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Abstract. Using the Mackey theory of induced representations all the unitary
continuous irreducible representations of the 4-dimensional Lie group G generated
by the canonical variables and a positive definite quadratic 'hamiltonian' are found.
These are shown to be in a one to one correspondence with the orbits under G in the
dual space G' to the Lie algebra G of G, and the representations are obtained from
the orbits by inducing from one-dimensional representations provided complex
subalgebras are admitted. Thus a construction analogous to that of KIBILLOV and
BERN AT gives all the representations of this group.

Introduction

The general theory of induced representations as developed by
MACKEY [1] allows one to classify and explicitly construct all the unitary
irreducible continuous representations of any semi-direct product of
groups whose projeetive representations are known, provided the semi-
direct product is 'regular'. The criterion of regularity can be examined
explicitly in given cases, and holds for many groups of interest, such as
the Poincare group.

By applying Mackey's theory inductivity to nil-potent Lie groups,
KIBILLOV [2] has given a very neat method for finding all the (unitary
continuous irreducible) representations of any nil-potent group. This
method can be applied to any Lie group, whose structure may not be as
simple in terms of semi-direct products as the nil-potent case. The
question then arises, does the Kirillov construction give all the repre-
sentations of a more general group ?

For solvable Lie groups, with the extra property of being exponential,
BERN AT [3] has proved that the Kirillov construction does indeed give
all the representations (from now on, representations will mean unitary
continuous). For compact semi-simple groups, it gives all the representa-
tions, and for non-compact semi-simple groups it seems to give many of
them. The question arises, for which groups does it give all the represen-
tations ?

* The research reported in this document has been sponsored in part by the
Air Force Office of Scientific Research OAR through the European Office Aerospace
Research, United States Air Force.
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In this paper we study the group with 4 generators H, P, Q, E, with
the commutation relations

[P9 Q] = E , with the rest zero.

To show this is a Lie algebra, we need to verify the Jacobi identity
between all triplets of elements. But this is true, since it holds in the
model

acting on functions of x. This is just the Harmonic oscillator problem,
and so we propose to call this group the harmonic oscillator group, just as
the group generated by P, Q, E is known as the Heisenberg group1, which
is thus a subgroup of the oscillator group. Matrices satisfying these
relations are

P =

The typical group element is

expαί/ expα P expyQ exptH = (α, x, y, t) ,

which can then be computed2:

(1, — (ycost + £sinQ, (ysint — zcosQ, 2α\
o, cost, — sinί x \

Bin*, cos*, J
o, 0, o, 1 /

The Heisenberg group is nil-potent, that is
Definition. A Lie group is said to be nil- potent if there exists a k < oo

such that [G[G . . . [G, G] . . . ] ] = 0 where the set \G13 G2] is the set of
elements z of G s.t. z= [x, y] with x ζ G19 y £ O2 for any two subsets
G19 G2 of G. That is, \G19 G2] is the set of commutators of Gl9 with G2. We
may define the bracket [G[G . . . [G, G]] . . .]] to be G*, where k is the
number of G's occurring. The oscillator group is not nil-potent, since
[H[G, G]] = [G, G] = Heisenberg group, and so Gk = Heisenberg group
for all k. The oscillator group, however, is solvable.

1 Sometimes called the Weyl group.
2 The author thanks N. VILENKIN for this remark.
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Definition. Let G* = G2 = [G, G], G3 = [G2, G2], £4 = [G3, <?3], etc.
Then G is said to be solvable if there exists a & such that Gk = {0}. Then
if 6r is the oscillator group, \G, G] = Heisenberg group, 6r3 = {JS1} and
$4 = {0}, and so the oscillator group is solvable.

For any Lie group G, with Lie algebra G (finite dimensional), there
is a canonical map from G into G given by the exponential map. To
construct this, we first define the adjoint representation of G. Now G is a
finite dimensional vector space, of dimension n say, with basis vectors
#!,... xn. We may represent x ζG by the operator adx defined on G by
(&άx)xk = [a;, ̂ ] ζ (λ In this way any element of G is represented by an
n x n matrix. The set of n x n matrices of the form exp(α#) for some
x 6 Qy generate a group G0 of matrices isomorphic with G (or its connected
component if G is not connected; from now on we assume G connected).
The isomorphism G<^G0 constitutes the adjoint representation of G.
Using this isomorphism we get a map exp : G -> G, called the exponential
map. In general this map is into G but not onto G, i.e. the image of exp
is not the whole of G, though it generates G. This may seem surprising,
but is less so when expressed as follows: the image of exp is the set of
points in G that are elements of a one-parameter subgroup of G. For
certain Lie groups the exponential map is onto] these may be called
exponential groups. DIXMIEB has given a necessary and sufficient con-
dition for the exponential map for a solvable group to be onto. (See 3).
We shall see that, according to this criterion, the oscillator group is not
an exponential group.

If G is a Lie group and G its Lie algebra then the set of linear func-
tionals on G form a vector space G', the dual to G. There is a natural
way to make G' into a G space, namely by duality. If g ζ G, denote by
adgr the n x n matrix representing g in the adjoint representation. Then
if ω ζ G', x ζ G, the action of g on ω is

ωg(x) =

or in terms of the generators

(ado;', y)=- (x1 ',

Here, x' ζG', y ζ G. One may define the elements h', p f , q', e' of G' (for
the oscillator group) by their scalar products in a natural way, e.g.
(hf, hy = 1, (hf, p} = 0 etc. The action of G on G' will be called the
co-adjoint action, and can be represented by matrices that are hermitian
conjugates of the adjoint representation. The adjoint representation is
not in general unitary, and so the generators are not in general hermitian
matrices.

There are three other subjects which need reviewing, before the
main result of this paper can be proved. They are,
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1. the method of induced representations
2. the Mackey theory of regular semi-direct products
3. the Kirillov method.

These will be reviewed in later sections. Given a group G and a unitary
representation L of a subgroup H C 0, then the representation of G
induced by L is written ΌL\ it will always be unitary but not always
irreducible. In fact, the bigger the group H the more likely it is that UL is
irreducible.

A semi-direct product H Q N of a group H and a group N, which is
an /7-space is the set of pairs (h, n), with the multiplication law
(hl9 %) (Λ2, τι2) = (h Jifr % &! (w2)) where & (n) is the action of H on ̂ . If jY
and H are topological groups, then there is a natural way to put a

topology on N x # if N and # are Lie groups, then G = H Q N is a
Lie group, and the Lie algebra G of H Q N is the semi-direct sum of the
Lie algebras N and H of N and H. That is, if A7" and H have dimensions
? and k, then (r has dimension j -\- Jc, spanned by the generators of the
groups N and H. The bracket between an element of N and H lies in N
since H maps N into itself. Examples of semi-direct products are (i) the
Poincare group & Q T± where the Lorentz group ££ acts on the trans-
lation group jΓ4 in the usual way: aμ -> (Λa)μ = Λμvav (ii) the oscillator
group, where H consists of the 'time displacements' eim and N is the
Heisenberg group.

If the semi-direct product is 'regular' in the sense of MACKEY then
any representation is obtained by inducing up from a representation of a
subgroup. We shall see that the oscillator group is a regular semi-direct
product, and so all its irreducible representations can be determined.
This is done in section 3. The Kirillov method is explained in section 4,
and the representations of the oscillator group given by the method are
listed. They are shown to exhaust the set of all representations, as found
by the Mackey theory.

2. Induced representations

Suppose G is a separable locally compact group then there exists an
invariant measure on G, the Haar measure; this means, we take the
measure space to be G and the Borel σ-algebra generated by the open
subsets, and if μ is Haar measure, μ(Ex) = μ(E) for all E (Borel) and x.
For any separable locally compact group we may therefore define the
regular representation as follows: the representation space is the space of
^-square integrable functions on the group, with the obvious scalar
product, and the representation g -> U (g) is
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Thus for a finite group with n elements and the discrete topology the
regular representation is ^-dimensional since functions on the group are
defined by the n 'components' Ψ(gι), . . . Ψ(gn)> It is known that for
finite groups the regular representation contains every irreducible
representation with a multiplicity equal to the dimension of the irreduc-
ible representation. Thus we should expect the regular representation in
general to be reducible and its reduction to be a source of irreducible
representations of the group. However it is not true in general that the
regular representation contains all the representations of a group.
However for certain groups the following generalization of the regular
representation does give all representations.

Let H be a subgroup of G and suppose L is a representation of H in

a Hubert space HL. Consider the maps G - > HL satisfying

and such that / is measurable. Then / is in fact a function only of the
coset space G/H. MACKEY has shown that G/H can be made into a
measure space in a natural way, i.e. we can integrate functions on GjH,
thus getting a scalar product space jtf*. The action of the group is

This action depends only on the coset to which g2 belongs, and so maps
3? into itself. It is easy to see that the map g-> U(g) is a representation,
and can be made unitary if the definition is weighted suitably. The map
U(g) is called the representation induced by L and is written UL. In
general, UL is reducible; e.g. if L is reducible, then so is UL. UL will also
be reducible if the subgroup H is too small, e.g. if H is a trivial then UL

is the regular representation. If the representation L is one-dimensional
then UL is a sub -representation of the regular representation. The re-
duction is achieved by looking at the subset of & 2 (G, μ) satisfying
f(hg) = χ(h) f(g), χ(h) = L(h), being the character of the representation,
a condition which usually means that functions in the subspace depend
on fewer variables than the dimension of G. For the representation Uχ so
obtained to be irreducible, H must be maximal in some sense; in parti-
cular we shall see that H must have the largest dimension possible. For
this procedure to exhaust the representation of G, it must be a group for
which the regular representation contains all representations in the
generalized sense.

3. Regular semi-direct products

The most famous application of Mackey theory to semi-direct pro-
ducts is that of the Poincare group. In that case one has the semi-direct
product ^QT^ where T^ is the 4-dimensional translation group, an
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abelian group. In this case the irreducible unitary representations of T4

are in one-to-one correspondence with the elements of the group ί*4, the
Pontrajin dual to T±. In this case j?4 is just momentum space. Now, the
Lorentz group £? acts on T± and splits it into orbits, the well known
mass-hyperboloids, light-cones etc. Different points on the same orbit
correspond to different representations of T\ but are "equivalent" via a
Lorentz transform. MACKEY says that the orbits are smooth if there
exists a Borel subset of ί*4 (or a countable union of Borel subsets) cutting
each orbit exactly once. It is easy to see that this holds for the Poincarό
group. In this case MACKEY says that the semi-direct product is 'regular',
and all representations can be found by the general theory. When one

has the semi-direct product H(^)N, where N is not abelian, then an
analogous theory can be set up. In place of the dual space of characters,
ί7

4, MACKEY defines N to be the space of equivalence classes of irreducible
unitary continuous representations of N. It is then possible to put a
Borel structure on IV" in a natural and unique way. The group H will act
in N as follows: let n-+ U(n) be a unitary representation, i.e. an element
of N. Then the representation %-> U(g(nty is said to be equivalent using
H, g ζ H to n~>U(n). We put two (possibly inequivalent) representa-
tions of N in the same orbit if they are equivalent using H. Thus N is
again divided up into orbits. One may again define the semi-direct
product to be 'regular' if there exists a countable number of Borel sub-
sets of N whose union meets each orbit exactly once. If this is the case
then the following construction, (which works for any semi-direct pro-
duct but in general does not give all representations) does indeed give
all representations.

Let χ be a point in N. Then the stability group of χ (= little group of
χ) Hχ is the subgroup of H such that χh ̂  χ for all h ζ H where the
action χ -> χh of H on N, is the dual action of H on N that is, if χ is the
representation n -> χ(n) of N, then χh is the representation n -> χ(h(n)).
If χt and χ% are two points on the same orbit then Hχl is isomorphic to
Hχ2, and so we may associate one abstract group with each orbit, the
little group for the orbit. One may then obtain a representation of the

group Gχ± = HχlQ)N as follows.

Let L be a representation of Hχ in a Hubert space ^f-^ and suppose
χ ζ N acts in a Hubert space ^fz. Since χh is unitary equivalent to χ
for h ζ Hχ we may identify the carrier space of χh with J^2, for any
hζHχ. Then there exists a unique2a operator W(h) :^f2->^fz such that
χh(n) = W(h) χ(n) W~^(h) for all h ζHχ and n ζN. The map (h, n) ->
->χ(ri) W (h) then defines a representation 2b of Gχ in <$?2. A more general

2a Up to a factor.
2b In general, a projective representation.
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representation is then of the form (h, n) -> L (h) Θ χ (n) W (h) acting in

the Hubert spacedx <g> ffl2. The representation of H Q N induced by this
is thus labelled by χ and L, and will be written ρ(L, χ). If the semi-
direct product is regular, and H has no non-trivial multipliers, then all
the representations of G are of this form.

If χ1 and χ2 are on the same orbit then the resultant representations
obtained by irreducing are equivalent if the same representation of
GXi — Gχ& is used. Thus the representations of a regular semi-direct
product are labelled by the orbits in $", and the representations of Gχ.

If we wish to find all the representations we must allow the representa-
tions of Gχ, namely L, to be protective, and we must allow for possible
protective representations of N, and for certain multipliers between the
representations. However, it follows from MAOKEY'S theorem that if H

has no non-trivial multipliers then all true representations of PI Q N
are obtained from true representations of H and N. In particular if H
is a one-dimensional abelian Lie group, it has no projective representa-
tions which are not projectively equivalent to true representations, and
so we can ignore the question of multipliers for the harmonic oscillator
group.

4. Kirillov theory for nil-potent groups

Nil-potent groups can be completely analysed in terms of a sequence
of semi-direct products and these can be completely analysed by the
preceding analysis. By repeated application one can prove that all
representations can be induced from one-dimensional representations.
These are classified as follows. Let G be a nil-potent group and G its
(real) Lie algebra G is an ^-dimensional vector space which carries the
adjoint representation of G: if x ζ_G, we define Aάx as the operator
Aά(x)y = [x, y] ζ G - , and let Gr be the real dual to G, carrying the co-
adjoint representation defined by duality3: {Ado;7, T/} = — (xr, Ad?/).
We can define the orbits in G' as follows: taking a point x1 in G', the set
{&άgx'}, g ζ G is called the orbit of x'.

The point x' defines a functional on G. A sub-Lie algebra H CG, is
said to be subordinate to x' if the restriction of x' to [H, H] vanishes. If
H is subordinate to x'9 then x' defines a character on J/, the group of the
Lie algebra #; if h = exp (ocx), x ζ JΓ, h ζH, we define x' (h) = exp (i ( x f , #}).
Because x' vanishes on [H, H], the function x' (h) satisfies the character
relation xr (Ji-Ji^) = x' (h-^) x' (h2), i.e. defines a one-dimensional representa-
tion of H. KIKELLOV proves that the representation ρ (x'', H) of G induced
by the representation x' of H is irreducible if and only if H is a maximal
sub-algebra subordinate to x'. We say H is maximal if it has a dimension
greater than or equal to the dimension of any other algebra subordinate

3 In later sections we omit the minus sign.
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to xr. If HI and H2 are two maximal algebras subordinate to x', then the
representations ρ ( x f , H l ) and ρ(x',H2) are unitary equivalent. One can
then easily deduce that if /x and /2 are two points on the same orbit, and
HI and H2 are respectively maximal dimensions sub-algebras sub-
ordinate to /x and /2, then ρ(fι, H^^ ρ(fz, H2). Moreover, every con-
tinuous irreducible representation of a nil-potent group can be obtained
in this way.

Now this is a very neat way to characterize the representations of
nil-potent groups, and the construction of G', maximal H and ρ ( x f , H )
etc. can be done for any Lie group, and the questions that can be asked
are

i) Does the construction give all representations ?

ii) If H is maximal, is ρ ( x ' , H) (with H subordinate to x') necessarily
irreducible ?

As remarked, (i) can hold only for groups whose regular representation
contains all representations, and so we might expect trouble with the
non-type / groups, i.e. Lie groups with representations which generate a
non-type / von Neumann algebra. Among such groups may be found
certain solvable ones.

P. BERNAT has shown, however, that for solvable groups such that
the exponential map is onto, the Kirillov construction does indeed give
all the representations. But he gives an example for which (ii) is false and
so, in fact, there exists an orbit containing x', and maximal sub-algebras
HI and H2 subordinate to x', such that ρ ( x f , H 1 ) is not equivalent to
ρ(x',H2).

Our results for the harmonic oscillator group, obtained below, show
that the Kirillov method using the real Lie algebras G and G', does not
give all the representations. Thus one may deduce that this group, while
solvable, is not exponential. A more direct argument is given below.
However, if one used complex Lie algebras G and G' then all the irreduc-
ible representations are in fact given by orbits.

For the harmonic oscillator group, with a positive definite Hamil-
tonian P2 + Q2, one can prove that the exponential map is not onto, and
so the problem is outside the scope of Bernat's theorem. To see this, note
that DIXMIER has given a criterion which determines whether the
exponential map is onto or not, in terms of linear forms called the roots

of the group. This analysis goes as follows: let $ == ίri D ί?2 5 ί?s * " " ̂  ί?fc
= {0} be a series of ideals of G, with Gk+1 a proper maximal sub-ideal of
G (maximal in Gk). A theorem of Lie for solvable groups then assures us
that the dimension of Gj/Gί+1 is less than or equal to 2. Moreover, if

a) DimGjlGj+1 = 1, then if we write Gj = Gj+l + Gj there exists a

non-zero element a}- of G^ an element ψ3 of G' and a linear map
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: Q ~> ί?ί+ι such that for all x ζ G.

b) If DimGjIGj^ = 2 then if <^ = 6^+1 -f (̂  there exists a base

(%, αj ) of $,-, two elements ̂  , yj of $', y J being non-zero, and two linear
maps tfy, wj from G into 6r3 +1 such that for all x ζ G

[x, a,j] = ψj(x) aj - ψj(x) a'j + us(x)

[x, a'j] = yfo) aj + γ^x) a] + u'j(x) .

Putting ψj = o if dimG^/(rί +1 = 1, the roots of G are the linear forms
ψj db ί ψj Then we have the following result : G is exponential if and
only if γ;J is proportional to ̂  , that is, if and only if ιψj is non-zero and
there exists a real number α, such that ^ = oCjψj. For the harmonic
oscillator group the series of ideals is

G=(H,P,Q,E), G^(P,Q,E), &= (S) .

QilQz is spanned by the vectors P and Q and we are concerned with the
linear forms ip^(H) and ψ[(H). We see

Therefore, identifying, we have

Since ψι(H) = 0, the harmonic oscillator group is not an exponential
group4.

5. The Mackey theory for the oscillator group

The group is the semi-direct product H Q) N where H is the one
dimensional group generated by the time translations and N is the
Heisenberg group. We are interested in $, the space of equivalence
classes of unitary representations of N. Since N is nil-potent, its unitary
representations are given by the Kirillov method.

Let us denote the 3 -dimensional vector space spanned by P, Q, E by
N and let us denote by p, q, e vectors spanning an isomorphic space. The
adjoint representation of N is thus given by the following action

4 BEBNAT has shown [3] that a similar 4-dimensional group (but with indefinite
hamiltonian) is a basic ingredient of all exponential solvable groups.
16 Commun, math. Phys., Vol. 4
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The contragredient action in N' is therefore determined up to sign by

p)=:0; (Pq'\q} = 0; {P#'|e> = 0. . Pq' = 0

<Pe'|?> = 0; <Pe ' | t f>=l ; <Pe'|e> = 0. . Pe'= g'

Clearly # = 0 on 2V'.

Fig. 1. Orbits in JP under N

Thus the point (o, pf, q') is unmoved by the group and each such point
leads to an irreducible representation. Since β' does not appear on the
right hand side, the value of the coefficient of e! does not change under
the action of the group. But if this coefficient is non-zero, any value of
(p, q) can be reached by acting with the group, and so the orbit is the
whole plane (e', p, q). Thus the irreducible unitary continuous representa-
tions of N are labelled by (e' — o, p, q) or ef Φ o, and the space N may be
pictured as a plane with a line perpendicular to it.

We must now determine the orbits in 2V" of a point in N under the
action of the other group in the semi-direct product, namely the one
parameter group of time-displacements generated by the hamiltonian.
These orbits in $ mast not be confused with the orbits in N' just found;
in fact orbits in Nr under N are just the elements of N.

In order to find the action of H on a point in N we first construct the
representations i.e. the points in N, by the Kirillov method. If e' φ o
the orbit in Nr is the plane through the point (ef, o, o), and since any
point on the orbit may be chosen, we choose (ef', o, o). The maximal sub-
algebra of N subordinate to this linear form has dimension 2, and may be
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taken to be e.g. (P, E) or (Q, E) (i.e. the algebras spanned by these
vectors). Consider the subgroup (E, P) (the choice (E} Q) leads to an
equivalent representation, by Kirillov's theorem). The subgroup gene-
rated by (E, P) is a two-dimensional abelian group with typical element

Fig. 2. The space N

(α, x) = exp(Eoc) exp(#P) and since (E9 P) is subordinate to (e', o, o) the
following defines a character: — χ(oc9 x) = eί<xe'. From this representation
we can induce a representation of N9 as follows. We consider functions
/(α, x, y) on the group N (whose typical element is exp(Eoc) exp(Px)
exp(Qy) = (κ,x,y). These must satisfy the "left covariant on cosets"
condition, namely

> χ>
.e.

/((α + al9x + xl9 y)} = e*α e '/(α, x, y) .

It follows that the state space is determined by the value of / at α = x = 0,
and we may identify it with J^f2(R) : ψ(y) = f(o, o, y). The action of the
group N is

f(y) = /(^

Thus the action of eQ2/1 is y(y)-*y(y + yj, i.e. Q is represented by y- .

The action of ePXί is ψ(y) -> e~ie'yXlψ(y), so P is multiplication by
— ίe'y. Thus the (P, Q) are represented by the usual Schrodinger opera-
tors, and E generates a phase transformation.

The action of the one parameter group of time-translations is given
by the rule x -> txt~λ i.e. if Q)e' is the above representation of N then the
time displaced one is

where n ξ N and n
16*

t (n) ζ N is the action of a time-displacement.
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To calculate this we need to know

eHtexPe-Ht an(J eHtevQe-Ht ^

By the usual rules, e

Htexpe-Πί = exp^ and eHtey^e~~Ht = ey®W, where

P(t) = eπtPe-Ht; Q(t) = eHtQe~B* .

In fact this leads to

dP(t)~ dQ(t)
dt o

with the solution P(t) = P cost — Q sin£; Q(0 = ζ) cosί -f P sinί. It
follows that

etΠe*EexPeyQe-tH = eα£ exp j ̂ p CQS£ _ ρ sinj)] eχp [?/($ COSί -fP SHlί)]

= e«#es P cos£e-z Q sinί e~\(χ* E cosί sinί) eyPsinteyQ cosίj*^ cosί sinί

using the Baker-Hausdorff formula

= exp f^(α— ~2~^2 cosί sinί + -^2/2 cosί sin£ — xysm2t)\

0P (x cosί + 2/sinί) /oQ ( — α sinί + 2/ cost)
o t> .

Therefore the representation f̂ , which is irreducible, is the following

-L - α;f cosί sinί + ?/f cosί sinί -

— x1yl sin2ί, ̂  cosί + 7/x sin^, — ̂  sinί -f ^ cosίj 7/ j (?/)

_ ^2 I

αx — 2

 1 cosί sinί -\ -^y\ sinί cosί — ̂ ^ sin2ί — ^(^ cosί

+ 2/ι sin£) 2/ι cos^ ~~ xι S n0

If we restrict this representation to the subgroup expocE, we see that it

is merely the phase @t((x) = eίe'a. But this representation is unitary

equivalent to the one Q)e' ', since this phase, if non-zero, determines the

representation. It follows that if e' φ o, the stability group of the orbit

(or any point on the orbit) is the whole group exp(tH). Thus we get a

representation of H Q) N immediately; in fact Q \ is unitary equivalent

to &e> ', and since &e' is irreducible, the operator giving equivalence is

unique up to a phase, say W(t), i.e.

^'(α, x, y) - W(t) ^β'(α, x, y) W~l(t) .

The operator eu ί - x2 + -̂ - + ith'j = expίt(P2 + Q2 + A') has this

property, and so by the uniqueness of W(t), this is W(t). But then the

resultant representation of G

(α, .τ, y, t) -> ̂ e' (α, x, y) W (t)
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is just the usual harmonic oscillator solution, with er related to H and
h' = zero-point energy5.

This completes the construction of the representations of G associated
with the points (ef, o, o) in the space N'. These representations all have
the property that, restricted to the Heisenberg sub-group N, they are
irreducible, and therefore must agree with the 'usual' solution to the

Harmonic oscillator; the energy is bounded below by h' + -j-, and e'

merely gives the value of H.
The remaining representations of N are characterised by the point

(o, p', q'} in N'. It is clear that this point is moved by the group H unless
p' = q' = 0. For, the representation of N determined by (o, p' ', q') can be
explicitly determined as follows. The maximal sub -algebra of N sub-
ordinate to (o, p', q') is N itself, and (o, p', q') therefore determines a
character of N9

= 1, χ(expPx) = e**'*;

The action of exp(Ht) on this representation is

χt(oc, x, y) — χ(e+Ht expj^α expPa; QxpQy exp — Ht) .

= χ ίexpjδ7 lα-j- Ίf^2 °osί sin£ — ̂ -y2 cost sinί — xysm2tj

expP(# cosί — y sinί) expQ(x sinί -f- y cosm

_ aίp'(xco&t—V8iιιt)aίq'(x&mt + ycost)
— o o

__ eίx(p'co$t + q' sin t)giy(q' cost— p'sinί)

Therefore χt is associated with the representation

(o, p't, q't) = (o, 2>r cosί + Q r/ sinί, g' cosί — p' sinί) = (o, £/, g')

only if t = o. Thus the little group is trivial. Thus according to the general
theory the resultant representations of G are merely those obtained by
inducing from this representation of N we note that restricted to N it is
reducible and it has not got positive energy.

We see immediately that the semi-direct product is regular. For, the
Mackey Borel structure for N is undoubtedly that of the product of the
plane (omitting the origin) and the line6. Each point on the line is an
orbit in N under H, and the orbits in the plane are the ellipses p' (t)
= p'cost + q' sinί, q1 (t) = q' cost — pr sh~U. Thus the following Borel set
meets each orbit only once: the line (ρef, o, o), — σo < ρ < σo and
(o, ρp', o') pf Φ o, o < ρ < oo.

5 In the general construction of § 3, a representation of HQ)N is determined by
a representation of JV and a representation of H. But since H is one-dimensional its
representations are characters e*Λ'*, which we have incorporated in W(t).

6 For the Heisenberg group N this has been proved.
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Then by Mackey's theorem, we have found all the continuous unitary
irreducible representations.

The representations of the form (o,p',q') for N do not occur in
quantum mechanics. This is because the restriction to N is reducible, i.e.
at a sharp time, P(t), Q(t) form a reducible set of operators. In fact,
even in a finite strip of time, a time slab, these operators are reducible.
(In any representation in which (P, Q) are irreducible, the solution must
agree with the usual dynamics.) But the main physical trouble with these
representations is that the energy is not bounded below.

6. Kirillov theory of the oscillator group

The group is four dimensional with elements H, P, Q, E: we consider
an isomorphic vector space with basis h, p, q, e. The action of G is

Hh = o Hp=—q Hq = p He = o

Ph = q Pp=o Pq = e Pe = o

Qh=-p Qp=-e Qq = o Qe = o

Eh = o Ep = o Eq = o Ee = o

One can therefore calculate the contragredient action of the group G on
the dual space G' :

(Hhr \hy = o (Hh' \p} = o {Eli' \qy = o (Hhr e) = o

Thus

Also
'\V> = o (Pp'\p} = o

'\qy = o (Phf

(Pe'\hy = o (Pe'\p} = o (Pe'\q}=l (Pe' e) = o

Thus
Ph' = o, Pp' = o, Pq' = h', Pe' = q'.

Similarly
Qh' = o, Qp' = -hf, Qq' = o, Qe' = -p'

and E = o as an operator in G' '.

We are now in a position to determine the orbits in G'.

Since E = o, the action of expαJ^ does not move any point in G' .
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A general point in G' will be denoted by M + βp' + γq' + δe'.
Since e' does not appear on the right hand side of the equations, the
value of δ is constant on any orbit. Once we have chosen δ, we may
draw the orbits in three dimensions. If δ = o, the orbits can be computed
quite simply.

Fig. 3. Action of Lie algebra on a point (β, γ) in the (p', #')-plane, if <5 = o. Action of P is up. Action
of Q is down. Action of H is horizontal

The action of H moves a point in the (p'} q'}-plane. We get, in a small
time dt,

(β, γ) -> (/?, γ) -f- βHp' dt + y##' d£

dβ = -γdt

dγ = βdt.

The path is therefore determined by the equations

f =-y<o £=/>(')
whose solutions is an ellipse in all cases except β = γ — o. The action of
P and Q does not alter the value of (p', q') both change h' if pr or q' =}= o.
Thus the orbits, for δ = o, are elliptic cylinders, except for p' — q' = o.
If p' = q' = o there is one representation for each h'. The algebra sub-
ordinate to a point on an orbit containing (p(pr, q')o) is the Heisenberg
algebra N, and gives a character on N. The resultant induced representa-
tion of G is therefore the same as that given by the Mackey theory,
using the points in N' such that e' = o, pf and q' not both zero. If
p' = qr — o the representation is the identity if h' = o, and if h' =f= o we
get the representations obtained from the point ef = p' = q' = o in N'.
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If now δ φ o, we can discuss the orbits in the (pf, q') plane, i.e. the
orbits sliced by the plane α = const. Now, the value of α does not
influence the shape of the orbits in the plane α = const. Therefore all
the pictures of orbits, sliced by α = const., look the same. To find the
shape of the orbits in the plane α = const., we must first find the subset
of G that leaves the coefficient of In! the same, i.e. leaves us in the plane
α = const. This will clearly contain H, since

H(κh' 4- βp' + γqf + δe') = βqf - γp' .

The operators P and Q separately do change the fourth component, since
Qpf = ~h' and Pq' = h'. But the point M -f βp' + yq' + δe' is ]eft in
the same plane α by βP + γQ. This operator moves the point och' -f

+ βp' + y<?' + <5e' to the same point + δ(βqf — γp'), i.e. in the same
direction as the operator H. Therefore the orbit in this plane is one-
dimensional instead of two dimensional, and so are ellipses as before. If
β = γ = 0, (5 φ 0, then both P and Q infinitesimally leave us in the
plane α = const., i.e. we have an infinitesimal 2-dimensional surface in
the orbit. Therefore the orbit touches the plane α = const, at β — γ = 0,
and we have the following picture: each orbit is a parabolic shape with
elliptic section (drawn with δ > 0). To see that the orbit is bounded below

Fig. 4. Orbits if <5 > 0

in h', note that if the coefficient γ of q' is >0, the action of P: Pq' = h',
Pe' = q' increases both the g'-value and the /^'-value, while if γ is <0
the action of P decreases δ while γ is increased. Thus γ = 0 is a minimum.
Similarly, if β > 0 the action Qp' = —h', Qe' = —p' shows that Q
decreases α and β, and if β < 0, Q increases α while decreasing β. Thus
β = 0 is a minimum also in this direction. Thus if δ φ 0 an orbit is
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determined by the intersection (unique) with β = γ = 0, i.e. by the
element (α, o, o, δ).

If we now proceed with the Kirillov construction we find that we get
a reducible representation of G, unless complex subalgebras are admitted.
For, the dimension of a maximal algebra subordinate to (α, o, o, δ) is
two if it is required to be real; for example, it could be (P, E) or (Q, E)
but the representation obtained from the resulting character of such a
sub-group must be reducible. For it can easily be seen not to be unitary
equivalent to the only remaining class of irreducible representations
(those with positive energy).

However, if we allow complex coefficients, there is a three dimensional
sub-algebra subordinate to the functional (α, o, o, δ). For if we define
A = P — iQ, then the algebra generated by (H, A, E) is subordinate to
(α, o, o, δ), since [H, A] = — Q — iP = — i(P — iQ)\ we make this
choice if α < 0. (Similarly one could use H, A* and E if α > 0). Then we
have [A, A*] = 2iE where A* = P -f iQ. Thus we may consider the
group to consist of elements (φ,z, z, t) = eφEezA*ezAetπ

 Or more con-
veniently (99, t, z, z) with multiplication

(o, o, zf, o) (φ, t, z, z) = eA*z'eEφeπteA*zeAz

_ eEφeHteA*θz' eA*zeAz

where θ — e~ίt.
Therefore

(o, o, z', 0} (φ, t, z, z) = (φ, t, z + z'e-'*, z) .
Also

(o, o, o, z'} - (φ, t, z, z) = eAz'eEφeHteA*zeAz

The post-multiplication is

(99, t, Z, Z) ' (0, t', 0, O) = eEφeHteA*zeAzeHt'

Therefore
(φ, t, z, z) (o, t', o, o) = (φ, t + t', zeriv , zeli) .

We now induce up from the subgroup of (H, A, E). The functional
(α, o, o, δ) defines the following character on the group of this algebra:

χ(φ, t, z, z) = eί(P«eίδt .

Thus the Hubert space of Uχ, the corresponding induced representation,
consists of functions on the group, i.e. functions Ψ of φ, t, z, z, satisfying

(i) ψ((φ', o, o, o) (φ, t, z, z)) = e^f-ψ(φ, t, z, z)
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i.e.

Ψ(φ + φ', ί, z, z) = ef**Ψ(φ, t, z, z)

i.e.

Moreover

(ϋ) ψ((o, t', o, 0} (φ, t, z, z}} = <f**Ψ(φ, t, z, z}
i.e.

Ψ(φ, t, z, z) = e ία<P e ΐ ό ί ?F(o, o, z, z).
Moreover

(ϋi) Ψ((o, o, z', o) (φ, t, z, z)) = Ψ(φ, t,z,z); put φ = ί - o;

then we get

Conditions (i), (ii) and (iii) are the 'left co variance' conditions.

The Haar measure on the group reduces to the invariant Liouville
volume element dz dz. From (iii)

') e-2"'*} = - Ψ(z, z} = 0

dΨ

_
Putting ^7 = 0 we get the equation-^- = 2oczΨ, whose solution

where f(z) is a holomorphic function of z. It is clear that this form is
sufficient to satisfy all the conditions. The choice of α determines the
scale of H and the choice of δ adds a constant to the Hamiltonian7. The
action of A is Ψ(z9z)e*vA*'-*Ψ(z9z + z')9 which multiplies /(z) by β2α*2"
i.e. A is multiplication by 2ocz. The action of ez'A* takes Ψ(z,z) to
e-2α2/f!P(3 + z',2), so that f(z) = e-2zz<xψ(z} z) is transformed by post-
multiplication into

e~ 2α<z + ̂  Ψ(z + z', z) = f (z + z') .

Therefore A* is represented by-^— . Thus we have arrived at the Barg-

mann-Segal representation of the harmonic oscillator by holomorphic
functions, [4], [5] well known to coincide with the 'usual' representation,
and therefore with the remaining irreducibles (depending on α and δ)
given by the Mackey theory.

7 In fact, negative α correspond to positive H; if α > 0, we must interchange the
roles of A and -4* in order to obtain a convergent exponential.
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We note that the action of time-displacement will be

Ψ(φ, t, z, z) -?-» ψ((φ, t, z, z) (o, t'} o, o))

- Ψ(φ, t + t', ze~itf, zeitr)

Therefore the eigenstates are found to be functions for which f(ze~u')
_. Q-inv j(z} i e ^ne homogeneous polynomials of degree n, and the eigen-
values are n + δ. The fact that these eigen- values are positive (i.e.
bounded below) is ensured by the fact that the corresponding Kirillov
orbit, shown in the figure, is bounded below by δ. Thus the orbits give a
simple criterion for determining the spectrum of the associated operators
in that representation.8

The fact that the left-covariance conditions sometimes lead to
holomorphy in certain variables was discovered in other special cases by
GELFAND and GBAEV [6]. The procedure of the present paper has been
termed 'holomorpmV induction by DIXMIEB, and forms part of a
general result of KOSTANT who showed the existence of holomorphic
sections for any Lie group; and gives the measure on the coset space.
For the general solvable Lie group there is as yet no proof that all the
representations are given by orbits, and this would seem unlikely in
view of the existence of solvable groups not of type /. It can be shown by
explicit computation that all the representations of 0(2, 1) correspond to
orbits (S. DUNNE, private communication), except that the supple-
mentary series is not obtained directly, but requires analytic con-
tinuation from the principal series.

Conclusion

We have found that for a certain solvable Lie group, the oscillator
group, the exponential map is not onto, and so the theorem of BERN AT
giving all the representations is not necessarily true; that is, the Kirillov
prescription need not give all the representations; in fact, restricting
ourselves to real Lie algebras, the Kirillov theory fails. However, if we
allow complex Lie algebras, one does arrive at all the representations,
as is proved by comparing with the Mackey theory. The latter gives all
the representations since the group in question is a regular semi-direct
product. Applying the Kirillov technique leads directly to the holo-
morphic function realization of the harmonic oscillator.

8 For nilpotent groups KIEILLOV has proved that the spectrum of an operator
X in the Lie algebra, in a representation corresponding to an orbit, is contained in
the projection of the orbit onto X', the dual to X. This result also holds for 03 and
the oscillator group, as is seen explicitly.
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