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1. Introduction

In 1971, the Mayo Clinic received a large grant to carry out clinical research
on cancer. Twenty new projects were approved for support. Ordinarily these
would be considered to be twenty independent projects and they would each have
been provided with statistical services separately by our Medical Statistics Sec-
tion. Something has been added, however, which provides a new set of problems.
There exists now a new organization called a Clinical Cancer Center. It has been
our problem (those of us in Medical Statistics) to try to define what a clinical
cancer center is and to provide its statistical heart. At this writing we are still
trying to develop a workable, unified record system tied in with appropriate
computerization. So far the Center helps prepare protocols, designs the research
records, handles randomization, edits data promptly, and prepares the data for
analysis. Our intent is to examine results frequently, to provide summary reports
frequently and, in general, to keep an aggressive watch over the course of the
research. (There are a number of our statistical acquaintances around the country
who have been through the same thing that we are going through now. They have
our respect and admiration. Incidentally, we used to scoff at this sort of work as
being pedestrian and dull. We scoff no more.)

In preparation for this grant, a massive effort was made at the Mayo Clinic
to come up with suggestions of research projects that could be done with our
large clinical practice. (It should be remembered that the Mayo Clinic has an
enormous cancer patient load. About 6,000 new ones appear there each year.)
As a result of this effort some 100 projects were proposed for support by a grant.
These were whittled down by a committee to around 40 projects which were
written up in formal NIH style and submitted to the National Cancer Institute.
Site visits are never pleasant things if you are the one being visited. In this in-
stance we were confronted by a distinguished panel of cancer experts. The visitors
were both highly competent and highly critical. They examined our requests
thoroughly. About half of our projects were turned down by the site visitors
for one reason or another. Their report said, in part, the following.
"With respect to the scientific merit and design of the proposed studies, prac-

tically all suffered from primarily one weakness, namely, an improper experi-
mental design from a biostatistical standpoint. Because of this, protocols were
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left open ended and with too many options so that even with all the patient re-
sources each year some of the studies would take years to accumulate enough
data for analysis and by this time, of course, the time element would make com-
parisons impossible. The reviewers judged that those protocols illustrating this
weakness were prepared without proper consultation with the biostatistical staff
of the Mayo Clinic."
This statement is partly true. We had carefully worked over many of the proj-

ects using appropriate sample size considerations and revised protocols. But
many were submitted without or in spite of our statistical criticism and some
were difficult to love. Even so, a few projects we liked were turned down. On the
other hand, some of the projects which were approved by the highly critical
group of site visitors were ones that we had disapproved because we could not
see that there would be enough patients in a reasonable length of time to come
to any conclusions. There is an explanation of sorts. Some of the research topics
involving only a few patients were exceedingly interesting to the reviewers and
to the world of cancer research. While even the Mayo Clinic's case load might
not be very large for some rare diseases, still it was one of the largest case loads
in the country and some problems were considered interesting enough to look
at in spite of small numbers of patients. We now feel in sympathy with the idea
that a reasonable (inexpensive) randomized trial even on very infrequent cases
may be better than the alternative we use now. If we had only started this ten
years ago on myeloma, we would have some answers now which we need very
much.
When we examined the officially accepted research proposals (and the several

aew ones which are now being prepared), we found, typically, that the research is
clinical in nature requiring that each suitable patient be assigned at random to
one of several treatment groups. The problem is to make a comparative evalua-
tion of the treatments. How does one determine if a treatment is any good? It is
not easy. For example, in the evaluation of patients with cancer of the prostate
a "remission" is defined as (i) decrease in the size of the prostatic or paraprostatic
mass or the size of the radiographic lesion as measured independently by two
urologists, (ii) a decrease in the total acid phosphatase of 50 per cent or the
tartrate inhibition fraction by 20 per cent, (iii) improvement in activity or re-
sumption of normal activities since therapy. The first and third of these things
are quite subjective and are difficult to measure with assurance. However, once
remission occurs, then the usual problem is to determine how long it lasts. We are
involved with survival time problems.

In clinical trials, survival time in some form or another is a very common object
of study. The simple survival to death or survival to failure or survival to some
sort of change of state is a fairly routine analysis. A first order complication is
the case where survival alone is insufficient. Suppose a treatment is tried out in
the hope of inducing remission of disease. However, remission may or may not
be observed to occur. If a remission occurs, it may last for quite some time and a
conditional "duration of remission" study can be carried out. But we really have
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the problem of total evaluation, determining both the proportion of patients in
whom remission occurs and the duration of such remission. Similarly, when we
resort to studying only total survival time, ignoring "quality of survival," we
may lose the entire benefit of treatment. Our gynecologists were dismayed, for
example, at finding no increase in survival of women with cancer of the ovaries
in spite of new treatments which were felt to be helpful. Possibly the quality of
life was all that could be improved in this dreadful disease, but as yet we do not
know.

In the very large effort expended now in the evaluation of chemotherapy,
there is a class of clinical trials called Phase II Research. This is research in which
drugs which have been found to have interesting possibilities on the basis of
animal research and on very tentative human research are submitted to various
investigators to try out on suitable patients. The object is to find those drugs
which seem to show some kind of beneficial activity. In spite of years of work,
there are still gaps in the common sense of these experiments. One complicating
problem is the fact that in most institutions patients are used repeatedly; those
failing one drug are tried out on another, and upon failing a second time they are
tried out on a third. One wonders how much is missed in a promising drug by
testing it out predominantly on patients who have failed one or more previous
trials. This occurs frequently in survival analyses.
Suppose a patient starts out with a certain treatment and is followed until he

gets either a recurrence of the disease or a new disease. He then is removed from
the study and re-entered into a new study to see how he survives under his new
condition. The problem is what do you compare him with in his new condition?
What kind of comparison survival curves can be constructed? For example, pa-
tients with chronic ulcerative colitis are treated without surgery for a certain
disease. After a time certain patients are subjected to surgery. Did surgery do
any good? Even if selection for surgery were random, the time of such selection
in this progressive disease makes for difficulties. We have used a simple variation
of a standard survival analysis [2], but we have also seen serious errors made
in this situation. Surely our own methods are in need of improvement.

Another problem in the comparison of survival of two or more groups has to
do with the differences in the groups due, perhaps, to lack of randomization, or
due to "good" randomization which just turned out to be grossly unbalanced.
In clinical trials, we think we should attempt to stratify where we think it is
important and to randomize within each stratum. There are problems, then, of
evaluating overall effects of treatment on the basis of observations from several
strata, none of which has sufficient cases to stand alone.
Turn back now to the earlier part of this paper in which we discussed research

protocols which we must help develop for the Mayo Clinic Cancer Center. We
sometimes have to deal with small samples. The problems are interesting but the
patients are slow in appearing at the Clinic. Lengthy observations must be made;
research discipline must be maintained for years. It seems obvious that in these
projects the investigators will be pushed for decisions as early as possible. Se-
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quential analysis appears to be a reasonable approach to take in such cases. In
addition, as part of the surveillance of the data collection system, the data must
be examined. Waiting three or four years without analyzing the data, even
though we edit it and query it and file it carefully away, simply leads to poor
data and boredom. We cannot afford to let our data pile up unanalyzed. We must
look at them frequently (much more frequently, in fact, than we used to think
was necessary). Therefore, there is a natural incentive to evaluate research in
progress and to see how we are doing. When our clinicians learn (as they will)
of the results of our intermediate statistical analyses, they will say, "Don't we
have enough now so we can stop?" It is an inevitable and a natural question.
Therefore, it seems to us that in a carefully run data collection protocol, se-
quential analysis is thrust upon us by the nature of the needs for quality control.
Early curiosity is not a scientific sin.
For example, in studying three treatments for chronic hepatitis, a double

blind experiment was done. Patients as they came in were assigned at random to
one of three groups. Every time a death occurred the investigators "broke the
code" and looked at the treatment that the dead person had received. After all
too short a time they began seeing deaths occur as follows: placebo, placebo,
placebo, treatment 1, placebo, treatment 1, treatment 1. Treatment 2 had no
deaths for a long time compared with the other two treatments. The investiga-
tors came in and they said, "Look, we think we are killing people with this experi-
ment," but they also said, "We do not want to stop this experiment if we stop
it so prematurely that somebody else is going to have to do it again." So faced
with this compassionate, yet mature, outlook we made a sequential stopping
decision.

2. Sequential methods

We have recently been studying the work of Robbins and others on sequential
experimentation and have been attempting to apply some of these results to our
survival time problems. So far our work is only a preliminary effort. We have
also worked with Armitage's sequential pairing method [1], but wish to supple-
ment this with sequential interval estimation methods such as those in Robbins'
recent article in the Annals [3]. Robbins' work makes use of a theorem due to
J. Ville [4]; also see A. Wald [5]. The probability that the likelihood ratio based
on a sample of size n should exceed a quantity s, for some n greater than 1, is
< 1/&, e > 1. This theorem leads to many things; for example, to certain types
of confidence interval estimates and to tests of hypotheses with power 1. One
problem, discounted by Robbins, has to do with the fact that the sequential
plans are open ended and the tests will rarely end under the null hypothesis.
We give some examples of approaches that we have been examining.
The first approach is a sequential confidence interval estimate for an assumed

constant risk of death. Consider a group of individuals who come under observa-
tion at intervals, one at a time. A treatment is applied and each individual is
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observed for the rest of his life. At the time of the nth death we observe the num-
ber of patients seen so far An, the time survived by each patient ti and the state
of each patient (xi = 0 if alive, xi = 1 if dead). We wish to estimate the value
Xo of X, the assumed constant risk of death. We carry out a paraphrase of Rob-
bins' sequential confidence intervals. Let hypothesis Ho specify X = Xo and let
alternative H1 merely state that X has been obtained at random from a distribu-
tion F(X). Let gn({t, x}) be the joint density function of the observations under
Ho and gn({t, x}) that under H1 at the time of the nth death. We use Vile's
theorem

(1) p e for some n 1_ e> 1.

In this case,

(2) 9, f_ exp {-X E tt} Xn dF(X)
gn exp {X-o E tt} MO

where summation is over the number of patients An. If we choose F(X) as an
exponential distribution with mean Xo, this reduces to

(3)

g{n [exp {-(XoTn + 1)} (oTn+ 1)"+1]/(n + 1)! = forsomen 2 1} <
where Tn = St._ 1 ti. Hence, the sequential confidence interval for Xo of size
1 - 1/e can be defined as the interval I(n) such that X0 E I(n), whenever an
appropriate Poisson probability satisfies the inequality inside the braces below.
Thus,

(4)

p exp {-(;oTn + 1)} (XoTn + 1)n+1> e for everyn >1 1--
L ~~(n+1) =(n+1)e

A possible sequential test for two treatments might be to compute these sequen-
tial confidence intervals for the X of each of the treatments and stop as soon as
the two confidence intervals failed to overlap. This is quite crude and yet should
provide a test of power 1. The expense might be great, for the expected sample
size would doubtless be larger than for some other methods.
A second example is really an attempt to utilize more information than

Armitage uses in his paired method of sequential experimentation analysis. Sup-
pose the patients are coming in fairly rapidly compared with the rate of death,
so that after a while we are pretty sure of having some extra patients alive when-
ever we observe a death. Consider two groups of patients. Suppose that at the
time just before the jth death there are Nii patients in one treatment group still
alive and N2j patients in the other. Suppose that the risk in treatment 1 is Xi
and the risk in treatment 2 is X2. Then, given a death occurs, the probability that
the death occurs in the first group can be expressed as N,jX,/(N1j3X + N2jX2).
Under the null hypothesis, Xi = X2 = X. Under the alternative hypothesislX =
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cX2. We then set up a sequential probability-ratio test and arrive at a test of the
hypothesis that c = 1. This is again sequential over the occurrence of successive
deaths in the combined groups. Suppose we stop at the time of the nth death
and look at the data. After cancelling X2 and X, we obtain

(5)P _ [Ni3cxj + N2 (1 - xj)]/(Ni3c + N23) >\ 1
(gn =,=i [Nljxj + N2j(1- x)]/(N11 + N23) )-s forsomen _ 1)-,

where xj = 1 if jth death occurs in first treatment group, xj = 0 otherwise. Let-
ting yn xj = n1 and EF -s (1 - xi) = n -n = n2,

gn'
= lgC_n n

(6) Plog9 = n,logc-L log (Ni, + N23) + E log (Nijc + N2j) _ log a
gn j=1 j=l

for some n >1)
1 n n

= p (n 2olog {log e -L_ log (N1j + N2j) + E_ log (Nijc + N2j)}

for some n 1) < -

if c > 1. The inequality reverses (inside) if c < 1. If ni satisfies this inequality,
we stop taking new cases and reject the hypothesis that XI = X2. We can also
define a confidence interval for c from (6).
A third example is still in the prenatal stage. Suppose we have two treatment

groups which, by the nth death, have resulted in: Aln cases started on 1st treat-
ment, n1 dead, and A2n cases started on 2nd treatment, n2 dead, where Ain = A2n
and ni + n2 = n. These two groups have survival times totallirg T1n aLd T2,,
respectively. We test the hypothesis XI = X2 = X against the alternative that
X = CX2.
The likelihood ratio is

(7) gn_=exp {-cX2T1n(CQ2) '} exp {-U2T2n,P}
gn exp {-X(Tln + T2.)}Xn

If we replace X2 and X by their maximum likelihood estimates, we get an expres-
sion of unknown characteristics but with, we feel, reasons for further examina-
tion:

(8) P >na for some n _1) p (enenin/(CTTln + T2,n)]] 2
gn e--n[n/(Tln ~~~~+ T2,)]-

for some n > 1)
= P (ni flog c {log e - n log (T1n + T2n) + n log (cTln + T2n)}

for some n
2 1) < !.

If c < 1, the inequality for n1 reverses. Note the similarity to the previous
example, (6).
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Finally, as a fourth approach, we put the pair preference method of Armitage
into the same context. At the nth death let there beM pairs of patients who have
arrived in the study and who have been randomized (by pairs) into the two treat-
ment groups. For each such pair, we can establish a preference only if at least
one member has died on or before the time of the nth death. We prefer the treat-
ment associated with longer survival. Let the number of preferences be m and
let the number of these for which treatment 1 is not preferred be mi. If p is the
probability of not preferring treatment 1, the hypothesis to test here is that
p = . As shown by Armitage p = X1/(X1 + X2) = c/(l + c), where c, as above,
iS Xl/X2. The likelihood ratio is now

(9) ,n p= (- p)m-ml
-

[2(1 - p)]m = cmi (1 .

n (Y2)m Yf-PY[G+-c)_
Hence, we write Ville's theorem as

(10) P( 1M>- {loge-m log 2+ for some m 1) <

If c < 1, the inequality for ml reverses. We note once more a similarity in form
among this expression and the two previous examples, (6) and (8).

3. Monte Carlo simulation

We produced by Monte Carlo methods a simulated situation in which patients
"arrive" at the Clinic in a Poisson process at rate 0.2 per day. The first arrival
was randomly assigned treatment R.1 or R,2; the second received the other
treatment. Each odd numbered arrival was thus assigned a treatment at random.
Those receiving R.1 died according to a Poisson process at risk Xi, those with
R.2 at risk X2. Every time a death occurred, we applied the three stopping rules
defined by the inequalities in (6), (8), and (10). For each rule, we recorded the
sample number defined as the number of deaths required for terminating the
experiment.
We obtained 100 sequential experiments. In each experiment, we arbitrarily

limited the number of cases to 200 (100 pairs), following each until death. We
let Xi = 0.003, X2 = 0.009, and c = Y. For each of the three stopping rules, each
of the 100 experiments stopped before the 200 cases had arrived. For the method
of (6), the "number at risk" method, the average sample number (ASN) was
23.2 with a range from 6 to 78. The 90th percentile was 44 and the standard
deviation 14.6. For method (8), the "time at risk" method, the ASN was 23.0,
range 6 to 78, the 90th percentile 41, and the standard deviation 14.8. These are
quite close. Out of the 100 experiments the number at risk method led to a smaller
n than the time at risk method 20 times, to a larger n 27 times, and to the same n
53 times.
The stopping rule (10), the pair preference method, tended to require a sample

number larger than the above two methods. We found the ASN to be 35.7 with
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range from 8 to 161, the 90th percentile 61, and the standard deviation 28.2.
Out of the 100 experiments this pair preference method was worse (larger n) than
-both the others 77. times. It was better than both 9 times.

The Monte Carlo procedure was repeated 100 times under the null hypothesis
in which both Xi and X= 0.009 and 100 pairs of patients were followed until
all had died. The value of c in (6), (8), and (10), however, was kept at h. The
numbe-r at risk method did not stop 97 times, the time at risk method 96 times,
and the pair preference method 97 times. In two of the 100 experiments all three
fmethods stopped fairly early~ (between the 18th and 39th death).

4. Remarks

We have found that two sequential stopping rules (6) and (8) appear to be
more sensitive on the average than Armitage's pair preference method (10) in a
situation featuring a rather strong difference in the risk of death in two treatment
groups. We have also found no apparent difference in the proportion of times the
null hypothesis was rejected when really true. The methods used were prelim-
inary. The number of simulated cases might have been too few in the null hy-
pothesis situation. Surely the difference between treatment groups should be
varied and simulation retried with smaller differences. Confidence intervals for
the value of c in (6), (8), and (10) would also have been valuable.
A word in defense of the pair preference method. Its assumptions are somewhat

less restrictive than those in the two other methods given here; the assumption
of constant risk can be relaxed somewhat.

- O O
Our thanks go to Mr. Roger Oenning who programmed the Monte Carlo

aspects of this study.
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