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PERIODIC AND RECURSIVE CONTROL THEORETIC

SMOOTHING SPLINES

MAJA KARASALO∗, XIAOMING HU∗, AND CLYDE F. MARTIN†

Abstract. In this paper, a recursive control theoretic smoothing spline approach is proposed

for reconstructing a closed contour. Periodic splines are generated by minimizing a cost function

subject to constraints imposed by a linear control system. The optimal control problem is shown to

be proper, and sufficient optimality conditions are derived for a special case of the problem using

Hamilton-Jacobi-Bellman theory.

The filtering effect of the smoothing splines allows for usage of noisy sensor data. An important

feature of the method is that several data sets for the same closed contour can be processed recur-

sively so that the accuracy is improved stepwise as new data becomes available.

Keywords: Smoothing splines, optimal control, Hamilton-Jacobi-Bellman theory, periodic so-

lutions.

1. Introduction. In this paper we focus on the problem of reconstructing closed

contours from noisy and sparse samples.

Data smoothing is a classical problem in system and control history [1, 3]. Smoo-

thing splines were introduced in the 1960s. As opposed to interpolating splines,

smoothing splines pass close to, rather than through interpolation points, provid-

ing a filtering or smoothing effect. A comprehensive overview is given in [4] and [5],

where splines are studied in a statistical setting. In mathematical statistics, the aim of

the smoothing spline is generally to fit a curve to a data set so that the error between

the curve and the data has nice statistical properties, for instance that it is normally

distributed.

Control theoretic smoothing splines were first introduced in [10], and are further

studied in for instance [11, 12, 15]. In [16], the smoothing spline problem is solved

using Hilbert space methods. [6] is, to the extent of the authors’ knowledge, the

first book to give a complete overview of the field. The aim of control theoretic

smoothing splines is to find a tradeoff between faithfulness to a given data set and

control gain. This is motivated by for instance trajectory tracking applications, where

exact tracking of way points often calls for undesirable large accelerations.

A nice property of smoothing splines is robustness. [13] observes that smoothing

splines are in some sense band limited so that small changes in one data point will

mainly affect the spline in a neighborhood of that point.
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The focus of this paper is control theoretic smoothing splines with a periodicity

constraint. A recursive approach is developed, where the estimate of the underlying,

closed curve is improved stepwise as new data sets are recovered.

We note that recursive approaches to constructing splines have been investigated

in [23] and [29]. In the field of robotics, recursive cubic B-spline methods for path

planning have been presented in [21] and [22]. However, little work has been done in

this direction with control theoretic splines. A notable contribution is presented in

[6]. While the recursive smoothing spline problem formulated in [6] includes previous

curve estimates, the formulation in the present paper only includes them implicitly.

Control theoretic smoothing splines may be viewed as point-to-point LQ optimal

control problems with dynamic constraints. Point-to-point LQ optimal control prob-

lems have been investigated in for instance [24] and [25], where [24] treats the optimal

output-transition problem for linear systems while [25] considers LTI continuous-time

systems with affine constraints in initial and terminal states.

[14] investigates a point-to-point LQ optimal control problem under the assump-

tion of dynamic constraints with a stochastic uncertainty. This paper examines a

similar LQ problem, with the important distinction that we optimize over all periodic

solutions. Again, results for periodic LQ problems can be found in papers dating back

to the 1970s, [8, 9], but these do not cover the point-to-point problem.

In the field of mathematical statistics, early contributions on periodic smoothing

splines include [26]. Until recently, little work had been done on periodic control

theoretic smoothing splines. Notable contributions have however emerged during the

past few years. [28] studies applications of control theoretic smoothing splines to mo-

bile robotics, and poses a problem where the periodicity constraint depends on input

data. In [27] periodic control theoretic smoothing spline problems are solved using

Hilbert Space methods. In the current paper, optimality conditions for such splines

are examined using Hamilton-Jacobi-Bellman theory for optimal control problems.

The paper is organized as follows. In Section 2, we state the contour estimation

problem formally and propose a closed form and a recursive point-to-point LQ formu-

lation for estimation of closed contours. In Section 3 we discuss optimality conditions

for the periodic smoothing spline problem. Some simulation results are reported in

Section 4, and a concluding summary is provided in Section 5.

2. Problem statement and motivation. Consider the problem of reconstru-

cting continuous, smooth, closed curves in R
2 from noisy and sparse measurement

data. This problem arises for instance in mapping applications and trajectory tracking

for mobile robots. In this section we pose two problems that aim to find the best

estimate of an underlying, closed curve given noise contaminated samples from the

curve. First, we introduce a closed form optimal control problem that yields an initial

estimate of the underlying curve and then a modified, recursive problem. A formal
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problem statement follows.

Given a data set D = {(ti, zi) : i = 1, ..., N}, where zi = z(ti), ti ∈ [0, T ]

and z(T ) = z(0). If zi = y(ti) + ξi are noise contaminated samples from a closed

continuous curve, where ξi is a symmetric, zero-mean iid noise with bounded variance,

how to find the function y(t) that best represents the underlying curve, with respect to

smoothness and closeness to measurement data?

If y(t) is viewed as the output of a dynamic system with input u(t), an optimal

control approach can be used.

2.1. Closed Form. The following closed form L2 smoothing problem yields an

estimate of y(t) while minimizing the control effort u(t).

Problem 2.1.

(1) minimize
u∈L2[0,T ]

J(u, x) =
1

2

∫ T

0

u(t)′Q−1u(t)dt+

1

2

N
∑

i=1

(ti − ti−1)(zi − y(ti))
′R−1(zi − y(ti))

subject to ẋ = Ax + Bu(2)

y = Cx(3)

x(0) = x(T ),(4)

where t0 = tN − T , and ti > ti−1 for i = 1, . . . , N . (·)′ denotes the transpose

of (·). A ∈ R
n×n, B ∈ R

n and C′ ∈ R
n, where the pair (A, B) is controllable and

(A, C) is observable. Q and R are positive definite matrices of suitable dimension.

The resulting smoothing spline is given by y(t) = Cx(t).

Let us have a closer look at the cost function (1). The integral imposes a penalty

on large magnitude of the input u(t). The sum punishes large deviations of the curve

y(t) from the data (ti, zi). In other words, the solution of Problem 2.1 is in some sense

the optimal compromise between low control gain and faithfulness to the data set.

The magnitude of the components of R−1 and Q−1 determine the tradeoff between

these two conflicting objectives.

The system (2) - (3) is referred to as the spline generator of Problem 2.1. The

relative degree of the spline generator determines on which derivative to impose the

smoothing penalty.

Example 2.1. For many practical problems, a natural choice is to impose the

smoothing penalty on the second derivative of the spline. This corresponds to a system
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with relative degree 2. The simplest representation of such a system is

(5)

A =

[

0 1

0 0

]

, B =

[

0

1

]

, C =
[

1 0
]

,

Q = 1, R = 1/ε2, ε > 0 T = 2π.

In the next section it is shown how a modification of Problem 2.1 allows for a

recursive approach to the contour estimation problem.

2.2. Recursive Form. As the data is noise contaminated, the resulting spline

from one data set D may give a poor estimate of the underlying curve. If new data

becomes available over time, improvements of the estimate can be made by solving a

recursive form of Problem 2.1. Here, the optimal control uk−1(t) from the previous

iteration is used in iteration k together with new data (tki , zk
i ).

Problem 2.2.

(6) minimize
uk∈L2[0,T ]

Jk(uk, xk) =
1

2

∫ T

0

(uk(t) − uk−1(t))′Q−1(uk(t) − uk−1(t))dt+

1

2

N
∑

i=1

(tki − tki−1)(z
k
i − yk(tki ))′R−1(zk

i − yk(tki ))

subject to ẋk = Axk + Buk(7)

yk = Cxk(8)

xk(0) = xk(T ).(9)

Introduce the notation

z̃k
i = zk

i − yk−1(tki )

x̃k(t) = xk(t) − xk−1(t)

ỹk(t) = yk(t) − yk−1(t)

ũk(t) = uk(t) − uk−1(t).

(10)

Substituting for the variables (10) in (6) - (9), we obtain

(11) minimize
ũk∈L2[0,T ]

Jk(ũk, x̃k) =
1

2

∫ T

0

ũk(t)′Q−1ũk(t)dt+

1

2

N
∑

i=1

(tki − tki−1)(z̃
k
i − ỹk(ti))

′R−1(z̃k
i − ỹk(ti))

˙̃xk = Ax̃k + Bũk(12)

ỹk = Cx̃k(13)

x̃k(0) = x̃k(T ),(14)
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which are identical to (1) - (4). Therefore, solution methods and optimality conditions

for Problem 2.1 and Problem 2.2 are identical. At iteration k, the spline solution ỹk

of Problem 2.2 is an adjustment of the curve yk−1 based on the new data (tki , zk
i ).

The curve estimate at iteration k can now be written

(15) yk(t) = y1(t) +

k−1
∑

j=2

ỹj(t),

where y1(t) is the spline solution to Problem 2.1 for the first batch of data. In the

next section, optimality conditions for this smoothing problem is discussed.

Remark 2.1. It is intuitively easy to see that using the closed form (Problem 2.1)

and increasing the number N of data points, the spline output should approach the

underlying curve if the noise is symmetric and the variance is bounded. If such a

data set is available, this may be an option. In many applications, however, new data

may arrive at different points in time, calling for an update of the estimate. This

is for instance the case when data is collected by teams of cooperating autonomous

vehicles. As k increases, the error of the spline estimate with this recursive formu-

lation decreases only slightly slower than when increasing N for the closed form. In

the extreme, a further motivation for the recursive formulation is that as N → ∞,

Problem 2.1 may experience numerical instability in implementation.

3. Properness and Optimality. Problem 2.1 is a continuous time problem

with discrete data and periodic boundary condition. Such problems, without the

periodicity constraint, have been widely studied in the literature, see for example

the books by Bryson and Ho [1], Leondes [2] and Jazwinski [3]. However, as far as

we know, it is difficult to find results concerning the periodic case. In this section,

we investigate conditions for solving this problem. We begin by studying the proper

periodicity conditions.

3.1. Proper periodicity conditions. In this section, we adopt the notations

used in [7]. Let J̄∗ = J(ū∗, x̄∗) in Problem 2.1, where ū∗ is any constant function.

Definition 3.1. The optimal control problem is proper if there exists an admis-

sible control ū(·) such that

(16) J(ū(·), x̄(·)) < J̄∗.

In this context, proper periodicity conditions refers to conditions determining

whether an optimal, periodic control problem is proper or not. In this paper we will

only discuss properness for systems of the form (5), since, as previously mentioned, for

many practical problems this model represents the desired constraints on the spline.

The following proposition establishes that Problem 2.1 is proper for all but a special

case of data input.

Proposition 3.1. For distinct sampling times [t1, . . . , tN ], Problem 2.1, with the

numerical values of (5), is proper if and only if ∃ i, j ∈ [1, N ] such that zi 6= zj.
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Proof. The proof is constructed by showing that a particular, time varying, peri-

odic control ū(t) = αû(t) satisfies (16). For details, see the Appendix.

�

Next, we discuss optimality conditions for Problem 2.1.

3.2. Optimality Conditions and Hamilton-Jacobi-Bellman Theory. In

the following, sufficient optimality conditions for Problem 2.1 are examined using a

Hamilton-Jacobi-Bellman approach. A set of differential equations is derived, leading

to an expression for the optimal control u. It should be noted that for the particular

choice of system matrices (5), straightforward and well known approaches for regular

smoothing splines are applicable [5]. The purpose of this section is to analyze smooth-

ing splines from a control perspective and suggest solutions for more complex spline

generators.

First, a brief review of the Hamilton-Jacobi-Bellman theory is given in Sec-

tion 3.2.1. Then, in Section 3.2.2, sufficient optimality conditions are given for the

special case of Problem 2.1 where the input is a continuous curve. Finally, the discrete

data case is discussed in Section 3.2.3.

3.2.1. Optimality Conditions for a General Periodic Control Problem.

In this section we will study a general optimal control problem in order to introduce

notation and state a proposition regarding optimality conditions in a general case.

Subsequently, we will study the special case of LQ optimal control problems more

closely.

Consider the problem

Problem 3.1.

(17) minimize
u∈L2[0,T ]

J(u, x) =

∫ T

0

L(x(t), u(t))dt

subject to ẋ = f(x, u)(18)

x(0) = x(T ).(19)

Here x ∈ R
n. We assume that L(x(t), u(t)) and f(x, u) are T -periodic functions.

Some definitions of useful concepts follow.

Definition 3.2. The Hamiltonian of Problem 3.1 is

(20) H(x, u, λ) , L(x, u) + λ′f(x, u).

Definition 3.3. The H-minimal control u∗ is defined as

(21) u∗(x, λ) , argmin
u

H(x, u, λ)
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Definition 3.4. Let V : [0, T ]×R
n 7→ R. Then the Hamilton-Jacobi-Bellman

equation is

(22)
∂V (t, x)

∂t
= −H

(

x, u∗

(

x,
∂V (t, x)

∂x

)

,
∂V (t, x)

∂x

)

.

The following proposition is proved in [8]:

Proposition 3.2. Suppose that

1. The control uT generates a periodic solution xT to Problem 3.1.

2. There exists a continuously differentiable solution V (t, x) of (22) such that

(23) V (0, x) − V (T, x) = G(T ),

where G(t) is a real function.

Then, uT is optimal to Problem 3.1 if

(24) uT = u∗

(

xT ,
∂V (t, xT )

∂x

)

.

Next, optimality conditions are first stated for a periodic smoothing problem with

continuous data and a general expression for the optimal control is given. Finally, the

optimal control for Problem 2.1 in the limit N → ∞ is derived.

3.2.2. Optimality Conditions: Continuous time, continuous data. Con-

sider the following problem:

Problem 3.2.

(25) minimize
u∈L2[0,T ]

J(u, x) =
1

2

∫ T

0

[

u(t)′Q−1u(t) + (z(t) − y(t))′R−1(z(t) − y(t))
]

dt

subject to ẋ = Ax + Bu(26)

y = Cx(27)

x(0) = x(T ).(28)

Here z(t) is a continuous periodic function such that z(0) = z(T ). This may be

viewed as a smoothing problem with continuous data z(t) or as a problem of tracking

a curve given by z(t). Optimality conditions for problems of this type were derived

in [8]. A review of the results follows. For brevity, throughout this section we use

the notation Vt and Vx to denote the partial derivatives of V . The Hamiltonian

corresponding to (25) is, since y = Cx,

(29) H(x, u, λ) =
1

2
u′Q−1u +

1

2
x′C′R−1Cx − x′C′R−1z +

1

2
z′R−1z + λ′(Ax + Bu).
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The H − minimal control u∗ is derived as

(30)
∂H(x, u, λ)

∂u
= Q−1u + B′λ ⇒ u∗ = −QB′λ,

so u∗(xT , Vx) = −QB′Vx. Then the Hamilton-Jacobi-Bellman equation is

Vt =
1

2
V ′

xBQB′Vx −
1

2
x′C′R−1Cx + x′C′R−1z −

1

2
z′R−1z − V ′

xAx.(31)

In [8] the following form for V (t, x) is proposed for Problem 3.2:

(32) V (t, x) =
1

2
x′Px + x′φ + s.

Here, φ, P and s should be chosen so that (31) is satisfied, and V (0, x) − V (T, x) =

G(T ) for some real function G(t). Furthermore, P ∈ R
n×n is a symmetric, positive

semidefinite matrix. The derivatives Vt and Vx are

Vt =
1

2
ẋ′Px +

1

2
x′P ẋ +

1

2
x′Ṗ x + ẋ′φ + x′φ̇ + ṡ(33)

Vx = Px + φ.(34)

Then, since

(35) uT = u∗(x, Vx) = −QB′(Px + φ)

we get

(36) ẋT = AxT + BuT = AxT − BQB′(PxT + φ) = (A − BQB′P )xT − BQB′φ.

Somewhat tedious calculations yield, after plugging in (33), (34) and (35) into (31),

that P , φ and s must satisfy

Ṗ = −A′P − PA + PBQB′P − C′R−1C(37)

φ̇ = −(A − BQB′P )′φ + C′R−1z(38)

ṡ =
1

2
φ′BQB′φ −

1

2
z′R−1z(39)

P (T ) = P (0)(40)

φ(T ) = φ(0)(41)

s(T ) = s(0) − G(T ).(42)

A brief discussion of the existence of solutions to (37) - (42) is provided next. The

following proposition is proved in [31].

Proposition 3.3. Under the assumption that Q > 0 and R > 0, the Riccati

equation (37) admits a unique, T -periodic, stabilizing solution P (t) = P (t)′ ≥ 0 if

and only if the pair (A, B) is stabilizable and the pair (A, C) is detectable.
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Now, consider the system

(43)
(

ẋ

φ̇

)

=

(

A − BQB′P (t) −BQB′

0 −(A − BQB′P (t))′

)(

x

φ

)

+

(

0

C′R−1z(t)

)

.

Denote by X(t) the matrix in (43). The following proposition is proved in [32].

Proposition 3.4. Under the assumption that the components of X(t) are Lebes-

que integrable, and X(0) = X(T ), z(0) = z(T ), the system (43) has a unique

periodic solution (x(t) φ(t))′, x(0) = x(T ), φ(0) = φ(T ) if and only if

(44) det(I − eX(T )) 6= 0,

where I is the identity matrix of suitable dimension.

3.2.3. Optimality Conditions: Continuous time, discrete data. We re-

state Problem 2.1 for the reader’s convenience:

Problem 3.3.

(45) minimize
u∈L2[0,T ]

J(u, x) =
1

2

∫ T

0

u(t)′Q−1u(t)dt+

1

2

N
∑

i=1

(ti − ti−1)(z(ti) − y(ti))
′R−1(z(ti) − y(ti))

subject to ẋ = Ax + Bu(46)

y = Cx(47)

x(0) = x(T ).(48)

Note that here, we represent the data zi as samples of a function z(t) at times

ti. Due to the periodicity constraint, it is not trivial to find optimality conditions for

this problem. A similar problem is studied in [14]. There, the cost function is of the

form

(49)

N−1
∑

i=0

(

wi+1‖z(ti+1) − Cx(ti+1)‖
2 +

∫ ti+1

ti

σi+1(t, x, u)dt

)

where σi(t, x, u) contains, in addition to the u-quadratic term, cross terms for x and

u and linear terms in x and u. [14] assumes dynamic constraints of the form (46) but

includes a multiplicative stochastic uncertainty. Further, the initial value x(0) is fix.

(45) may be viewed as a special case of (49), where some terms are removed.

Removing the stochastic terms from the dynamic constraints, the control problem in

[14] is the same as Problem 3.3, except for the boundary constraints. In [14], using
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functions Vi(t, x) of the form (32), the following relations are obtained for each interval

(ti, ti+1] (where we have substituted for the notation in the current paper):

Ṗi = −A′Pi − PiA + PiBQB′Pi(50)

Pi(ti+1) = Pi+1(ti+1) + (ti+1 − ti)C
′R−1C(51)

φ̇i = −(A − BQB′Pi)
′φi(52)

φi(ti+1) = φi+1(ti+1) − (ti+1 − ti)C
′R−1z(ti+1)(53)

ṡi =
1

2
φ′

iBQB′φi(54)

si(ti+1) = si+1(ti+1) +
1

2
(ti+1 − ti)z(ti+1)

′R−1z(ti+1).(55)

For (A, B) controllable, (A, C) observable and Q > 0, R > 0, the Riccati equation

(50) has an absolutely continuous unique positive semidefinite solution for each i [30].

The differential equations (52) and (54) are linear with bounded piecewise continuous

coefficients, which ensure existence of unique absolutely continuous solutions. On the

interval (ti, ti+1] the resulting optimal control is

(56) ui(t) = −QB′(Pi(t)x(t) + φi(t)).

The authors believe that Proposition 3.2 can be generalized to allow for a piecewise

continuous function of the form

(57) V N(t, x) = Vi(t, x) t ∈ (ti, ti+1], i = 0, . . . , N − 1

such that

(58) V N(x, 0) − V N(x, T ) = G(T ).

This would imply that the piecewise continuous control

(59) uN

T
(t) = ui(t) t ∈ (ti, ti+1], i = 0, . . . , N − 1

is optimal to Problem 3.3 if there exist solutions to (50) - (55) such that

P N(T ) = P N(0)(60)

φN(T ) = φN(0)(61)

sN(T ) = sN(0) − G(T ),(62)

with P N(t), φN(t), sN(t) defined analogously with V N(t, x) in (57). Although simula-

tion results support this claim, a proof is yet to be constructed. A weaker result is

stated in the following proposition.

Proposition 3.5. Let N → ∞ in such a manner that ti+1 − ti → 0 ∀ i.

Then, under the assumption that (60) - (62) hold, uN

T
defined by (59) converges to uT

defined by (35).
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Proof. A proof is given in the appendix.

�

Remark 3.1. With a clever choice of discretization of Problem 3.3, uN

T
can

be computed as the solution of an unconstrained, quadratic programming problem,

avoiding the difficulty of finding solutions to (50) - (55). This is discussed in further

detail in [17], [18], [19] and [20].

4. Simulations. In this section, we show an example of curve estimation with

Problem 2.1 and Problem 2.2. The numerical values (5) were used throughout the

simulations. We let ytrue(t) denote the underlying curve while (yk(t), uN,k

T
(t)) denotes

the optimal smoothing solution at iteration k. For k = 1 the closed form (Problem 2.1)

was used, and for k = 2, 3, . . . the recursive form (Problem 2.2), yielding the control

ũN,k

T
(t), defined by (10). Throughout the simulations, a noise ξi ∈ N(0, 0.05) was

added to the samples zk
i of ytrue(t

k
i ) to simulate measurement noise. An example is

shown in Figure 1 for k = 1, 5, 10. As expected, the resulting control uN

T
defined by

(59) is periodic with breaks at the interpolation points ti. It is also worth noting

that as k grows, the magnitude of ũN,k(t) decreases as a consequence of the error

convergence.

To further evaluate the recursive problem, a study of error convergence was per-

formed for Problem 2.2. For reference, Problem 2.1 was solved for an increasing

number of data points N . Denote by yk(t) and Rk the output curve and error of

Problem 2.2 at iteration k and let yN and RN denote the output curve and error of

Problem 2.1 for N data points. The errors were computed as

(63) R(·) =

∫ T

0

(y(·)(t) − ytrue(t))
2dt.

Results are shown in Figure 2. Mean values of Rk and RN are plotted for 25 test

cases. For k = 1, . . . , 100 Problem 2.2 was solved with N(k) = 15 data points at each

iteration, while Problem 2.1 was solved with N(k) = 15k data points. Figure 2 shows

that the performance of the recursive problem is almost as good as that of the closed

form, without the drawbacks discussed in Remark 2.1.

5. Conclusions. In this paper, we introduced a recursive smoothing spline ap-

proach to estimation of closed curves in R
2. We derived periodic smoothing splines

recursively from noisy data by solving an optimal control problem for a linear system.

It was shown that a simple, linear transform makes the recursive formulation identical

to the closed form and that the problem is proper generically. Optimality conditions

were examined using Hamilton-Jacobi-Bellman theory and simulations demonstrate

satisfying error convergence for the recursive method.
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Fig. 1. An example. Left: Estimates yk(t) (dashed) are shown at iterations k = 1, 5, 10 and

compared with the underlying curve ytrue and the sampled input data (tk
i
, zk

i
) (dots). Right: The

corresponding controls u
N,1

T , ũ
N,5

T and ũ
N,10

T . The interpolation points at t = tk
i

are marked with

circles.
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Fig. 2. Convergence results for Problem 2.2 for increasing k (solid) compared to Problem 2.1

for increasing N (dashed).
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Appendix A.

Proof of Proposition 3.1. From the dynamical constraints (2) it is obtained

that

(64) x(t) = eAtx(0) +

∫ t

0

eA(t−s)Bu(s)ds,

which, inserting the matrices and vectors of (5), is

(65)

(

x1(t)

x2(t)

)

=

(

x1(0) + tx2(0) +
∫ t

0
(t − s)u(s)ds

x2(0) +
∫ t

0
u(s)ds

)

.

At the terminal time, we obtain

(66)

(

x1(T )

x2(T )

)

=

(

x1(0) + Tx2(0) +
∫ T

0 (T − s)u(s)ds

x2(0) +
∫ T

0
u(s)ds

)

,

and since x(0) = x(T ) this yields

x2(0) = −
1

T

∫ T

0

(T − s)u(s)ds(67)

∫ T

0

u(s)ds = 0.(68)

It follows from (68) that the only feasible constant control is ū∗ ≡ 0. For ū∗ ≡ 0, the

spline is x̄∗
1 ≡ z̄ = 1

N

∑N

i=1 zi. Therefore J̄∗ = J(0, z̄).

Denote by x̂1(t) the periodic, cubic spline that interpolates the points (zi − z̄).

This spline exists and is unique for distinct sampling angles ti, and if there is at least

one zi 6= z̄ in the set, x̂1(t) 6≡ z̄.

It follows that û(t) = ¨̂x1(t) is well defined, non-zero and lies in the feasible region

of Problem 2.1. Now let α ∈ R and consider

Γ(α) = J(αû(t), αx̂(t) + z̄)(69)

=
α2

2

∫ T

0

û(t)2dt +
ε2

2

N
∑

i=1

(ti − ti−1)(zi − αx̂1(ti) − z̄)2

=
α2

2

∫ T

0

û(t)2dt +
ε2

2

N
∑

i=1

(ti − ti−1)(1 − α)2(zi − z̄)2.

The derivative of Γ(α) at α = 0 is

(70)
∂Γ(α)

∂α
= α

∫ T

0

û(t)2dt − ε2(1 − α)

N
∑

i=1

(ti − ti−1)(zi − z̄)2

= −ε2
N
∑

i=1

(ti − ti−1)(zi − z̄)2 < 0.

It follows that there exists an α∗ such that Γ(α∗) < Γ(0). �
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Proof of Proposition 3.5. Note that if (60) - (61) hold, it follows that

(71) uN

T
(T ) = uN

T
(0),

Therefore, if we can show that (50), (52) and (54) correspond to (37), (38) and (39)

in the limit N → ∞, the proposition is proved.

Convergence for P .

For simplicity, assume the data is equidistant and introduce the notation ∆t = ti+1−

ti. Further, according to the standard dynamic programming approach, the Riccati

equation is solved by backwards integration starting at tN . Therefore we can write

tN−i = tN − i∆t. Introduce the notation

P N(t) , Pi(t) t ∈ (ti, ti+1], i = 0, . . . , N − 1(72)

F (P ) , −A′P − PA + PBQB′P.(73)

Consider the continuous function P (t) defined by (37). Taylor expansion of P (t)

around t = ti+1 yields

(74) P (ti) = P (ti+1) − ∆tF (P (ti+1)) + ∆tC′R−1C + O(∆t2).

Now consider the function P N . An expression corresponding to (74) for P N is obtained

by, for each interval (ti, ti+1], integrating the differential equation (50) backwards and

then adding the correction term:

(75) P N(ti) = P N(ti+1) − ∆tF (P N(ti+1)) + ∆tC′R−1C + O(∆t2).

Introduce ∆P , P N − P . Then

(76) ∆P (ti) = ∆P (ti+1) + ∆t (F (P N(ti+1)) − F (P (ti+1))) + O(∆t2).

For constant A, B and Q the function F (·) is Lipschitz in a neighborhood of P , i.e.

it holds for some constant K that

(77) ‖F (P N) − F (P )‖ ≤ K‖P N − P‖.

Thus

(78) ‖∆P (ti)‖ ≤ (1 + ∆tK)‖∆P (ti+1)‖ + k∆t2 ≤ eK∆t‖∆P (ti+1)‖ + k∆t2

for some constants K and k. Therefore, starting the integration at the same endpoint

for P and P N so that ∆P (tN) = 0, we get

‖∆P (tN−1)‖ ≤ k∆t2(79)

‖∆P (tN−2)‖ ≤ (1 + eK∆t)k∆t2(80)

...

‖∆P (tN−i)‖ ≤
(

1 + eK∆t + (eK∆t)2 + · · · + (eK∆t)i−1
)

k∆t2(81)

=
eiK∆t − 1

eK∆t − 1
k∆t2 ≤

eiK∆t − 1

K∆t
k∆t2 ≤

eKT − 1

K
k∆t.(82)
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Now fix the time t∗ ∈ [0, T ] and let tN−i = t∗. If more data points are added so that

N grows, i will grow since t∗ is fix, while ∆t decreases. Therefore

(83) lim
i→∞

‖∆P (t∗)‖ = 0.

The result also holds for unequally spaced data, in which case the convergence rate is

bounded by the largest interval ti+1 − ti. Convergence for φ and s can be shown by

a similar argument. �
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