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Abstract. We provide a method of embedding a (7*-algebra j / i n a (7*-algebra
s/~ called its σ-envelope. $t~ is contained in the enveloping algebra of J / but is
generally much smaller, and if si is commutative with identity then «s/~ can be
identified with the algebra of bounded Baire functions on the spectrum of si.
The main result is to completely determine the structure of jâ ~ for all separable
G. C. R. algebras si. This provides a good basis for a non-commutative theory of
probability.

1. Introduction

We obtain a canonical procedure for embedding a C*-algebra s/ in
a (7*-algebra «&/~ which has the property that every self-adjoint element
of s/~ has a spectral decomposition in J / ~ . The algebra si~ is a sub-
algebra of the enveloping algebra j / * * and in the case where si is a
commutative O*-algebra with identity, $t~ can be identified with the
(7*-algebra of all bounded Baire functions on the spectrum of si. In the
general case our work can be regarded as providing a basis for a non-
commutative version of measure theory.

We undertake a close analysis of the structure of the algebra si~ and
show that it is closely related to the Borel structures of the spectrum si
of si. In the case where si is a separable G.C.R. algebra we can explicitly
write down the structure of si~ (Theorem 4.5). This provides us with
a non-commutative generalization of the idea of a standard Borel
space [9]. As a particular application we analyse the space of finite
positive traces on a separable G.C.R. algebra.

If si is a separable G.C.R. algebra, the set 8P of projections in s/~
forms a σ-complete orthocomplemented lattice. In a further paper we
shall show how this observation allows us to relate our theory to Mackey's
formulation of quantum mechanics [10], by letting SP be the partially
ordered set of questions in some quantum mechanical system. Slightly
different work along these lines is being done by R. J . PLYMEN [12].

We should like to thank J. T. LEWIS, G. W. MACKEY and R. J. PLYMEN, who
have given us considerable encouragement and insight into the quantum mechanical
relevance of the ideas developed here.



148 E. D. DAVIBS:

We are grateful to Professor R. V. KADISON who in an appendix to this paper
obtains certain sufficient conditions for the a-closure of a (7*-algebra of operators
to be a von Neumann algebra.

2. On J?* algebras

For the general theory and notation concerning (7*-algebras we shall
make systematic use of Dixmier's book [1].

A set 8 of bounded operators on the Hubert space 34? shall be called
σ-closed if given any sequence xn(:8 which converges to x ζ j£? (Jf7) in the
weak operator topology, we then have that x ζ 8. Given any set 8 there
is a smallest σ-closed set containing it, which we call its σ-closure and
denote by σ(8).

Lemma 2.1. // si is a C*-subalgebra of the algebra <&(<%?) of all
bounded operators on the Hilbert space ffi then a (si) is a C*-subalgebra
such that every increasing sequence in a (si) which is norm bounded has
a least upper bound in a (si). If si is separable then a (si) has an identity
element.

Proof. If α, β are complex numbers and a £ si then the family of all
x £ J^pf) such that (oca + βx) ζo(si) and x* ζa (si) and ax ζa(si) is
σ-closed and contains s#\ and so contains a (si). Now if α, β are complex
numbers and b ζ σ (si) then the family of all x ζ ££ (&) such that
(ocx + βb) £σ(eί/) and xb ζσ(s/) is σ-closed and contains s/9 and so
contains σ(j/). As a uniformly convergent sequence is convergent in the
weak operator topology so we can see that σ(s#) is a C*-algebra of
££ (Jf7). If xn ζ σ(j/) is a norm bounded sequence such that xn ^ xn+1 for
all n then xn converges in the weak operator topology; the limit, which
is in σ(j/), is the least upper bound of the sequence xn in <j£? (^f). If si
is separable let en ζ si be a countable increasing approximate identity
for si constructed as in [1, p. 15]. If e £ a (si) is the least upper bound
then the set of x ζ ££(3f) such that ex = xe = x is σ-closed and con-
tains si, and so contains a (si). That is e is an identity element for a (si).

Now let si be a O*-algebra and denote by & the set of all ordered
pairs {xn) x} consisting of a sequence xnζsi and a point x ζ si. If
f g # " we denote by ^σ the set of all states φ in si such that for all
{xn, x} ζ& we have

(Φ>%n)->(</>>%)
If 3Ί? is a set of states on <$/ we denote by σ34? Q !F the set of all {xn, x} ζ &
such that for all φ ξ M* we have

It is easy to verify that σ(^σ) 2 &, that (σJf)σ 2 ^ and that
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We now define a Σ*-algebra ^ a s a O*-algebra together with a subset
& Q r^, called the set of σ-convergent sequences in si and denoted
xn -» x, such that the following properties hold:

(i) if xn -» x then there is a constant K such that for all n we have
\xn\ ^ K < oo;

(ii) if xn -> # and y ζsi then #Λy -> #ι/;
(iii) if # n ζ j / is a sequence such that (φ,xn) converges for all φ ζ @σ

then there is some x £ ja/ such that # n -> a?.
(iv) if 0 Φ # £ si then there is some φ £ ^ σ such that (^, #) Φ 0.
I t is clear from the definition that <& = a(βa) so that the 27*-algebra

may be alternatively specified in terms of ^ σ , called the set of σ-states
of the 27*-algebra si. We note the following elementary properties,

(v) If xn -> x then x* -> x*
(vi) i£xn->x and yn -> y then (xn + yn) -> (x + y);

(vϋ) if xn -> α; and αn is a sequence of complex numbers converging
to α then ocnxn -> αa;;

(viii) if ίcn ->• α; and y ζsi then i/#w -> ί/α;;
(ix) the set @σ is a norm-closed convex set in si*.
If 30* is a Hubert space and j / is a (7*-subalgebra of Jδf (^f) such that

si is a cr-closed set, then ja/ becomes a i7*-algebra if we define the σ-con-
vergent sequences to be the sequences of operators xnζ.si which are
convergent in the weak operator topology. We call such algebras Σ*-sub-
algebras of JίPffl); clearly ££(2tf) itself is a 27*-algebra. By a σ-represen-
tation π of the 27*-algebra si on the Hubert space ffl we shall mean
a representation such that if xn->x then πxn-+πx. By a faithful
σ-representation we shall mean a faithful representation such that πstf
is σ-closed and xn -> x if and only if πxn-> πx.

Lemma 2.2. jδfaeπ/ Σ*-algebra si has a faithful σ-representation as a
Σ*-subalgebra of the algebra of operators on a Hiΐbert space.

Proof. The algebra six obtained from si by adjoining an identity e
becomes a 27*-algebra if we say that xnφ λne-+ x Θ λe if and only if
xn -> x and λn -* A. If ^ is a σ-state on J / its extension to a state on six

is also a σ-state. I t is easy to check that the representation πψ on si
induced by φ is a σ-representation, on a Hubert space fflφ. If

and π is the direct sum representation then π is also a σ-representation
and is faithful. Now let xnζsi and let πxn converge to y £ J ? ( ^ ) in the
weak operator topology. For each φ ζ @σ there is a vector ξφ £ J f such
that for all # ζ J / we have

φ(x)
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so we see that φ (xn) converges for each φ ζ ^a. By condition (ϋi) there
exists x ζ stf such that xn -> x. It follows that πx = y which proves that
π is a faithful σ-representation.

Now let X be a space with a given σ-field of subsets. The space &{X}
of all bounded measurable functions on X is a commutative 0*-algebra
in an obvious sense. We say that a sequence fn in &{X} is σ-convergent
to / in &{X) if and only if ||/J ^ K for some K and all n} and fn also
converges pointwise to /. It is easy to verify that the family of σ-states
is exactly the set of probability measures on X. Now let fn ζ 3#{X) be
a sequence such that φ (fn) converges for all φ £ &σ. Regarding the fn as
continuous linear functionals on the Banach space of all bounded signed
measures on X} [4], we see by the uniform boundedness theorem that
there is a constant K such that ||/n|| ^ K for all n. The functions fn

converge pointwise and the limit must be in &{X}. It follows that
@{X) is a Γ*-algebra.

Lemma 2.3. Let s/ be a Σ*-subalgebra of the algebra of bounded
operators on the Hilbert space £?. Let π: G(Ω) -> stf be a representation
of the C*-algebra of continuous functions on the compact Hausdorff space
Ω into s$\ Then π has a unique extension to a a-representation of the
Σ*-algebra £#{Ω} of bounded Baire functions on Ω into s/.

Proof. The uniqueness of such a representation is clear. Conversely
it is shown in [8] that there is a natural extension of π: C(Ω) -> stf to
a representation π~: &{Ω}-> £?(£?) such that for each vector ξ ζ ffl
there is a Baire measure μξ on Ω such that for all / ζ B{Ω) we have

From this formula and the Lebesgue dominated convergence theorem
we see that π~ is a σ-representation and hence that its range is contained
in $0.

Lemma 2.4. Let x be a self-adjoint element of the Σ*-subalgebra $0 of
the algebra of bounded operators on the Hilbert space ffl. Then the range
projection of x is in s/.

Proof. Let Ω be the spectrum of x and let π: C(Ω)-> J?(Jf) be the
faithful representation such that π(l) = 1 and π(f) = x, where / is the
function f(z) = z. Let π~ be the σ-representation induced on &{Ω}.
The set of functions g in &{Ω} such that π~ {g) is in J / is σ-closed and
contains all continuous functions vanishing at the origin. Therefore if
h ξ &{Ω} is the function given by h(0) = 0 and h(z) = 1 if z Φ 0 we see
that p = π~ (h) is a projection in si such that px — xp = x. Moreover
if q is a projection in j£?(Jtf*) such that qx — xq = x then the set of all
functions g in &{Ω} such that
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is σ-closed and contains all polynomials with zero constant coefficient.
Therefore In is such a function and pq = qp = p. This implies that p is
the range projection of x.

3. The <y-envelope of a C*-algebra

In defining this we make systematic use of the enveloping algebra of
a C*-algebra as defined in [1, 5]. We summarize the facts in the form
we shall need them.

Let si be a 0*-algebra. Every positive linear functional φ on si
defines a cyclic representation πφ on si and we call the direct sum π
of these representations πφ, one each for positive linear functional, the
universal representation of si. It is a faithful representation and if Jf7 is
the Hubert space on which it acts, we denote the weak operator closure
of πsi by π si. Now define 8 (si) by

8(si) = {φ ζsi*:0 rg φ and ||^|| ^ 1}

so that 8(si) is a compact convex set in the weak* topology of si*.
Each vector ξ £ MP with \ξ\ <£ 1 defines a functional ^ in 8(si) by the
equation

and φ is then a map from the unit ball of 2tf onto 8(si).
The (7*-algebra J / can be identified as a Banach space with the space

A ̂ (8 (si)) of all continuous complex valued linear functionals on 8(si)
and under this identification the self-adjoint elements of si correspond
to the real linear functionals and the positive elements of si correspond
to the positive linear functionals. As shown in [1,5] the map φ allows
us to extend π to an identification π** of the Banach space si**, or
equivalently of the space of all bounded linear functionals on 8 (si), with
the von Neumann algebra π(si) in such a way that for x ζs/** and
ξ £ Jf? with HI! ^ 1 we still have

M*) = <(*••*) f,f>

The map π** identifies real elements of j / * * with self-adjoint elements
of πsi, positive elements of j / * * with positive operators in nsi, and
identifies the weak* topology of si**, or equivalently the topology of
pointwise convergence on j / * * regarded as the space of bounded linear
functionals on 8(si), with the weak operator topology on πsi.

We now define the σ-envelope s/~ of si as the smallest σ-closed
family of bounded linear functionals on 8 (si) containing si. As in
Lemma 2.1 we see that sί~ is a closed linear subspace of J / * * and it is
clear that the functions in st~ are bounded Baire functions on 8(si).
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Theorem 3.1. // si is a C*-algebra then the σ-envelope si~ is a 27*-
subalgebra of the enveloping algebra si**. If si is separable then si~ has
an identity element. If Ztf is a Hilbert space and λ is a representation of
si into £?(&), then there is a unique extension to a σ-representation λ~
of si~ into ££($?) \ moreover every a-representation of si~ arises in this
way. If φ is a state on si then it has a unique extension to a σ-state on
si~ and every σ-state on si~ arises in this way.

Proof. We define the σ-convergent sequences in si~ as being those
sequences of functions in si~ which are pointwise convergent on 8 (si)
with limits in si~. The first two statements of the theorem now follow
immediately from Lemma 2.1 and the properties of π**.

It is shown in [1] that λ\si'-> jSfpf7) has a unique extension to a
representation λ**:si** -> ££($?) such that λ** is continuous with
respect to the weak* topology of si** and the weak operator topology
of ££(&?). Defining Λ~ as the restriction of λ** to sί~ it is clear that
7Γ is a σ-representation of si~ which extends λ. Uniqueness follows
immediately from the fact that si~ is the a- closure of si. As every
σ-representation of si~ must coincide with the σ-extension of its restric-
tion to si so every σ-representation arises in the above way.

Every state φ of si defines a point in 8 (si) and so by pointwise
evaluation a σ-state φ~ in si~. As above it is clear that φ~ is unique
and that every σ-state on si~ arises in this way.

Following [1], we now define the spectrum si of a (7*-algebra si as the
set of unitary equivalence classes of irreducible representations of si.
The reduced atomic representation [3, 6] of si is defined as the direct sum
of the irreducible representations of si taking one from each unitary
equivalence class. The following theorem provides one very important
respect in which the σ-envelope si~ is better behaved than the envelop-
ing algebra si**.

Theorem 3.2. Let λ:si->• jSf p f ) be the reduced atomic representation
of a C*-algebra si. Then the induced a-representation λ~ is a faithful
σ-representation of si~ onto the Σ*-subalgebra σ(λsi) of ££(£?).

Proof. We need to make use of Choquet boundary theory, and use [11]
as the basic reference for terminology.

The extreme boundary d8 of the compact convex set 8 (si) consists
of the set of pure states P(si) together with the origin. As each pure
state on si induces an irreducible representation so we can identify
P(si) with a certain subset of the unit sphere of ffl. Now let μ be
a probability measure on 8(si) with barycentre s ^8(si). The set of
bounded linear Baire functions / on 8 (si) such that



On the Borel Structure of <7*-Algebras 153

is a cr-closed subset of s/** because of the uniform boundedness theorem
and as this set contains si so it contains $f~. Now suppose that μ is
a maximal representing measure for s, that / £ si~ satisfies Λ~ f = 0

and that E = {t ζS^) :f(t) Φθ} .

Then E is a Baire subset of S(s/) not meeting dS so that by [11, p. 30]
μ (E) = 0. It follows that / («) = 0 so that E = 0. Therefore A" is a faithful
representation.

To prove that λ~ is a faithful ^-representation we have to prove
more. Let fn ζ ̂ ~ and let 2~/n converge in the weak operator topology
to gζJ£?(Jtf?). Then by the uniform boundedness theorem the fn are
uniformly bounded. Using the identification of P(si) with a subset of
the unit sphere of Jtf* we see that fn converges on the set dS. Then as in
the proof of Kainwater's theorem [11, p. 33] we see that fn converges
on S(si) to a limit / which must be in st~. It follows that λ~f — g and
that λ~ is a faithful σ-representation.

Corollary 3.3 // Ω is a compact Hausdorff space and si is the C*-
algebra C(Ω) of all continuous functions on Ω then si~ can be identified
with the Σ*-algebra &{Ω} of all bounded Baire functions on Ω.

Proof. We have already shown that &{Ω} is a 27*-algebra. The result
now follows from the fact that it is the σ-closure of C (Ω) for the reduced
atomic representation.

Corollary 3.4. // si is the C*-algebra of compact operators on a separable
Hilbert space £F then £#~ can be identified with J ^ ( ^ ) .

Proof. This follows from the fact that the reduced atomic representa-
tion is the identity representation.

4. On separable G. C. R. algebras

We now start on a more detailed analysis of si~ using the sets
Irr(j/), P(s/)9 s$ and Prim(j/) as defined in [1]. Throughout this sec-
tion we suppose si is a separable 0*-algebra.

The set Ίjτn(s/) is the set of irreducible representations of s/ in
a fixed ^-dimensional Hilbert space J^n, and is a standard Borel space
in a natural way. Choosing a fixed unit vector ξn ζ J^n we get an induced
Borel map λn : Irrn (s/) -> P (si) such that if x ξ si and π ζ Irrn (si) then

(x, λnπ) = {(πx) ξnί ξn) .
If we still denote by π the extension to a σ-representation of si~ then
we see that the above formula still holds for all xζs/~. Defining
λ : Irr (si) -> P (si) as the union of the maps λn we know that λ is a Borel
map of the standard Borel space lτv(si) onto the standard Borel space
P(si). If μ:lττ(si) -> si and v:P(si) -+si are the natural Borel maps
defined in [1] then vλ = μ and we can show, using the theory of standard
11 Commun. math. Phys., Vol. 8
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Borel spaces [7,10], that the Mackey Borel structure of Jtf may be
characterised either as the quotient Borel structure of sέ from Irr(j^)
under μ or as the quotient Borel structure of $0 from P (j/) under v we
shall use the second characterisation.

Theorem 4.1. // stf is a separable C*-algebra then the centre of its

a-envelope stf~ can be canonically identified with the Σ*-algebra of all

bounded measurable functions on Jtf with respect to a certain a-field of sub-

sets of Jtf. This a-field is larger than the topological Borel structure and

smaller than the Mackey Borel structure and so for a separable G.C.R.

algebra coincides with both.
Proof. An element x ζ $ί~ is central if and only if for each π £ Irr (J/)

we know that πx is a multiple of the identity. This happens if and only
if for any two unit vectors ξl9ξ2 of the representation space of π we
know that

<(πaθfi,fi>= ((πx)ξ2,ξ2)
or equivalently if and only if for any two φvφ2 ζ. P(^) with vφ^ — vφ2

we have

(α?,^)= {x,φ2).

If xvx2 ζ centre (Λ/~) and ^ ζ P{^) then it is easy to verify that

{ocx1 + βx2,φ) =

φ) = (xvφ) {x2)φ).
Moreover as s/~ can be identified by Theorem 3.2 with a vector space
of bounded Borel functions on P(jaf), so centre {s#~) is equal to the
Σ*-algebra of all bounded functions / on stf such that vf\P(stf) -> C is
in ja/~. Under this identification pointwise convergence on &? corre-
sponds to cr-convergence in centre (J</~) so we see that there is a σ-field G
of sets in s/ such that centre (J/~) can be identified with the set of all
^-measurable bounded functions on «£?.

The characteristic function χ(E) of any set E of G is in the centre
of j / ~ and every element of &ί~ is given by a Borel function on P(stf).
Therefore v~Ύ{W) is a Borel subset of P($0) so that the Mackey Borel
structure on J / is larger than G.

On the other hand let U Q £0 be an open set where s/ has the
topology of [1, p. 60]. Then the closed set stf — U corresponds to a closed
ideal / of s/. Let en ζ I be a countable increasing approximate identity
for / constructed as in [1, p. 15] and let e ζ *s/~ be the least upper bound
in j / ~ of the sequence en. Then e is a central projection in stf~ and is
the characteristic function of the set v~xiJJ). It follows that U is in G
so that G contains the topological Borel structure of stf.
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For separable G.C.R. algebras we are able to go very much further

because of the existence of a Borel cross-section for the map μ:Iττ(j/)

-> s/. We first make some further definitions.
Let I b e a space with a given σ-field of subsets, and let ^ b e a

separable Hubert space. We say that a function f:X -> Jtf* is measurable
if for each ξ ζd? the function (f(x),ξ} is a measurable function on X;
equivalently we may suppose that ξ is an arbitrary element of a given
fixed orthonormal basis of Jίf. We denote the vector space of all norm-
bounded measurable functions f:X -> £F with the obvious operations by
&{X9 Jf}. Similarly we say a function /: X -> j£?(^f) is measurable if for
each ξv £2 ζ Jf the function </ (x) ξv £2> is a measurable function on X.
The space ^{X,^(J^)} of all norm-bounded measurable functions
f:X ->«£?pf) is a O*-algebra in an obvious way. If K is the Hubert
space of all functions f:X-+JF of countable support such that

{, Se (Jf)} is naturaUy identified with a 27*-subalgebra of Se pf*).
If f, fn £&{X,&IJP)} then fn is σ-convergent to / if and only if for
some k, all n and all x ξ X we have

and for all xζX the sequence fn(x) converges to f(x) in the weak
operator topology. The centre of the Σ*-algebra ^{X,Jδf (^f)} may be
identified with &{X}, the 27*-algebra of bounded complex-valued meas-
urable functions on X. We denote the characteristic function of a set
EQXbyχ(E).

The following three lemmas will be needed in the proof of Theorem 4.5.
Lemma 4.2. Let p be a projection in the Σ*-algebra &{X, <£(£?)}

such that trace (p) and trace (1 — p) are constant on X. Then there is
a unitary operator u ζέ${X,£?(<%?)} such that u* pu is constant on X.

Proof. Let en be a complete orthonormal basis in ^ so that for each
xζX the vectors (pen) (x) span the range of p(x). Now define the
sequence of vectors y\ ζ &{X, J^} inductively as follows:

. f0 when p e1 (x) = 0
1/ (x) = =

 Λ

( I I P ^ W I I " 1 ^ ^ ^ ) otherwise
so that ll^i (α;)I is equal to zero or one. Given y\9 . . . , 2/̂ -1

n-l

n = l

and then
(o when zn(x) = 0

i1/ _

" i lkί*)!" 1^^) otherwise
11*
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Then for each x ζX the vectors y\(x) are orthogonal, span p(x)^f, and
have norm equal to zero or one. We observe that y\ £ &{X, Jf7} and let
En be the measurable set on which y\{x) is non-zero.

We now define a new sequence of vectors un ζ &{X, Jf}, inductively.
Suppose that vectors y™ ζ&(X, J^) are defined for n = 1, 2 , . . . so that
y™ = 0 for n ^ (m — 1), and suppose E™ is the set on which y%(x) is
non-zero. Define

observing that for each x ζX the sum has only one non-zero term. We
now define the new subsidiary sequence y™ + 1 ζ& (X, $?) by

so that y™ + 1 = 0 for n ^ m.
If trace {^(#)} = oo then un{x) is non-zero for each n and all x £ X ;

if trace {#>(#)} = 2V" < oo then wn(x) is zero for each n> N and a ; ( I .
Considering only the non-zero un we see that un ζ@t{X, 3tf} and that for
each a? £ X the wn (#) form an orthonormal basis for p (x)J>^. Carrying
out the same procedure for the projection (1 — p) it is now elementary
to construct a unitary operator u ζ&{X,J? pf7)} with the required
properties.

Lemma 4.3. Let X be a space with a a-field of subsets and let ̂  be a
Hiΐbert space of dimension n < oo. Let Bbea Σ*-subalgebra of &{X, ££ (34?)}
such that the centre of B contains &{X} and for each x £ X,B(x) is equal
to ££($?). If B is the σ-envelope of some countable subset then B is equal
to @{X, J2?μf)}.

Proof, The lemma is trivial for n—\ and we assume that it has been
proved for all values of n < m.

The self-adjoint part of B is the σ-envelope of a countable subset
and so by using Lemma 2.3 we can find a countable set {pr}?Li of pro-
jections in B such that B is the σ-envelope of the linear subspace spanned
by the pr. For each pr the function trace {pr (x)} is a measurable function
on X taking integer values between zero and m. Define the Borel set
Xr Q X for r = 1, 2, . . . as the set of all x ζ X such that r is the smallest
integer for which

0 < trace {pr (x)} < m

and then for 1 < s < m define XTi s as the Borel set

Xrt s = Xr r\ {x ζ X: trace {pr (x)} = s} ,

so that XTfS partition X into a countable number of disjoint Borel sets.
Let eTtS be the central projection χ(XVtS) and let uTtS be a unitary
operator in ^{X r > s, J^(^f)} constructed as in Lemma 4.2 such that
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u*8Prurfs is a constant proper projection on X r, s. Also we see that the
Σ* -algebra

u*8erfSBerfSurtS

satisfies the conditions of this lemma with respect to &{XTtS, ££ (^)}>
so it is now clearly only necessary to establish this lemma in the case
where B contains a constant proper projection p.

If this is the case then pBp satisfies the conditions of this lemma in
and so by our inductive hypothesis

and similarly

B2(l-P) B(l - p) = ΰl{X9SP{(l - p)

Now for each x ζ X we know that B(x) = oS?(^f). Let e1}..., es be an
orthonormal basis for pJti? and β s + 1 , . . ., em an orthonormal basis for
(1 — p)$f. I t follows by considering the countable set of operators
{pr}?Lι that X can be partitioned into a countable number of disjoint
Borel sets Yn such that for each n= 1,2, . . . there is some q ζ B and
integers a ^ s and b > s such that for all x £ Yn,

(q(%) ea,eb) Φ 0 .
Now defining

and using the fact that the function

Z(Γ«.i)&(*)e..«»>- J

is in the centre of B, we see that the operator

is in B for all integers a, b. Again using the fact that the centre of B is
equal to &{X} we see that

so that

Lemma 4.4. Let X be a space with a σ-field of subsets and let ^ be a
separable Hilbert space of infinite dimension. Let B be a Σ*-subalgebra of

(Jί?)} such that the centre of B contains &{X}, and for each
, B(x) is dense in ££(#?) for the weak operator topology, and B is the

σ-envelope of a countable subset. Suppose there is a countable increasing
family of projections {qr}?L i in B whose weak limit is the identity operator
and such that for all n= 1,2, ... and x ζ X, trace {qr (x)} is finite. Then
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Proof, Choose any particular qr and partition X into a countable
number of Borel sets Xn by defining

Xn = {x ζ X: trace {qr (x)} = n} .

By Lemma 4.2 there is a unitary operator un in ^{Xn,Jδ? (̂ f7)} such that
u*qrun is a constant finite dimensional projection on Xn. Now applying
Lemma 4.3 to the J?*-subalgebra

χ(Xn) (u*qrun) (u*Bun) {u%qrun) χ(Xn)

of

we see that they are equal so that

Now for any operator b ξ B we know that qrbqr converges in the weak
operator topology to b from which we conclude that

Theorem 4.5. Let <$/ be a separable G. G. R. algebra. Then each
n = oo, 1, 2 , . . . defines a central projection en in the σ-enυelope stf~ and
so a a-ideal *s/~ = ens/~ en such that

Σ*-algebra s/^ has a faithful o'-representation as

the Σ*-algebra of all bounded Borel functions from <&?n to ^{M'^, where
3Pn is an n-dimensional Hilbert space, separable for n — oo.

Remark. This theorem may be regarded as completely determining
the Borel structure of all separable G.C.R. algebras. Some similar but
more complicated results on the topological structure of a very special
subclass of the G.C.R. algebras have been obtained in [2,13].

Proof. As sf is a G.C.R. algebra so by [1, p. 95] the natural maps
•A. X

λn: Irrn (s/) -> s/n have Borel cross-sections. We now identify <stfn with
its Borel cross-section in Irrn(j/). For each x £ stf~ and ξl9 ξ2 ζ J4?n we
noted that

{{πx) ξl9 ξ2)

is a Borel function on Irrn (s/) so that the direct sum of the π ζ Irrn

is a (T-representation

The direct sum of the φn is the induced σ-representation of the reduced
atomic representation of &/, and is a faithful σ-representation by
Theorem 3.2. By Theorem 4.1 the characteristic function of dtn is a
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central projection en in s/~ and if we define J / ~ = ens/~en then it is
clear that

and that each s/~ is a Γ*-subalgebra of ^ { j / n , J^(^ n ) } . If {x^m^i i s

a countable dense set in stf then ja/~ is the or-envelope of {ena?TOew}~el.

Each π ζ stfn is an irreducible representation so s/~ (π) is weakly dense

in <£ (J^n) for each π ζ^n* I* * s n o w immediate from Theorem 4.1 and

Lemma 4.3 that J / ~ is equal to ^{s^niS£(Jfn)} f ° r finite n.
Now consider the case n = <χ>. Let /ρ, ρ ζ JR be a composition series

of closed ideals in *s/ such that / ρ + 1// ρ is a non-trivial C.C.R. algebra for
each ρ ζB; then R is a countable set. The sets Xρ Q st^ defined by

Xρ = { τ r ξ j / o o : π | / ρ = 0 but π\Iρ+1 Φ 0}

form a partition of stf^ into a countable number of disjoint Borel sets.
Each πζXρ maps IQ+1 onto the algebra of all compact operators on Jf^

By using the spectral decomposition in ja/~ of a countable dense
subset of the self-adjoint part of Iρ+1 we can find a countable set of
projections pn in eβ/~ such that 2>n(#) are finite-dimensional for all
x ζXρ and the vector space spanned by pn(x) &'«, for w = 1, 2 , . . . is
dense in ^ ^ for all x ζX ρ . Now let qnd^Z be the range projection of

and observe that qn is an increasing sequence of projections in «a/~ such
that for each a; ζ XQi qn (x) is finite-dimensional and converges weakly to
the identity operator. By Lemma 4.4 we see that

χ(Σβ) ^

so that it becomes trivial

5. The finite traces on a C*-algebra

A (finite) trace φ on a (7*-algebra stf is defined as a positive functional
such that for all x, y ζ stf we have

Suppose that $4 is a separable (7*-algebra. Then ^ has a unique natural
extension to a weak* continuous trace on s/**9 and restricting to «s/~
we see that every trace on s# has a unique extension to a σ-trace on s/~
and all σ-traces onj/~ are obtained in this way.
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Theorem 5.1. Let s& be a separable G. C. R. algebra, so that

Then there is a one-one correspondence between the set of finite traces φ on

<$/, the set of finite σ-traces φΓ on s#~, and the set of finite measures μ on

stf such that

This correspondence is defined by the equation

(x, φ) = f trace {πx} μ (dπ)
sί

for all x ζs/~.
Proof. Clearly all that we have to do is characterize the finite σ-traces

on the 27*-algebra Λ{X,j2?μf)} for rc = 00,1,2,... If n = 00 then
a σ-trace φ is a σ-trace on the algebra of constant elements and so must
vanish.

Now suppose that n is finite. Every finite measure μ on X defines
a finite σ-trace on B = &{X,J£f(Jtf>

n)} by the equation
(h Φμ) = / trace {b {x)} μ (dx)

x

and by considering the restriction of φμ to the centre of B we see that
φμ determines μ. Conversely let φ be a finite σ-trace on B and let μ be
the measure defined by restriction to &{X}, the centre of B. Let G be
the compact group of all constant unitary operators in B} with Haar
measure dg. Then for all b £ B and g ζG we have

(b,φ) = (g*bg,φ)
so that

Φ,φ) = (f(9-1bg)dg,φ)

= (trace [b),φ)

= / trace {b (x)} μ (dx) .
x

Therefore φ — φμ and the theorem is proved.
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Appendix by R. V. KADISON

Theorem A. If A is a C*-algebra acting on a separable Hilbert space H,
then o(A) is A" (the von Neumann algebra generated by A).

Proof. The unit ball of A" is metrizable in the weak-operator topology
and

d(a,b) = Σ l ( [ α "~ b] Sn' *w)l

is a metric for this topology (where {ξn} is a dense denumerable subset
of H).Iib lies in this ball, it is, therefore, a weak sequential limit point
of any dense subset. From the Kaplansky Density Theorem, the unit
ball of A is such a dense subset. Since σ{A) is sequentially closed, b lies
inσ(A); anάσ{A) = A".

Somewhat more generally:
Theorem B. // σ(A) is countάbly-decomposable (i.e., each family of

mutually-orthogonal projections in a (A) is countable — H need not be

separable), then a (A) = A".

Proof. This result follows from [2'; Theorem 2, p. 179].
In view of Theorem B, it should be noted that, even if A is norm-

separable, a (A) need be neither countably-decomposable nor a von Neu-
mann algebra.
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Example G. Let A be O([0, 1]), the algebra of complex-valued con-
tinuous functions on [0,1], and πλ the one-dimensional representation
of A defined by: πλ(a) = a(λ). With π = Σ ® πλ, σ(π(A)) (acting on

H = Σ θ HΛ contains eλi the (one-dimensional) projection of H onto
λ '

Hλ (isomorphic to the complex numbers). To see this, let fn be 1 at λ,
0 on [0. λ — 1/ri} and [λ+l/n, 1], and linear on [λ — 1/n, λ] and
[λ,λ + ljri] (with obvious modification if A is either 0 or 1). Then π(fn)
is a monotone decreasing sequence of positive operators in τt{A)) each
greater than eλ (since πλ(fn) = 1). For each λr φ λ, there is an n' such
that π(fn) eλ* = 0 if n ^ n'. Thus π(/n) tends strongly to eλ, eλ lies in
σ(π(A)); and the norm-separable π(A) contains the uncountable family
{eλ:0 ^ λ ^ 1} of mutually orthogonal projections.

Each operator a1 on 27 gives rise to a function a on [0,1] such that
eλa'eλ = a(λ) eλ (recall that eλ is one-dimensional). If α' lies in σ(π(A)),
a is a Baire function on [0, 1] for if a'n on H tends weakly to a', eλa

f

neλ

= αn(A) eλ tends to eλa'eλ — a(λ) eλ, i.e., αn tends pointwise to a on [0, 1]
(while σ(π(A)) is obtained from π(A) by the process of taking weak
sequential limits). With 8 a non-Baire subset of [0, 1] (say, non-meas-
urable) and e' the projection V{eΛ:λ in S}, the function e on [0,1]

corresponding to e' is the characteristic function of #. Thus e' (in π(A)")
is not in σ(π(A)). Moreover, a projection e in σ(π(A)) which is a least
upper bound of {eλ:λ in 8} would have to correspond to a Baire set 80

in [0,1] coinciding with 8. Thus σ(π(A)) has no faithful representation
as a von Neumann algebra.

The "measure-theoretic" (or, "commutative") phenomena noted
above represent the only possibility for σ{A) to fail to coincide with A"
when A is norm-separable.

Theorem D. // A is a norm-separable (equivalently, countably-
generated) C*-algebra acting on H and the center of A" is countάbly de-
composable then σ(A) = A".

Proof. From [Γ; Cor., p. 20] the center G of A" has a separating
vector ξ. Since ξ is separating for G, the smallest projection in G whose
range contains ξ is 1 so that e', the (cyclic) projection in A' whose range
is the closure of {Aξ}, has central carrier 1. Note that this range, e'H,
is separable since A is norm-separable.

It follows from [Γ; Prop. 2, p. 19] that the mapping a-+ae' of A"
onto A"e' is an isomorphism, and from [1'; Cor. 1, p. 57] that this
mapping is ultraweakly bicontinuous. Thus, if (ane') is a monotone
increasing sequence in σ(A) e' with limit αe', then (an) is monotone
increasing in σ(A) with limit a. Hence a da {A), ae' ζσ{A) ef, and σ{A) e'
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contains the limit of each bounded monotone increasing sequence of its

elements. Since e! E is separable the argument of [2'; Theorem 2] yields

that a (A) e! — A"e\ As a -> ae' is an isomorphism a (A) = A".
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