
may be taken as the inductive limit, in the sense of Guichardet [13],

of the subalgebras 2I(9W) for all finite dimensional subspaces 9W C K.
It follows that if K is an infinite dimensional separable Hubert space
9I(X) is a uniformly hyperfinite (UHF) algebra of type (2") as defined
by Glimm [11], i.e. 9I(K) is generated by an increasing sequence of
(2Π x 2")-matrix algebras.

A state of 9I(1C) is a positive linear functional on 91 (K) normalized
so that ω(/) = l. We denote by πω the cyclic representation induced
by the state ω. We will use the following equivalence relations on states.

Definition 1.1. Two states, ω1 and ω2, of a C*-algebra are, respectively,
unitarily equivalent and quasi-equivalent, denoted ω1 ~ω2 and o}ί~ω2,
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if the induced representations, πωι and πω2 are, respectively, unitaril}
equivalent and quasi-equivalent.

We recall that two representations, πx and π2, are quasi-equivalenl
if there is a * -isomorphism φ of the von Neumann algebras, 7^(21)"
onto π2(2l)", such that φ(π^ (A)) = π2(A) for all ^4 e 21. Unitary equivalence
implies quasi-equivalence, and for pure states quasi-equivalence implies
unitary equivalence (see, e.g. [10]).

Since every state is norm continuous and since polynomials in the
a(f) and a(g)*, /, g e K, are dense in W(K) it follows that every state of
2I(.K) is uniquely determined by its values on polynomials. In fact a
state of 2I(K) is uniquely determined by its w-point functions,

Wnm(fl9 ...9fn,gl9 ...,0J = ω(α(/J* ... a(fίΓa(gί) ... a

The n-point functions of a gauge invariant generalized free state have
the following structure.

Definition 1.2. The slate ωA is a gauge invariant generalized free state
of the CAR-algebra 2l(X), if the n-point functions of ωA have the form

i9 Agj) ,

vv/zere ^4 is α /m^αr operator on K satisfying the condition 0 ̂  ̂ 4 ̂  /.

The generalized free states were developed and studied by Shale
and Stinespring [26]. The state ω0(A = 0) is the well-known Fock state
which induces the Fock representation [7].

If A has pure point spectrum then the gauge invariant free state ωA

is a factor state, i.e., it induces a factor representation of 2I(X). This
can be seen from the fact that the state ωA can be factorized as follows.

Since A has pure point spectrum there is an orthonormal basis {/n}
of K such that A fn = λn fn for n = 1, 2, . . . . We define a sequence of mutually
commutative (2 x 2)-matrix units as follows.

Let

and

4? = «(/„) «(/„)* , 41 = «(/„) v,-! ,
4"ί = «(/„)* ^-i > 41 = «(/„)* «(/„)

Using the anticommutation relations one can show that the (eW;iJ = 1,2)
form a set of (2 x 2)-matrix units, and for distinct n and m, effe™ = e(™} e\"\
From the definition of ωA and the construction of these matrix units,
it follows that

m (p(n^ p(nr)\ — /y(") β) fy(nr) ^
ωA\eiίjί ' ' ' eirjr) — αi! °ilj1 ' ' ' αir °ίrjr '

for all nx < n2 < < nr, where α^ = 1 — λn and α(

2

w) = λn.
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Therefore, ωA factorizes with respect to the (2 x 2)-matrix algebra
Nn, generated by the {e$}. Since 2Ϊ(K) is generated by the {Nn; n = 1, 2, . . .}
it follows that ωA is a factor state (see e.g. [23, Lemma 4.1] or [13, Corol-
laire 2.1]).

We summarize this result in the form of a lemma.

Lemma 1.3. // 0 ̂  A ̂  / is an operator on a Hilbert space with pure
point spectrum, then the generalized free state, ωA o/9ί(X) is a factor state.

We remark that the generalized free state ωA is pure if and only if A
is a projection (i.e. A2 = A) (see [3, 18 or 22]). Furthermore, if ω is a
state of 9I(K) and ω(α(/)* a(g}} = (/, Eg) where E is a projection, then
ω = ωE. This follows from the fact that the requirements ω(α(/)* a(f)) = 0
for all / e Range (1-E) and ω(a(f) α(/)*) = 0 for all /e Range E,
uniquely determines all the n-point functions of ω. We will make frequent
use of these facts in the following sections.

In the next section we will frequently make use of the projections
χ+(E), χ_(E) E $l(K)9 defined for all finite dimentional hermitian pro-
jections in K. The projections are defined as follows.

= a(fί)* a(f1)a(f2)* α(/2) ... α(/J* a(fn)
and

χ-(E) = a(f,)a(f1)*...a(fn)a(fn)*

where {/!,...,/„} is a complete orthonormal basis for EK. Using the
anticommutation relations one can show that χ+ (E) and χ_ (E) depend
only on E and not on the particular basis .{/!,...,/„} used to define them.
Using the anticommutation relations one can show, if E and F are finite
hermitian projections and EF = FE, then

(i) χ+(E)* = χ+(E), χ_(E)*=χ_(£),
(ii) χ+(E)2 = χ+(E), χ.(E)2 = χ_(E) ,

(iii) χ+(E) χ+(F) = χ+(E + F- EF) and

(iv) χ+(E)χ-(F) = χ-(F)χ+(E) and
χ+(E)χ_(F) = Q if E F Φ O .

It follows from these relations that χ+(E)<>χ+(F) and χ_(E)^χ_(F)

If ωA is a gauge invariant generalized free state of 9ί(K), then, by
a straightforward computation one can show that

ω^χ+ (E)) = det(/ - £(/ - ^i) E) and ωA(χ.(£)) = det(7 - EAE) ,

where these determinates are defined as follows.
If 0 ̂  A ̂  / is an operator on K, we define

det (/. -A)= inf(det ((1 - A) 1 2R) all finite subspaces TO c K) ,
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where (/ — A) \ 9JΪ is the operator I — A restricted to 9ΪΪ. If A is of finite
n

rank, we have det(J — 4) = JΊ(1 — λt\ where {λl9...,λn} are the non-

zero eigenvalues of A repeated as often as their multiplicity dictates.
In the following sections we will have occasion to compute det(/ — A)

when A is not of finite rank. We state here some inequalities which can be
easily verified from the definition of the determinant.

Let A be an operator on K such that 0 ̂  A ̂  /. Then, the following
inequalities hold.

(i) det(/-Λ)^l-|μ4| |,
(ii) det(J - A) ̂  (1 - \\A\\)m, where m is the smallest integer such that

(iii) det(/-,4)^exp(-Tr(y4)),
oo

where Ύr(A)= Σ ( f t ^ f t ) and (ft) *s an orthonormal basis of K. Con-
i = l

dition (i) is obvious. Condition (ii) may be proved as follows. First
n

suppose A is of finite rank. Then det(/ — A) = f] (1 — λt) where (λt) are
i = l

the non-zero eigenvalues of A. A minimization of this product subject to
the conditions ΣΛ = Σ^ί and λ^ Mil is achieved by setting λt = \\A\\

for ϊ = l , ...,m-l, λm = Σλi-(m-l)\\A\\ and-I—0 for ί>m. Then,

we have det(/-Λ)= f[ (1 -λ^(l - \\A\\r~* (1 -λj = (l-|

Since condition (ii) is valid for all finite rank operators it follows from the
definition of the determinant that it is true for all 0 ̂  A ̂  /. Condition (iii)
follows from the fact that det (J - A) = exp(Tr (log(J - A))) ^ exp( - Tr (A)).

It follows from condition (i), (ii) and (iii) that for 0 ̂  A ̂  /, det(/ -A)>0
if and only if ||^4|| < 1 and Tr(^4) < oo. Another property of the determinant
we will use in the following sections is the property. If 0 ̂  A ̂  / and E
is a hermitian projection, the det(J — EAE) — inf(det(l — PAP); P finite
projection, P ̂  E).

This last property is a consequence of the following lemma, when
the projection E is chosen to be finite dimensional.

Lemma 1.4. Let A be an operator on the Hίlbert space K such that
O^A^L Let E be a hermitian projection on K and F a hermitian pro-
jection of finite rank such that F ̂  E. Then

det(7 -EAE)^ det(/ - (E - F) A(E - F)) .

Proof. We first assume E is finite dimensional. If P is a projection
on K we denote by detp(^4) the determinant of PAP considered as an
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operator on PK. Then the lemma states

det£(7 -A) = det((7 - E) + (7 - A)E) = det(7 - EAE)

^ det(7 - (E - F) A(E - F)) = det£_F(7 - A).

If this inequality holds for F of rank 1 then by iteration it holds for all
F ^ E. We may therefore assume F has rank 1. In order to prove the in-
equality in this case we prove the following more general inequality.
Let B be a positive (n x π)-matrix, and F a hermitian projection of rank
one on the ^-dimensional Hubert space C". Then

detβ ̂  det(FBF + (7 - F) B(I - F)).

In fact, let P = 7 — F. We may assume F is the matrix (ftj) with /n = 1,
fij = 0 if (U)φ(l, 1). Let B = (bij). Let F be a unitary operator on the
space PC" such that F*(bί7 )ί>7 ̂  2 Fis diagonal with entries ciί9 i = 2, 3,..., n.
Let 17 be the unitary n x n-matrix defined by U = F + F, where F is
extended to be 0 on the complement of P. Then

bίί c12 ... cin

c12 c 2 2 . . .0

Now

U*BU =

' c l f l o ..;C l

i = 2

and

Since bn and c f ί are all positive, det(B)^det(FB'F + (/-
In particular, if O^J5^7, det5^^ίj_F(β). Hence the inequality
detE(I — A)^detE-F(I — A) follows, and the lemma follows for E finite
dimensional.

In particular, the assertion, stated before the lemma, follows, and
we have for E infinite dimensional,

= inf{det(/-PylP): P finite dimensional, P^

= inf{det(7 -PAP): P finite dimensional, F ^ P ̂  E}

^ inf{det(7 - (P - F) A(P - F)): P finite dimensional,

= mϊ{det(I-QAQ): Q finite dimensional, Q^E-F}

= det(I-(E-F)A(E-F)).
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2. Pure Generalized Free States

In this section we show that the pure generalized free states, ωE

and ωF, are unitarily equivalent if and only if E — F is of Hubert-Schmidt
class. We make use of the following lemma in the proof of this result.

Lemma 2.1. Let K be a Hilbert space and ωl5 a>2 two factor states
of $l(K). Let SOίi C9ER2 ••• be an increasing sequence of finite dimensional
subspaces of K, the closures of whose union is K. We denote by 9I(SDΪM)C

the commutant of 9I(90ΪM) in 9ί(K). Then the following statements are
equivalent.

(0 ωx ~ ω2 .
(ii) For every ε > 0 there is an integer n such that

(iii) There is a finite subspace 51 C K such that

For the proof of this lemma we refer to [23, Theorem 2.7].
A difficulty in the application of this lemma lies with the unwieldy

form of 9I(2R)C. However, we will show that for even states, ||ωt |2ί(9W)c

.- ω2 1 2ί(2R)Ί| - |K 1 210ΪR1) - ω2 \ ^(ΪR1)!!, where 9W1 is the orthogonal
complement of 901

A state ω of 9ί(K) is even if it is invariant under the * -automorphism γ,
i.e. ω(A) = ω(γ(A)) for all A e 21 (K), where γ is the unique * -automorphism
satisfying the condition y(a(f))= — a(f) for all feK. We begin by
characterizing 5l(5R)c.

Lemma 2.2. Let 9ΪI be a finite subspace of a Hilbert space K and
n

{fi i = 1, . . . , n} an orthonormal basis of SR. Let V = f] (/ - 2a(/f)* a(f$.
i = l

Then 9I(9W)C, the commutant of 9I(3DΪ) in 9Ϊ(K), is generated by the elements
a(f)Vforallfe<mλ.

Proof. Let 33 be the C*-subalgebra of 9I(K) generated by the elements
a(f) V for all /e 2R1. Since the generators of 9Ϊ(9W) commute with the
generators of 93 (i.e. a(f)Va(g) = a(g)a(f)V and a(f) Va(gf = a(g)*
a(f) V for all /e 2R1 and g e 9W) it follows that 95 C 3I(9ίR)c.

Next we remark that 2l(K) is generated by 9I(9W) and 95. To see that
this is true, let 9ix be the algebra generated by 91(501) and "93. Now, we
have that Ve ̂  since Ve 2I(SR). Since V2 = /, α(/) e Mί for all /e SR1

and all /e 9W, Hence ̂  - 9I(K).
Suppose $1 is a finite dimensional subspace of ΪR1. Let 33(91) be the

C*-algebra generated by the a(f) Ffor/e 9ΐ. Clearly, we have 93 (ϊl) C 93.
Now, 95(51) and 9Ϊ(ΪR) are finite matrix algebras which generate 9I(ΪR 0 51).
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Hence, {2I(9K), 93(91)} is a factorization of 2I(2R09l). Since 2ί(9W) and
93(91) are type In factors it follows that this factorization must be paired
[20] i.e. 9T(9W) and 93 (91) are each others commutants in 2I(9W0SR).
Hence, we have 93(91) - 2T(9W)C n 2l(ΪR 0 91). From the proof of Lemma 3.2
in [23] it follows that 2I($R)C is generated by the algebras 9I(9M)cn9I(9W0 91)
for all finite 91 C SR1. Hence, we have 9I(9W)cc 93. This completes the proof
of the lemma

Lemma 2.3. Suppose ωί and ω2 are even states of 2I(K) and SOΪ is
a finite dimensional subspace of K. Then,

IK

Pr0o/. Let

and

We prove αc = α1. Let ε > 0. Since 2l(9W1) is generated by the a(f) with
/e ΪR1 there is a polynomial p in the a(f) and α(/)*, /e SOΪ1 such that
||p|| ^ 1 and |ωx(p) — ω2(p)| ̂  α1 — ε. Let z = ̂ (p + y(p)) Since ω1 and ω2

are y-invariant, we have ωt(z) = ωt(p) and ω2(z) = ω2(p). Hence, we have

We have that ||z|( ̂ i(||p|| + ||y(p)||) ̂  1 and z is an even polynomial
in the a(f) and a(f)* with /eSOΪ1. Hence, z commutes with the a(h)
and Λ(/I)* for /z e SDΪ. Therefore z is an element of 2ί(SDΪ)c with norm less
than or equal to one. Hence αc ̂  α1 — ε. Since e is arbitrary, αc ̂  α1.

We prove the reverse inequality. From the preceding lemma, it
follows that there is a polynomial p in the Va(f) and Va(f)*, /eϊR1

such that ||p|| g 1 and lω^p) - ω2(p)| ̂  αc - ε. Again, we set z = \(p + y(p)).
We have, as before, ||z|| ̂  1 and |ft)1(z) — ω2(z)\ ^ αc — ε. Now z is an even
polynomial in the a(f) F.and α(/)* F. Since V commutes with the a(f)*
for /eϊR1 and F2=7, z is a polynomial in the a(f) and a(/)* with
/e ΪR1 (i.e. z contains no terms with Fin them). Hence, we have ze^SDt1)
and α1 ̂  αc — ε. Since ε is arbitrary α1 = αc.

It follows from this lemma that for even states ω1 and α>2, the ex-
pressions ||ω1|9r(aR)c-ω2|9I(5ϊR)c|| may be replaced by IKISΪ^1)
-ω2|2I(ΪR1)|| in Lemma 2.1.

In the following lemmas we develop techniques for estimating the
norm difference between two states one of which is pure. The first two
lemmas are closely related to two lemmas of Glimm ([11], Lemmas 3.2
and 3.3).

Lemma 2.4. Suppose ω1 and ω2 are states of a C* -algebra 9Ϊ and there
is a B e 91 such that ω2(A) = ω^B^AB) for all A e 21. Then the following
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inequality holds, \\ω1 — ω2|| ̂ 2(1 — lω^B^2)*. Furthermore, if ωλ is pure
the equality sign holds.

Proof. Let π be the cyclic representation of 21 on a Hubert space §
induced by ω1 and let/! be a cyclic vector for π such that ω^A) = (/15 π(A)f±]
for all Ae2I. Let f2 = π ( B ) f ί . Then we have ω2(A) = (f2,π(A)f2)
for all ^ e 91. Let χ be the operator on § defined by the relation.
if = (Λ, /) /i - (Λ, /) A for all /e §. We have that

ω±(A) - ω2(A) = (Λ, π(A}f,} - (/2, π(A)f2)

= Tτ(π(A)χ).

Diagonalizing χ we find χ can be expressed as follows, χ f — λ { ( g l 9 f ) g ί

-(02,f)92} where λ = (ί - |(/ι,/2)l2)* = (l ~ K(B)|2)* and g l 5 g 2 are
two orthonormal vectors contained in the span of ft and /2. Hence we
have that

- ω2(A)\ = /I {(<?!, π^A)^)- (0

Hence, we have \\ω^ - ω2\\ ̂  2/1 - 2(1 - Icΰ^B)!2)*
Now suppose ωt is pure. Then π is irreducible, and the closure of

π(9I) in the weak operator topology is 33(§). Let El be the projection onto
02, i.e. E2f = (g2J}g2 for all /e§ and let U = I-2E2. Notice that
U fί=fί and 17/2= —/2v Since π(2I) is irreducible it is algebraically
irreducible, and since 17 is self-adjoint there exists a self-adjoint operator
π(A)eπ(9I) such that n(A)f~ Ufa [10, Theoreme 2.8.3]. Replacing A
by 3 (A + A*) we may assume A is self-adjoint. Let h denote the real func-
tion defined by h(x) = x for |x|^l, h(x) = ί for x^l, h(x)=—ί for
x rg — 1. Let J5 = h(A). Then ||5|| = 1. Since /x and /2 are eigenvectors for
π(A\ π(B) ft = h(π(A)) f{ = n(A) ft=U /,. Thus \ωί(B)-ω2(B)\ = 2λ.
Hence, for pure states we have \^ — ω2\\ = 2λ. This completes the proof
of the lemma.

Lemma 2.5. Suppose ω1 and ω2 are states of a C*-algebra 91. Suppose
{Eγ; y e 70} is a decreasing net of projections in 21 (i.e. EΛ^Eβ for oc>β)
with the property that ω1 (Eγ) = 1 for all y e I0 and if ω is any state of 21
such that ω(Eγ) = 1 for all yeI0, then ω = ω1. Let α = inf(ω2(Ey); y e J0).
Then, the following inequalities are valid

2(1 - α) ̂  HCU! - ω2\\ '̂2(1 - α)1 .

Furthermore if <x>2 is pure, then
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Proof. Let E7y = 2Ey -1. Since ||l/y|| = 1 we have

yeI0

Hence, we have \\ω{ — ω2\\ ̂  2(1 — α).
In the proof of the other inequalities we assume α > 0, since for α = 0

these inequalities are trivally satisfied. Hence, we have
for all 7 e /0. Let Py = ω2(Eγ)~i Ey for all y e 70.

where the convergence is in norm. Let π be a cyclic representation of
9ί on § induced by ω2 and/e § a cyclic vector such that ω2(A) = (f, π(A)J)
for all A e 21. Since (π(Ey), 7 e 70) is a decreasing net of operators bounded
below by 0, limπ^) exists in the sense of strong convergence ([10],
Appendix II, p. 331). Let g = limπ(Ey)f. Note g Φ 0 since (g, g) = a>0.

Let ρ(A) = (g, π(A)g) ||#|Γ2. Since π(Ey)f converges in norm to
g it follows that ρy converges in norm to ρ. We note that ρ(Ey) = 1 for all
7 e/o since ρ(Ey) = limρβ(Ey), and ρβ(Ey) = 1 for all β > y. From the prop-
erties of the {Ey} it follows that ρ = ω^. Hence, ρy converges in norm to
ωj as y— KX).

Now, we have that

IK - ω2|| ̂  ||ω! - ρy|| + ||ρy - ω2|| for all γeI0.

From the preceding lemma, we have

||ρy - ω2|| g 2(1 - |ω2(Py)|2)- = 2(1 - ω2(Ey))- .

Hence, we have

||ωι - ω2\\ ̂  \\ω, - ρy\\ + 2(1

for all 76/ 0. Since \\ω1 —ρy\\ and ω2(Ey) — α can be made arbitrarily
small for sufficiently large 7, it follows that, \\cot — ω2\\ ^2(1 — α) .̂

Now suppose ω2 is pure. Then from the preceding lemma ||ρy — ω2||
- 2(1 -ω2(Ey)). We have that

IK - ω2|| ̂  ||ρy - ω2|| - |K - ρy||

for all ye/ 0 . Since IK--ρy|| and |α — ω2(£y)| can be made arbitrarily
small for sufficiently large 7 it follows that, ||ωx — ω2|| ̂ 2(1 — α) .̂
Hence, if ω2 is pure, IK — ω2|| = 2(1 - α)1.

Theorem 2.6. Suppose ωE and ωF are pure generalized free states of
). Let ̂  - det(/ - E(I - F)E) and α2 - det(J -(I-E) F(I - E)) and
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α = min^!, α2). Then

Proo/ Consider the collection of projections {χ+ (P) χ_ (β) e SICK)}
defined for all finite projections P^E and Q^I — E. This collection
forms a decreasing net of projections, since for P'^P and β' ̂  Q we have.

χ+ (P') χ_(β') ̂  X+ (P) X(β') ̂  *+(*>) X-(β) -

Furthermore, we have ω£(χ+(P)) = ω£(χ_(β)) = l for all finite P^E
and β^/-E. Hence, we have ω£(χ+(P)χ_(β)) = 1 for all P^E and
β ̂  1 - E.

Next, suppose ω is any state of 2I(X) with the property ω(χ+ (P) χ_(β))
= 1 for all P ̂  E and β :g 1 — E. We show that ω = ωE. Let v4 be the opera-
tor defined by the relation ω(a(f)* a(g)} = (/, Ag) for f,geK. We have
that Q^A^I. Furthermore we have ω(a(f)*a(f)) = ( f , A f ) = (f,f)
for /eRangeE and ω(a(f)a(f)*) = (f,(I-A) /) = (/,/) for /eRange
(1 — E). Hence, we have ^4 = E and therefore from the discussion in Sec-
tion 1, ω = ωE. Therefore, the net {χ+(P)χ-(Q)} satisfies the conditions
of Lemma 2.5. Hence, we have \\ωE — ωF\\ = 2(1 — α')^ where

tf=inf{ωP(χ+(P)χ-(Q)); P^E and β^/-E} .

We complete the proof of the theorem by showing α = α'.
Now, we have from Section 1 that ωF(χ+(P))= det(/-P(l -E)P)

ωF(χ-(0) = det(/-βEβ). Let αλ = inf{ωF(χ+(P)); P^E} and
α2 = inf{ωF(χ_ (β)); β ̂  / - E}. Clearly, we have αx = det(/-E(/-E)E)
and α2 = det(/ - (/ - E) F(7 - E)). Furthermore αx ̂  α' and α2 ̂  αr. We
assume ^ > 0 and α2 > 0, for if αx = 0 or α2 = 0, we have α' = 0 and the
conclusion of the theorem follows immediately.

Since oq > 0 and α2 > 0 we have that

||E(7 - E)E|| < 1 and ||(/ - E) F(I - E)|| < 1 .

Since these operators have orthogonal ranges we have

Hence, ||E — E|| < 1. We will make use of this fact in a minute.
Let τP(A) = ωF(χ+ (P))"1 ωF(χ+ (P) A χ+ (P)) and ω = lim τp. It follows

P / E

from the argument in Lemma 2.5 that τp converges in norm to a state
ω as P/ E. We will show that ω = ωE. Let 0 ̂  A ̂  / be the operator on K
defined by the relation ω(a(f)* a(g)) = (/, Ag) for all/, g e K. For /e RangeE
and ||/|| = 1 we have ω(α(/)*α(/)) = (/,X/) = l, since τp«/)*α(/))=l
for all P^E such that P/ = / Hence, we have yl^E. We will show
A = E by assuming A Φ E and arriving at a contradiction.
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Suppose A + E. Then there is a vector/! 6 Range (1 — E) with ||/ιl| = 1
and (/ι,^4/ι)>0. Let E1 be the projection onto fa i.e. Eίf = (fί9f)fί

for all feK. Next we show that inf(ωF(χ+(P)); P^
= det(/ - (E + EJ (/ - f) (E + EJ) = (fa A fa a, > 0.

We have that

inf(ωF(χ+(P)); P £ E, + E} = inf(ωF(χ+(P)); E^P^E.+E)

= inf(ωF(χ+(P) χ+ (E,) χ+ (P)); P £ E)

Hence, det (/-(£ + Et) (/ - F) (E + EJ) > 0. Since α2 > 0 we have
using Lemma 1.4, det (/-(/- E - E^ F(I-E- EJ) > 0. Therefore
HE + E! — F|| < 1, by the argument used earlier in this proof. Hence,
we have that ||E - F|| < 1 and ||E + Eί - F\\ < 1. The next lemma shows
that this is impossible. Hence, we have reached a contradiction. We
conclude that A — E and therefore ω = ωE.

From this result, it follows that α' = α l9 since

α' = inΐ(ωF(χ+(P) χ_ (β)); P ̂  E, β ̂  / - E)

= inf(ωF(χ+(P)) τp(

where the last equality follows from the fact that ω(χ_ (Q)) = ω£(χ_(β)) = 1
for all Q^l—E. By interchanging the roles of oq and α2,χ+(P) and
χ_(β), we could have equally well argued that α' = α2. Hence we have
α' = αj = α2, when αx > 0 and α2 > 0 (i.e. αx φ α2 only if αx or α2 vanishes).
Hence, we have <χ' = α= min(α1,α2). This completes the proof of the
theorem.

Lemma 2.7. Suppose E and F are hermίtίan projections on a Hilbert
space K and \\E — F|| < 1. Let E± be a non zero hermitian projection
orthogonal to £, i.e. £^ = 0. Then H^ + E - F\\ = 1.

Proof. Let SDΪ be the range of F. We begin by showing that the range
of FE is 9W. Let δ = 1 - ||E - F\\2.

I-(E-F)2^(l-\\E-F\\2)I = δI>0.

Hence, we have

FEF = F(I -(E- F)2) F^δF

Hence, FEF is strictly positive on SDΪ and therefore FEF has an inverse
on 9K. Therefore, the range of FEF and FE is 50Ϊ.

We complete the proof as follows. Let ft φ 0 be a vector in the range
of E19 i.e. E^h^h. Since FfteSOί there is a gεK and that FEg = Fh.
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Let f = h-Eg. Note / φ O since ||/||2 = \\h\\2 + \\Eg\\2. We have that
(E1+E)f=-E1h-E2g = f and Ff = Fh-FEg = 0. Hence, we have
(E! + E - F) f = f and therefore HJ^ +E- F\\ ̂  1. Since H^ -f E- F\\ ̂  1
the conclusion of the lemma follows.

Theorem 2.8. Let ωE and COF be pure generalized free states of
Then, ωE and ωF are unitarily equivalent if and only if E — F is a Hilbert-
Schmidt class operator.

Proof. Suppose ωE~ωF. Then, we have ωE~ωF. From Lemma 2.1
it follows there is a finite dimensional subspace SPΪ C K such that

Let 91 be the subspace of K spanned by {E9W} and {(/-£)$«} and let
PQ be the projection onto 91. We note that 9ΪD9M and P0E = EP0.
Since 9Ϊ3ΪR we have ||ω£|9I(?ί)c-ωF|9ϊ(?l)c|| <1. Since ωE and ωF

are even states of 9ί(K) we have from Lemma 2.3 that

Since for all finite projections P^(l — P0)E we have

2χ+(P)-/e2I(9t1) and

it follows that

1 > \\ωE I ̂ (Sri1)-

Hence, we have det(ί-(I -P0)E(ί -F)E(ί -P0))>i and therefore
a) Tr((/ - PO) E(I - F) E(I - P0)) < oo .
Similarly 2χ_(0-/e9I($R1), and ||2^(β)-/|| = l for all finite

projections β ̂  (/ - P0) (/ - £). Therefore

1 > sup(K(2χ_(β) - /) - ωF(2χ_(β) - 7)| β ̂  (/ - P0) (/ - E))

- 2 - 2 inf(ωF(χ_(β)); β ̂  U - PO) (ί - £))

Hence, det(7 - (/ - P0) (/ - E) F(I -E)(I- P0)) > |, and therefore we have
b) Tr((/ - PO) (/ - E) F(I -E}(I- P0)) < oo .
Adding inequalities (a) and (b), we find Tr ((/ - P0) (E - F)2 (I - P0)) < oo .

Since P0 is finite dimensional it follows that Tr((E — F)2)<oo. Hence,
E - F is of Hubert-Schmidt class.
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Next we suppose E — F is of Hubert-Schmidt class. We show ωE ~ ωF.
Let 9JI+ be the subspace of vectors / 6 K such that (E - F) f = f and 9W_
be the subspace of vectors g e K such that (E — F)g — — g. Let P+ and
P_ be the hermitian projections onto SDΪ+ and 9Jί_ respectively. Since
E — F is of Hubert-Schmidt class, SDΪ+ and 9Jί_ are both finite dimensional.
Let Eί=E — P+ and Fί = F — P_. Note E^ and F1 are projections and
\\EI~ F1\\<1; this last inequality follows from the fact that E1-F1

is compact and the spectrum of E1 — Fί is contained in the open interval
(—1,1). We will show that ωE ~ ω£l, ωF~ωFί and ωEl ~ ωFl.

From Lemmas 2.1 and 2.3 it follows that ω£l~ω£ and ωFl~ωF,
since ωEJ8ί(9Wί) = ωE|9I(aRi) and ωFja(Wi) = ωF|a(5Ki). Since
these states are pure we have ωEί~ωE and ωFί ~ ωF.

Since Tr((£! - Fx)
2) ̂  Tr((£ - F)2) < oo, it follows that Tr(Ei(/- Fi)^)

+ Tr((/-E1)F1(/-E1))-Tr((£1-F1)
2)< oo. Since, ||£1-F1||

2<1 we have
that \\Etf -ίiίEJI ^ IK^-ίi)2!! < 1 and IK/-EJ ^(/-fiJH
^IKEi-Fi)2!^!. Hence we have that ^ = det(I-£1(J-F1)£1)>0
and α2 = det(7 - (/ - £J F1(/-£1))>0. Hence, α = min(α1,α2)>0 (in
fact α = α1=α2). Then, by Theorem 2.6 we have that ||ω£l — ωFJ|
= 2(1— α)^<2. Since ωEί and ωFl are pure, we have by Lemma 2.1,
or by [12], ωEί ~ ωFl. Since coE~ωEί and ωF~ωFί, we have ωE~ωF.
This completes the proof of the theorem.

3. States of Matrix Algebras

Every gauge invariant generalized free state ωA of 9I(K) can be
extended to a pure generalized free state of 9I(KφK). We consider
9T(X) as the subalgebra of W(KΦK) generated by the a(f) with
/={/ι>/2} anc^ f2 = ® Given an operator 0^^4^/ on / we define a
projection £4 on K®K defined by the matrix of operators,

A
A*(I-A)* I -A

- A ) f 2 } . The
mapping ωA->ω£A carries generalized free states of 2ί(K) into pure
generalized free state of 2l(j£0X). The main result of this section is the
estimate

i \\ωEA ~ ωEΰ\\2 ̂  \\v>A - ωB\\ ̂  \\ωEA - ωEB\\ .

We begin by first considering the case where K is of finite dimension.
Since for K of finite dimension 91 (K) is a finite matrix algebra, we begin
with a discussion of states on matrix algebras.
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Suppose M is an (n x rc)-matrix algebra and ω is a state of M. Then ω
may be represented by a density matrix, Ω e M, by the relation.

ω(A) = Ύτ(AΩ) for all AεM9

where Ω^O and Tr(ί2) = l. If ω^ and ω2 are states of M represented
by Ω1 and Ω2 then \\ω1-ω2\\ = \\Ω1-Ω2\\Tr9 where p||Tr = Tr(,4M)*)
= sup{|Tr(B,4)|; ||J5||^1}.

In general it is difficult to compute \\Ωί — Ω2||Tr, while it is not as
difficult to compute ||Ωf - Ω\|β.s. = 2-2 Tr(Ωf Ω\). In the next section
we show that

where Ω l9 Ω2 are positive operators of trace one. We will use this result
to obtain estimates on \\ωA — ωB\\.

We define a mapping φ from the states of M to the pure states of
M®M.

Let M act irreducibly on a Hubert space §, i.e. we identify M as
S(§). We define a linear mapping F of M onto §(χ)§, the tensor product
of § with itself. Let Fbe an antiunitary operator on §, i.e. Vis conjugate
linear, V(h1+h2)=Vhί + Vh29 Vah=ΰVh9 all h, hί9h2eξ), and V
is isometric, \\Vh\\ = \\h\\ all h e <r>. If A is expressed as a linear combina-

tion of rank one operators, i.e. Ah= ^ (βhfyfi for heξ), we define
w ί = l

= X fί®Vgί. The fact that F(X) depends only on A and not

on the decomposition of A into rank one operators, follows from the
relation, ||F(^)||2 - Tr(^* A). If A9BeM we have (F(A\ F(B)) = Tr(^l* B).
We now define the mapping φ from states ω of M to pure states φ(ω)
of M(x)M by the relation,

φ(ω) (A®B) = (F(Ω*)9 A®B F(Ω*)) ,
where

We note that φ(ω)\M®I = ω9 i.e. φ(ω)(A®I) = ω(A) for AeM. This
can be seen as follows. Let Ω be the density matrix representing ω, i.e.
ω(^4) = Tr(^4ί2). Diagonalizing Ω, we express £2 in the form,

n

Ωh='Σ αi(fh h) f t , where (ft) is an orthonormal basis of §. Then, we have
i = l

= Σ αf/,®^ and φ(ω) (A®I)= | αf αj(/ί?
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The mapping φ depends only on V. Such a mapping, constructed
from an antiunitary operator V in the manner described above will
be called a purification map.

Lemma 3.1. Let φ be a purification map from the states of an (n x ri)-
matrix algebra M to the pure states of M(x)M. Then, it follows that
il|φ(ω1)-φ(ω2)||2^||ω1-ω2||^||φ(ω1)-φ(ω2)||, for ω1? ω2 states
of M.

Proof. To prove second inequality we note that

\\φ(ωv}-φ(ω2}\\^\\φ(ωl)\M®I-φ(ω2)\M®I\\

To prove the first inequality we identify M as 93(§) and M®M as
93(§®§) and φ(ω) (A®B) = (F(Ω^\ A®BF(Ω% where ω(A) = Ύr(AΩ)
for all AeM. Since M(χ)M acts irreducibly on §®§ it follows from
Lemma 2.4 that \\φ(ωj - φ(a>2)\\ = 2(1 - |(F(Qft F(Ωf))|2)* Since
(F(Ωι\ F(Ω\ )) = Tr(Ωf Ω\) it follows from simple algebra that

2 - 2(1 - i ||φ(ωι)

From Lemma 4.1 it follows that
Hence by simple algebra we have

^ IK - ω2|| (1 - i ||ωι - ω2||) .

Hence, we have HC^ — ω2|| ̂
If K is an n-dimensional Hubert space M = 2I(̂ ) is a (2nx2w)-

matrix algebra. Since 9ί(K0X) is a (22w x 22w)-matrix algebra we may
identify M(χ)M and *&(K@K). We will construct a purification map φ
from the states of 21 (K) to the pure states of 9I(K 0 K) such that for gener-
alized free states ωA of 91 (K) φ(ωA) = ωEA.

We identify K as the subspace of K@K, consisting of all vectors
{/bΛl eK®K where /2 =0. jK1 consists of the vectors {/1?/2} where
/! -0. We identify 91 (K) as the subalgebra of 9X(X0K) generated by
the a(f) with /e K. Let [7 be the isometry of K into K1 defined by the
relation l/{/i, 0} = {0,/J. From Lemma 2.2 it follows that the commu-

for /eX, and F- Π (1 -2α(/zί)* α(^)) where {/z1? ...,ΛB} is an ortho-
i = l

normal basis of K. By the argument of Lemma 2.2 we have

Let ω0 and ωc

0 be the Fock states of 9I(X) and 9I(K)C, i.e.
ω0(a(/)*α(/)) = 0 all /eX and ωc

0(b(/f fe(/)) = 0 all /eX. Let π
and πc be the Fock representations of 9ί(K) and 9I(X)C induced by ω0

2 Commun. math. Phys., Vol. 16
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and ωc

0 on Hubert spaces § and §c. And let F0 and FC

Q be cyclic vectors
in § and §c such that ω0(^) = (F0,π(^)F0) and ωc

Q(B) = (F§, πc(B) F§)
for all A e 2I(K) and B e Ut(K)c. We define an antiunitary operator Fj
from § into §° by the relations,

Vι*(α(W ... α(f,)*)F0 = (*Wi)* ... *> (/,)*))* Λ*

for fl9...9frεK9 where Ff = πc(fe(Λ1)*... b(hn)*)Fc

0. Vi may be defined
for all F e § since § is spanned by vectors of the above form. By straight-
forward computation one can show that Vi is a conjugate linear iso-
morphism of § onto £>c.

We will construct the purification mapφ using Fx. Let ω00 be the
Fock state ofM(K® K), π0 the induced Fock representation of$l(K®K)
on a Hubert space §0 with F00 e §0

 such that ω00C4) = (^oo? π0(,4)F00)
for all A e 9I(KφK). We note the following identifications, §0 = §® §c,
F00 = F0(x)FS, co00 = ω0®ωc

0 and π0(^i® B) = π(^i)® πc(5) for ^L e 2Ϊ(X)
and 5 6 W(Kf.

In accordance with the previous discussion of purification maps,
φ is constructed as follows. Suppose ω is a state of 9ί(Ί£), and ω(A)

ί=l

for all A e 2ί(X) and ΰ e 9ί(K)c. We show that if ωA is a generalized free
state of 2I(K) then φ(ωA) = ω£^.

In the calculations below we will make use of the following results.
Suppose 90Ϊ is a subspace of X0X and (Λ l5 . . . ,Λ Π ) and (fc1? . . . ,/C M ) are
orthonormal bases for 9CR. Then, if

A = α(hί)*...α(hn)* and B-α^)*... α(kj*

we have A = αB were α is a complex number of modulus one. The
pure generalized free state ω£, where E is the projection onto 9K, is
related to the Fock state co00 by the relation ωE(D) = ω00(A*DA)

= Σαi(Fi,π(A)Fi) for 4e8ϊ(X), (Fi9Fj) = δij9 α^O and
i=l s

Let G = J] αf F f® F! F^. Then, we define φ(ω) by the relation

We proceed to show φ(ωA) = ωEA. Suppose ωA is a generalized free
state of SΪ(jfC) and {/1? ...,/„} is an orthonormal basis of K such that
Afi = λifi for ι = 1, ...,n. Let S be the set of subsets σ of the integers
(1, ..., ri). Note S has 2" elements. By a rather laborious calculation one
can show

Σ*(σHFσ>π(B)F0) for B
σeS
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where

Fσ = π(Aσ) FO , Aσ = Π a(/j)*
ieσ

Let G - Σ α(σ)*Fσ<g> *Ί Fσ. We have that φ(ωA) (A ®B) = (G, n(A)® πc(B) G)
σeS

for A e 2l(7£) and 5 e 2I(AΓ)C.
We begin by computing Fσ® Vl Fσ. We have

^σ ® V\ Fσ = (π(Aσ) ® πc(J5*)) (F0 ® Ff)

where £σ = Π&(/c)* and Fl = πc(b(hJ*... b(hn)*)Fϊ>. We have that

F{ = zπc(b(f)*.,.b(fn)*)F<0 where |z| = l, since (Λ .../„) and (̂  . . .AJ
are both orthonormal basis of K. Since πϋ(A®B) = π(A)®π(B) for
X 6 yί(K ) and B e 9l(K)c, it follows that

ι)* fΠ*(/ι)*)* Π b(tt* since

\isσ / i = l
where X;=

ieσ

and π0(F) F0o = ^oo> it follows that

where Cσ =!«(/;)* Π^C^7^)** Π aCt7/;)*- We can replace Cσ by
ιeσ ieσ

the matrix

where
fa(/;)* for ίeσ

[//;)* for i £ σ .

Hence, we have

σeS σeS

where Dσ = f[ Sίσ and Stσ = 1* α(/;)* for i e σ and Sίσ = (1 - λ$ a(U /,)*
i=l

for ί ̂  σ. Summing over all σ e 5, we find

G = z π0(D0) F00 ,
where
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Note that the vectors gi = λffi + (l -λ^ U ft from an orthonormal set
which span the range of EA. Since φ(ωA)(B) = (G, π0(B) G) for all
B e 3ΦC0K) it follows that φ(ωA) = ωEA.

Lemma 3.2. Let ωA and ωB be generalized free states of $1(K). Let
EA and EB be the projections on K®K given by the matrices of operators,

(
jD

" v* "/ I F — I
L" -1 '-A ' B~U*(/-B)* /-B

and let ωEA and ωEβ be the pure generalized free states of $l(K®K)
determined by these projections. Then it follows that

i \\ωEΛ ~ ωEJ|2 ̂  IK ~ ωB|| ̂  \\<OEA ~ ωljl .

Proof. We identify K as a subspace of K@K and 9ί(X) as a sub-
algebra of 9I(JC0jK). If 91 is a subspace of K, we will write 5100 to
denote 91 as a subspace of K@K (e.g. 51ΦOCKΦOC-KΦK and
21(51 ΦO)C$I(KΦK)). From the construction of f^ and Eβ and from
the definition of generalized free states (Def. 1.2) it follows that
ω£J 21(51 φO) = ωJ2I(5ϊ) and ω£J 21(5100) - ωβ| 21(51) for all sub-
spaces 91 C K. Since 21 (51 φ 0) C 21(51 © 51) we have

||(ω^ - ωB) 1 9I(5l)|| £ \\(O>EA - ωSa) \ 91(51 © 5l)|| . (a)

Setting 51 = K, we have \\ωA - ωB\\ g ||ω£χ - ω£jB||.
' Next we show ^ \\ωEΛ - ωEβ\\2. ̂  ||ω^ - ωB||.

If K is finite dimensional, then there is a purification map φ from the
states of 9I(X) to the pure states of W(K®K) such that φ(ωA) = ωEA

and φ(ωB) = ωEB. Then, it follows from Lemma 3.1 that il|ω£^ — ω£J|2

Now suppose K is infinite dimensional and ε > 0. Since polynomials
in the a(f) and a(/)*, fεK®K are dense in 9l(X0X) it follows that
there is a polynomial p such that ||p||^l and \ωEΛ(p) — G)EB(P)\

Since p is a polynomial there is a finite dimensional subspace
90ΪCK0K such that pe9l(9Jl). Since 9W is finite dimensional there is
a finite dimensional subspace 51 CK such that 9KC51051. Let
{9ln;n = 1,2, ...} be an increasing sequence of finite dimensional sub-
spaces of K, each of which contains 51 and the closure of whose union
is K. Let Fn be the hermitian projection onto 5lw, and let An = FnAFn,
Bn = FnBFn for n = 1,2, ... Since Fn->I as rc-»oo in the strong operator
topology it follows from the work of Kaplansky [17], that An-*A, Bn-+B,

An)ί -> A* (I -A)* and B$(I-B$ -> B*(I-B)* as «->oo in
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the sense of strong convergence. Let Pn and Qn be the projections on
Kζ&K defined by the matrices,

B

I-An

Clearly, we have Pn-+EA and Qn-+EB as n-+co in the sense of strong
convergence. Let ωPn and ωQn be the generalized free states of 9Ϊ(X® X)
determined by Pn and Qn. Since p is a polynomial in the α(/) and α(/)*
and ωPn is a generalized free state, ωPn(p) can be expressed as a poly-
nomial in matrix elements, (f,Png) of Pn. Since Pn-4EA, we have
ωpn(p)"^ω£^(p) as W-+QO. Similarly we have ωQn(p)->ωEB(p) as n->oo.
Since 9ΐrt is finite dimensional, we have

,

Since p e 9l(9lπ Θ 91J for all n = 1, 2, . . . and ||p|| ̂  1 we have

Taking the limit as rc-»oo we have |ω£^(p) — ω£jB(p)| ^2\\ωA — ωB\\*.
Hence, we have \\ωEA — ωEβ\\ ̂  2 \\ωA — ωB\\* + ε. Since ε > 0 is arbitrary
we have il|ω£^ — ωEβ\\2 ^ ||ω^ — ωB||. This completes the proof of the
Lemma.

4. Hubert-Schmidt Operators

In the present section we collect some results on Hubert-Schmidt
operators which will be needed later. The first two lemmas compare
A^ — B^ and A — B in Hubert- Schmidt norms and trace norms. We
denote by ||S||H.s. and ll^llxr the Hubert-Schmidt and the trace norm
respectively of an operator S, i.e. ||S||HS =Tr(S*S)* and ||S||Tr = Tr(|S|)
where |S| = (S* S)*.

Lemma 4.1. Lei ^4 and B be positive operators on a Hilbert space K.
Then

\\A-~

Proof. If A — B is not of trace class its trace norm is infinite, and the
lemma is trivial. We therefore assume A — B is of trace class, hence it is
in particular compact. Let S = A* — B* and T = A* + B*. Let π be a
representation of 33 (K) annihilating the compact operators. Then
π(A) = π(B), hence π(A*) = π(A)* ' = π(B)* = π(B*) by the uniqueness of
the positive square root of a positive operator. Thus π(S) = 0, so S is
compact. In particular S has pure point spectrum. Let (/i)^ be an
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orthonormal basis for K consisting of eigenvectors for S with eigen-
values λt. Then, since T ̂  ±'S and %(S T+TS) = A-B,we have

Lemma 4.2. Lei ^4 αwd 5 be positive operators on a Hilbert space K.
Suppose B has pure point spectrum and that there exists ε > 0 such that
either A^&I or B^sl. Then

Proof. If A- B is not of Hubert-Schmidt class its Hubert-Schmidt
norm is infinite, and the lemma is trivial. We therefore assume A — B
is a Hubert-Schmidt operator. Let (/i)^ be an orthonormal basis
for K consisting of eigenvectors for B with eigenvalues λt. Then

Von Neumann [21] (see also [8]) has showed that every self-adjoint
operator A on a separable Hilbert space can be written in the form
A = B + H, where B is a self-adjoint operator with pure point spectrum
and H is a self-adjoint Hubert-Schmidt operator of arbitrarily small
Hubert-Schmidt norm. Moreover, the eigenvalues of B are dense in
the spectrum of A. We first modify this result for our purposes.

Lemma 4.3. Let A be an operator on a Hilbert space K such that
0 <Ξ A ̂  /, and let ε > 0. Then there exists an operator B, O^B^I, with
pure point spectrum such that A^ — B^ and (I — A)^ — (I — B)* are of Hilbert-
Schmidt class with Hilbert-Schmidt norms less than ε. Furthermore, the
eigenvalues of B are dense in the spectrum of A.
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Proof. Let E be the spectral projection of A such that
If we consider the operators EA and (/ — E)A separately and use sym-
metry arguments we may assume O^A^^L Furthermore, if F is the
projection on the null space of A, and B is defined to be 0 on FK, we may
restrict attention to (/ — F)A, hence we may assume A has no null space.
Finally we may assume g^l. Let En be the spectral projection of A
such that

n=l,2, ..., and let An = EnA. By von Neumann's theorem [21] there
exist a self-adjoint operator Bn with pure point spectrum on the Hubert
space EnK, such that the eigenvalues of Bn are dense in the spectrum of
An, and a self-adjoint Hubert-Schmidt operator Hn acting on EnK
with ||//w||H.s.<ε2-2Λ, such that An = BΛ + Hn. Since |]jffj £||HB||H.S.,
Bn = An - Hn ^ 0. Hence by Lemma 4.2

Let B = Σ Bn. Then £ has pure point spectrum with eigenvalues dense
in the spectrum of A, and

00 00

|H*-**||H.s.g Σ ll4?-B*llH.s.<e Σ 2-" = ε.
n = l n = l

Note that En- An>(l-2~n)En^^En and £„ - Bn § 0. Hence by
Lemma 4.2

||(£π - AJ> - (En - BnnH.s. Z 1/2 ||(£n - Λ) - (E, - Bn)||H.s.

= |/2||HJH.s.<

Since En(I - A)* = (En - An)* and similarly for B,

The proof is complete.
Recall from the previous section that if A is an operator on a Hubert

space K, and 0 ̂  A ̂  /, then EA denotes the projection on the Hubert
space KQ)K defined by the matrix,

/ A A*(I-Af
A \A*(I-Aγ I- A

If B is another operator between 0 and / we next give a criterion in order
that EA - EB be Hubert-Schmidt.
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Lemma 4.4. Let A and B be operators on a Hίlbert space K such that
Q^A^I and 0^B^/. Then EA — EB is a Hilbert-Schmidt operator if
and only if the operator A* — B^ and (I — A)* — (/ — B}^ are of Hilbert-
Schmidt class.

Proof. Let H = A * - B* and G = (/ - A)* -(I- B)*. Then

where

X

* -

(b) Y = A*G + H(I-A)*-HG.
Now EA — EB is Hilbert-Schmidt if and only if X and Y are both

Hilbert-Schmidt operators on K. In particular, if G and // are Hilbert-
Schmidt we have by (a) and (b) that EA - EB is Hilbert-Schmidt. Conversely
assume EA — EB is Hilbert-Schmidt. By, Lemma 4.3 there exists an opera-
tor C with pure point spectrum such that 0 ̂  C g / and such that A* - C^
and (/ - A)* - (I - C)* are Hilbert-Schmidt operators. By the first
part of the proof EA — Ec is Hilbert-Schmidt. If we can show that B^ — C^
and (I-B)*-(I-~C)* are Hilbert-Schmidt, it follows that A*-B*
= (A* - C*) + (C* - B*) is Hilbert-Schmidt, and similarly (/ - A)* ~(I- B)*
is Hilbert-Schmidt. Hence in order to prove the lemma we may assume B
has pure point spectrum.

Let RA = A* + (I-A)* and RB = B* + (I-B)*; Then RA^I and
RB ̂  /. Furthermore RB, and hence R|, has pure point spectrum. Thus
by Lemma 4.2 we have

so G + H is Hilbert-Schmidt. Then by (b) -A*H + H(I-A)*+H2

is a Hilbert-Schmidt operator. Adding this operator to X we obtain
from (a) that HRA is Hilbert-Schmidt. Since RA is invertible H is Hilbert-
Schmidt, hence so is G. The proof is complete.

If we combine this lemma with Lemma 4.1 we have the following
corollary.

Corollary 4.5. Let A and B be operators on a Hilbert space K such that
Q<zA<.I,Q<.B^I,andA-Bis of trace class. Then EA - EB is a Hilbert-
Schmidt operator.

Lemma 4.6. Let ωA and ωB be gauge invariant generalized free states
of^ί(K). Suppose 0<ε<2. Then if ||4*-B*||H.Sl<8/12, and \\(I - A)^
- (I - B)*||H.S. < β/12, then \\ωA - ωB\\ < ε.
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Proof. By Eqs. (a) and (b) in the proof of Lemma 4.4

iμr||H.s. ̂  P*H||H.S. + \\HA'\\n.s. + ll# 2IIH.S.
and similarly ||Y||H.s. <ε/4. Therefore we have

<4(ε/4)2 = e2/4.

Now \\EA-EB\\^ = Ύr((I-EA)EB(I-EA)) + Ύr(EA(I-EB)EA). Hence
(I-EA)EB(I-EA) and EA(I-EB)EA are of trace class. Let (/^
and (0ί)i£i be orthonormal bases for K@K consisting of eigenvectors
for (/ - E A) EB(I - EA) and EA(I-EB)EA respectively with respective

OO 00

eigenvalues λ£ and μt. Then λt ̂  0, μt Ξ> 0, £ A f < ε2/4, and Σ μt< ε2/4.
Hence ί = 1 *=ι

i = l f= l

and similarly det(7 - EA(I - EB) EA)>1- ε2/4. Since ε < 2 it follows
from the proof of Theorem 2.6 that the two determinants are equal, and

Since \\ωA — ωB\\ ^\\ωEΛ — ωEβ\\ by Lemma 3.2, the proof is complete.

5. The Main Theorems

In this section we shall give necessary and sufficient conditions for
quasi and unitary equivalence of two gauge invariant generalized free
states of the CAR-algebra 91 (K)9 K being, as before, a separable Hubert
space. Recall that if ω is a state of a C*-algebra 91, and πω is its cyclic
representation, we say ω is a factor state if πω (91)" is a factor.

Theorem 5.1. Every gauge invariant generalized free state of the
CAR-algebra 9ί(K) is a factor state. Two gauge invariant generalized free
state ωA and ωB are quasi-equivalent if and only if the operators A* — B^
and (I - A)* -(I- B)* are of Hilbert-Schmidt class.

Proof. Let ωA be a gauge invariant generalized free state of 9Ϊ(K).
By Lemma 4.3 we can choose a sequence of operators An on K with
pure point spectra with eigenvalues dense in the spectrum of A, such that
0£An£I9 ||A*-^||H.s.< l/12n, and ||(/-A)*-(/-^||H.s.<l/12Fi.
By Lemma 4.6 lim||ω^ — ωA \\ fΠim l/n = 0. By Lemma 1.3 ωA is a

n n n n

factor state. Since the factor states of a C*-algebra form a norm closed
set by a theorem of Combes [6], ωA is a factor state.



26 R. T. Powers and E. Stβrmer:

Suppose ωB is another gauge invariant generalized free state. Suppose
A*-B* and (I-A^-(I~B)^ are Hubert-Schmidt operators. By
Lemma 4.4 EA — EB is a Hubert-Schmidt operator, hence by Theorem 2.8
ωEA ~

 ωEB By Lemmas 2.1 and 2.3 there exists a finite dimensional sub-
space 9W of K®K such that

Now there exists a finite dimensional subspace 91 of K such that
SRCΉΘΉ. Since ^Θ^C^Θ^caK1, it follows by inequality (a)
in the proof of Lemma 3.2 that

ωA -

By Lemmas 2.1 and 2.3 ωAγωB.
Conversely, suppose ωA~ωB. Again by Lemmas 2.1 and 2.3 there

exists a finite dimensional subspace S(R of K such that

Let E denote the hermitian projection on 9W. Let A± — EA E + (I — E)
Ά(I-E) and B1 =EAE + (/-£) B(I - E). Then v4-^ and B-Bl

have finite rank. Hence EA-EAί and EB-EBι are Hubert-Schmidt
operators by Corollary 4.5. Therefore by Theorem 2.8 O>EA ~ ωEA and
ωEB~

ωEBl

 Now ω^JSίίϊR^^ω^l^ίίaDΪ1) and similarly for 5 and B^
Therefore

But A1 and 5j coincide on 90Ϊ, and both ω^t and ωBί are product states
in the sense that if S e 9l(9K) and Te ^(aR1) then ωXl(S T) - ω^^S) ω^^T)
and similarly for B^ Therefore \\ωAl — ωBJ| < 1, so by Lemma 3.2
we have

By Lemma 2.1, or by [12], ωEAι ~ ωEβι . By transitivity of unitary equiv-
alence ωEΛ ~ O>EB. By Theorem 2.8 EA — EBisa Hubert-Schmidt operator.
Hence by Lemma 4.4 A* - B* and (l - A)* - (I - β)* are Hubert-Schmidt
operators. The proof is complete.

In the course of the proof we showed

Corollary 5.2. Let ωA and ωB be two gauge invariant generalized free
states o/2X(K). Then ωA ~ ωB if and only if O>EA ~ ωEβ.

Our next objective is to study unitary equivalence of two states ωA

and ωB. For this a more detailed knowledge of the factors obtained from
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ωA and ωB is necessary. Let πA denote the cyclic representation of
M(K) induced by ωA. Let RA = πA(&(K}}". By Theorem 5.1 RA is a factor.
We say ωA is of type X if RA is of type X, X = /, Hί977^, HI. Our next
lemma gives characterizations of the type of ωA in terms of A. An equiv-
alent result has been obtained by Rideau [24], see also the paper of
Dell'Antonio [8].

Lemma 5.3. Let ωA be a gauge invariant generalized free state of the
CAR-algebra 9l(JK). Then

(i) ωA is of type I if and only if there exist a spectral projection E of A
and a trace class operator T such that A = E + T.

(ii) ωA is of type 1^ if and only if there exists a Hilbert-Schmidt opera-
tor H such that A = jI + H.

(iii) ωA is of type 11^ if and only if there exist two orthogonal spectral
projections P ana Q of A with Q and I — Q of infinite dimension, a self-adjoint
trace class operator Tsuch that TQ = 0, and a self-adjoint Hilbert-Schmidt
operator H such that 77 β = 77, such that A = P+T+^Q + H.

(iv) ωA is of type III otherwise.

Proof. Suppose first A has pure point spectrum. Let (/))»• ̂  i, ί = 1,2,...,
be an orthonormal basis for K consisting of eigenvectors for A. Let

= λ ί f i . Let o)j be a state on the complex 2 x 2;matrices 91,. defined by

*Use the notation in [13]. Let ω= (X) ωf be the corresponding product

*
state on 9ί = (X) 9If. Then 9l^9I(K) and ω can be identified with ωA,

see Lemma 1.3. Let E denote the spectral projection of A such that
AE _• jE. For P any spectral projection of A we write i e P if P/) = /f.
Then by a result of Araki [1] and Bures [5], see also [19], ωA is of type 7
if and only if

\ V ί i 1 \ i V 1
a) 2^ (1 ~~ ^ί) + AJ "t< °° '

ie£ ie/-£

hence if and only if E(I — ̂ 4)+ (7 — E)A is of trace class. Since this is
equivalent to A = E + T with T of trace class (i) as follows.

By a result of Moore [19] ωA is of type 77X if and only if

hence if and only if A* - 2 " * I and (/ - A)* - 2 ~ * I are Hilbert-Schmidt.
An easy argument using Lemma 4.2 shows that this is equivalent to
A — jI being a Hilbert-Schmidt operator. Thus (ii) follows.
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If c>0 and x is a real number let |x|c = inf (|x|,c). Then by a result
of Moore [19] ωA is not of type /// if and only if for some, and hence
all, c>0

ίeE 1-1.
-1 + Σ

iel-E

2

<oo .

Let F and G be spectral projections of A such that AF^^F and
^^G. Assume ωA is of type 11^ and put c = 1. Then by b) we have

>
ίeE-G i / ieG

ieE-G ieG iel-E-F ieF

*ϊ Σ {(A*-2-*)2 + ((l-A ί)*-2-*)2}+ΣA i+Σ(l-^)>
iel-F-G ieF ieG

since 2(lf - (1 - )̂*)2 ̂  (λf - 2~*)2 + ((1 - λtf* - 2~ *)2. Therefore, if ωA

is of type 11^ then dim(F + G) = dim(7 — F — G) = oo, and by using the
arguments employed in the proofs of (i) and (ii),

where T is a self-adjoint trace class operator such that T(I — F — G) = 0,
and H is a self-adjoint Hubert-Schmidt operator such that H=H(I—F—G).
Letting P = G and Q = I — F — G, A has the form in (iii). Conversely, by
(i) and (ii), if A has the form in (iii) then ωA is of type 11^.

Finally, if A does not have pure point spectrum then from the proof
of Theorem 5.1 ωA can be approximated in norm by states ωAn, where
An has pure point spectrum, and its eigenvalues are dense in the spectrum
of A. By cases (i), (ii), and (iii) ωAn is of type /// for all rc, hence ωA is of
type ///. The proof is complete.

Remark 5.4. From the proof of Theorem 5.1 if A does not have pure
point spectrum then ωA is quasi-equivalent to a state ωβ, where B
has pure point spectrum and its eigenvalues are dense in the spectrum
of A. By the work of Araki and Woods [2] the factor RB obtained from
ωB belongs to the class S^ defined in [2]. Since all factors in the class S^
are isomorphic [2, Theorem 7.6] it follows that if A and A do not have
pure point spectra then the factors RA and RA, are isomorphic, i.e.
ωA and ωA, are algebraically equivalent.

In order to study unitary equivalence of two states ωA and ωB one
needs information on the commutants of RA and RB. For this the follow-
ing definition is convenient.
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Definition 5.5. Let A be an operator on the Hίlbert space K such that
O^A^I. Let N be the hermitian projection on the null space of A(I — A).
We say A is elementary if A = P + ?(I — N) + H, where P is a hermitian
projection, P^N, and H is a self-adjoint Hilbert-Schmidt operator such
that HN = 0.

Lemma 5.6. Let ωA be a gauge invariant generalized free state of
). Let πA denote the cyclic representation of 2ί(X) induced by ωA,

and let RA = πA(
<Ά(K))ff. Then RA is a finite factor if and only if A is

elementary.

Proof. Let TV denote the null space of A(I - A). LetP = A N. Then P
is a hermitian projection. By Lemma 5.3 RA is semi-finite if and only if
A = P + Pl + T + ̂ Q + H\ where P1 and Q are orthogonal spectral
projections of A(I — N), Tis a self-adjoint trace class operator such that
T<2 = 0, and Hr is a self-adjoint Hilbert-Schmidt operator such that
H' Q — H'. Use the notation introduced in the proof of Lemma 5.3. For
Aj E SI,, let Q)j(Aj) = (fj9 π^A^fa), where π,- is a cyclic representation of the
2 x 2-matrices 3Ij with fa as a cyclic vector. Let R = / — N — Q, Let
/N = (X)/;, /* = (X)/;, and fQ = (X)/;, Put

jeJV jeR jeQ

and #3
ieJV / ie* / \ίeQ

The RA = R1 ® R2 ® K3, where the tensor product is that of von Neumann
algebras. By Lemma 5.3 #3 is a finite factor. Since the eigenvalues of
^Q + H' are all different from 0 and 1, R3 has a separating and cyclic
vector (see e.g. [2, Lemma 2.10]). Then it follows from [9, Theoreme 5,
p. 235] that R'3 is finite. For i e AT, π^SIf) equals all bounded operators
on the two dimensional Hubert space. Therefore R± is all bounded
operators on a Hubert space ([13], Corollaire 2.1). In particular #i is
finite. Now, by a result of Araki and Woods [2, Lemma 6.10]

i&R

Let k — dimK. Since all the eigenvalues of Px -f T are different from 0
and 1, #2 has a separating and cyclic vector by [2], Lemma 2.10.
By Lemma 5.3 R2 is of type /. In fact it is of type I2k by construction.
Since R2^R2, R2 is of type I2k. By [9], Proposition 14, p. 102,
R'A = R(.®R'2®R'3. Therefore R'A is finite if and only if fc<oo. But if
k < oo we can replace β by / - N and replace T + % Q + H' by £(/ - N) + H,
where H is a Hilbert-Schmidt operator. This completes the proof of
the lemma.
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We are now in the position to give characterizations in terms of A
and B for unitary equivalence of the states ωA and ωB. Due to the highly
complicated situation which occurs when RA and RB are of type 77^
with finite commutants, we cannot give a satisfactory characterization
in that case. We are indebted to E. Effros for pointing out the relevance
of .Ret [14].

Theorem 5.7. Let ωA and ωB be gauge invariant generalized free states
of yi(K\ K a Hilbert space. Let N and Nf denote the projections on the
null spaces of A(I — A) and B(I — B) respectively. There are ίwo cases.

(1) // A is not elementary (see Def. 5.5) then ωA is unitarily equivalent
to ωB if and only if A^ - B* and (I - A)* -(I- B)* are Hilbert-Schmidt
operators and B is not elementary.

(2) If A is elementary then ωA is unitarily equivalent to ωB if and
only if A^ — B^ and (I — A)* — (I — B)* are Hilbert-Schmidt operators,
B is elementary, and

(i) if dim AT < oo then dim N' = dim AT,
(ii) if dim(/ - N) < oo then dim(7 - N') = dim(7 - N),

(iii) if dim AT = dim(/ — N) = oo, then dimΛΓ = dim(7 — N') = oo, and

where πA is a cyclic representation of %l(K) and fA a cyclic vector such
that ωA(S) = ( f A , π A ( S ) f A ) , RA = nA(Ά(K))", and similarly for B, α is the
isomorphism of RA onto RB such that UB = VL°UA, and Tr is a normal
trace on RB.

Proof. If Rί and R2

 are factors on separable Hilbert spaces with
infinite commutants then every * -isomorphism of R1 onto R2 is unitarily
implemented ([9, Corollaire 7, p. 321]). Since in our case RA and RB

act on separable Hilbert spaces, since 2Ϊ(JK) is norm separable and fA

and fB are cyclic vectors (see [11, Theorem 3.5]), case (1) follows from
Theorem 5.1 and Lemma 5.6.

Suppose A is elementary. Let a = dim AT, b = dim (7 — N). From the
proof of Lemma 5.6 RA = 3JIA®91A, where (ϋlA is all bounded operators
on a Hilbert space of dimension 2α, and 91 A is a finite factor of coupling 1,
having a separating and cyclic vector. If b < oo, 91 A is of type 72&, other-
wise it is of type 77!. Since unitary equivalence is a stricter property
than quasi-equivalence we may by Theorem 5.1 assume A^ — B^ and
(7 — A)* — (I — B)^ are Hilbert-Schmidt operators. Furthermore by
Lemma 5.6 RA is finite, hence if ωA ~ ωB, RB is finite, hence by Lemma 5.6
B is elementary. We may therefore assume B is elementary. Let α denote
the isomorphism of RA onto RB suchthatα ° nA = πβ,foundbyTheorem5.1.
Consider the three cases separately.
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(i) Suppose a < oo. T hen b = oo, so RA is of type //x with coupling 2α.
By [9], Proposition 10, p. 286, α is unitarily implemented if and only if
RB has coupling 2fl, hence if and only if dim AT' = dim TV.

(ii) Suppose b<co. Then R'A ^ $l'A is of type I2b. By [9, Proposition 3,
p. 253], α is unitarily implemented if and only if R'B is of type /2b, hence
if and only if dim(/ - N') = dim(7 - N).

(iii) Suppose a = b = ao. Then RA is of type 11^ with finite commutant.
As shown by Kadison [14] this case is much more complicated, indeed
by [14, Theorem 2], α is unitarily implemented if and only if the condi-
tions in (iii) hold. The proof is complete.

It should be noted that if A and B are bounded away from 0 and 1
then the study of unitary equivalence of ωA and ωB is greatly simplified.
Indeed, we have the following corollary.

Corollary 5.8. Let ωA and ωB be gauge invariant generalized free states
of W(K). Suppose 0 and 1 do not belong to the spectra of A and B. Then
ωA and ωB are unitarily equivalent if and only if A — B is a Hίlbert-Schmidt
operator.

Proof. By assumption it follows from the compactness of the spectra
of A and B that there exists ε>0 such that εI^A^(l— ε)I and
εI^B^(l — ε)I. This the corollary is an immediate consequence of
Lemma 4.2 and Theorem 5.7.

Remark 5.9. In applications of Theorem 5.7 the case 2 (iii) in the theo-
rem is fortunately a very special case. The condition we have given, essen-
tially requires that one must know the isomorphism α in detail in order to be
able to conclude whether ωA and ωB are unitarily equivalent. We give a
simple example in which α is not unitarily implemented, thus pointing
out that no simple criterion seems available. For a detailed analysis of
this problem the reader is referred to the work of Kadison [15].

Let K be as in Theorem 5.7. Let £ be a projection on K such that
dim£= dim(7 — E) = co. Let F be a one-dimensional projection ortho-
gonal to £, and let G - I-E-F. Let A = \E,B = $(E + F). ByTheorem5.1
ωA and ωB are quasi-equivalent. Let (/f) be a basis for K consisting of
eigenvectors for A and B. As before we say i e P if P ft = fi for a spectral
projection P of A and B. Use the notation introduced in the proof of
Lemma 5.3 with the addition that we put primes on the corresponding
representations for B. Then we have

leE

ίeG
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where for example fE— (X)/f, where ωi(A) = ( f i 9 π i ( A ) f i ) for ieE, and

lί ieE then π^ and π are both of the form A-+A®I with /
the identity on the 2-dimensional Hubert space. If i e G π, and π are both
irreducible; hence if ίeE + G then πt and πj are unitarily equivalent.
If i e F then πf is irreducible while n'{ has multiplicity two. Let RA = πA (9I(X)"
and RB = πB^Ά(K)}". Since nA and πβ are quasi-equivalent there exists
an isomorphism α of jR^ onto RB such that a°πA = πB. HA{ e 9If and At = I
for all but a finite number of ι's then α(®π, (^4f)) = ®τt'i(A^ hence an easy
argument shows the existence of isomorphisms o^ of 7̂ (91,-) onto πί(9ϊf) such

that ufKi = π and such that α|π^(9ί(K)) = (X) α f. Let P (resp. Q) denote
the one-dimensional projection in

resp. (X)
\ieE

onto fE (resp. / )̂, and let [y] denote the one-dimensional projection in
ι), i G JP, on y = f{. Then we have

where the identity / to the right is the identity in the algebra obtained
from the portion in G. Let Tr denote the trace on RB. Then, if k e F,

By [14, Theorem 2], α is not unitarily implemented.
It should be remarked that in this example there exists a unitary

operator U on K such that B=UAU~1. In all other cases than 2(iii)
in Theorem 5.7 it follows from that theorem that if B= U A t/"1, and
A*-B* and (/ - A)* - (I - B)* are Hubert-Schmidt, then ωA and ωB

are unitarily equivalent.
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