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1. Introduction

In this paper. we will study a model of an infinite volume one dimensional
lattice gas. Our model differs from the usual model of a lattice gas in that the
configuration of particles is a stochastic process. That is, the particles in the
system will move around. and we will be studying properties of the system which
are related to the motion. The particular interaction which governs the behavior
of each particle will be introduced in Section 2. This interaction was discovered
by F. Spitzer [4].

In Section 2, we will define the Helmholtz free energy in the usual way and
prove that at constant temperature the Helmholtz free energy does not increase
with time. In thermodynamics, this is usually derived as a consequence of the
second law of thermodynamics. In Section 3, we will use the results obtained in
Section 2 to prove that all shift invariant equilibrium states are limiting Gibbs
distributions. Finally, in Section 4, we use the intuitive description of the inter-
action of the particles to motivate a definition for the pressure of a state. The
usual definition of pressure used in statistical mechanics is only given for limiting
Gibbs distributions, and the two definitions do not agree there. However, we
will show that when they are both defined, they are both strictly increasing
functions of the particle density at constant temperature. In the case of the usual
definition this is well known.

In order to keep the notation as simple as possible, we will only consider one
model in this paper. This model can clearly be generalized in several ways. Many
of these generalizations can be found in [4]. The techniques in this paper are
adequate to handle some, though by no means all, of these generalizations.

2. Helmholtz free energy

2.1. Intuitive description. We begin by giving an intuitive description of the
stochastic process. For a careful proof that this process really exists the reader
is referred to [ 1 ] .

This work was prepared while the author was a Miller Fellow in the Statistics Department.
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Let Z represent the integers, and give {O, 1} the discrete topology. We will
take E = {O, 1 }z with the product topology for the state space. If q E E, Q will
be interpreted as a configuration of particles on the integers with a particle at x
if and only if a(x) = 1.

Let V be a real valued function on the nonnegative integers such that for some
positive integer L, V(n) = 0 if n > L. We define a pair potential U(x, y) by the
formula U(x, y) = V(|x -y). We think of U(x, y) as the potential energy due
to particles at x and y, and attribute half of this energy to each of the particles.
If the system is in configuration q and 11(x) = 1, then the particle at x has
energy equal to

(2.1) 2 E U(x. y)M(y),
y

2U(x, x) represents the chemical potential of the particle at x.

Now let P3 be a positive constant which will represent the reciprocal of the
temperature. Then if the system is in configuration tj at time I, the particle at x
attempts to make a jump during the time interval (t, t + At) with probability

(2.2) exp {fl E U(x, y)n(y)}At + o(At).
y

When a jump is attempted, the particle tries to move to the right one or to the
left one, each with probability 4. The direction of the attempted jump is
independent of the time of the jump and the position of the particle. If the site
where it is trying to go is unoccupied, it goes there. Otherwise, it remains where
it is and starts over. It turns out that although the motion of each individual
particle is not Markovian, the stochastic process of the configuration at is
Markovian; we will denote the probability that the system goes from con-
figuration q to a configuration in a Borel set A - E in time t by P1(t e A).
The probability measures on the Borel subsets of E will be called states. If u0

is any initial state, we will define M, to be the state which assigns measure

(2.3) i, (A) = f Pl(t E A)po(dq)

to the set A.
A measure Mi0 will be called an equilibrium state, if MO = M,- for all t _ 0. In

[1], a set C0 of equilibrium states for this Markov process is given. We will
describe below a set C which certainly contains C0 and at first glance looks as
though it may be strictly larger than the closed convex hull of C0. It is probably
true that C is equal to the closed convex hull of C0, although we have been unable
to prove this. A proof that all of the measures in C are equilibrium states can
be accomplished by a slight modification of the proof in [1].

2.2. The set C. Let N be an integer greater than L and let Y be a subset of
the integers contained in [-N, N]\[-N + L. N - L]. Define
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(2.4) S(N, n, Y)
(C N-L

-N+Ln(x) = n, if N-L < .yl_ N then q(y) = 1
-N+L

if and only if y E Y, and if IzI > N then q(z) = O}.

Now let VN n.Y be the probability measure on S(N, n, Y) given by the formula
N N

(2.5) VNflY({t1}) = 11s(N, n, Y) exp {-1 a=- U(a, b)?1(a)tl(b)}
a=-N b=-N

Here O(N, n, Y) is the normalizing constant.
We may think of vN,,,, y as a probability measure on E which gives zero measure

to the complement of S(N, n, Y). Now let VN be any convex combination of the
VN^n y, where n is allowed to vary between 0 and 2N - 2L + 1 and Y varies
over all subsets of [-N, N]\[-N + L, N - L].

If we do this for each N, we get a sequence of probability measures on a
compact metric space. The set C consists of all the possible weak limit points of
sequences obtained in this way.
We still need a little more notation. Let A be a finite subset of Z and let u be a

probability measure on E. Then pA will denote the probability measure on the
subsets of A defined by

(2.6) mA(X) = if x e A, then q(x) = 1 if and only if x e X}).
If A = [-N, N], we will use MN instead of m[N.NI.
Let us recall the definition of Helmholtz free energy in thermodynamics. If U

represents the internal energy of a system in a certain state, and S and T are,
respectively, the entropy and temperature of that state, then the Helmholtz free
energy of that state is defined to be U - ST. For an infinite volume system, such
as the one with which we are dealing, both the internal energy and the entropy
may be infinite. In that case, this definition does not make any sense; however,
we can define the Helmholtz free energy per site.

Let p be a state on E. We define its Helmholtz free energy per site, A(p), as
follows

(2.7) A(M)
- lim sup 2N1 ( _ U(X)PuN(X) ± T PN(X) log PuN(X)).

N-x 2N ± 1 X'[-N,N] X'[-N,N]

Here U(X) = 2 Ex yeX U(x, y). The first sum in the definition of A(M) represents
the internal energy of the state p between - N and N, while the second sum
represents the negative of the entropy of p between -N and N.
Throughout this paper 0 log (0) is understood to be zero. Some of our proofs
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require special attention to the case when 0 log (0) appears in an expression.
The modifications necessary then will be left to the reader.
An essential tool which we will need is the infinitesimal generator of the

Markov process It It is proved in [1] that if f is a continuous function on E
which depends on only finitely many coordinates, then the infinitesimal generator
52 operating on f is given by

(2.8) t2f(i) = (x)[ - i(y)]c(x. ,f)[f( x3i) - f(?Il)]
X.yEZ,IX-yI = 1

where c(x. q) = exp {/3 YweZ iJ(w)U(x. w)}. and

q (W) if wV XX, W 7 Y,
(2.9) 11xy(w) = 0 if w = x.

1 if W =y.

The use we will make of this is given in the following lemma.
LEMMA 2.1. Let W(Xu Y. a) = 2exp {/ -CEXU Y U(a. c} and

(2.10) D(N. X. Y)
= {(ab)IacXuY.b XuY.Ia - b = 1. andlal . Nor |bj _ N}.

Then

(2.11 ) d-dN(X) = W(X u Y u b\a, b) M+L(X U Y u b\a)
dt Y (a,b)eD(N,X,Y)

-ZE E 1TV(X u Y. a) tN+L(X U Y).
Y (a,b)eD(N,X.Y)

In (2.10) the summation over Y is over all subsets Y of [-N -L. -N- 1]u
[N + 1. N + L].
Throughout this paper if X and Y are subsets of the integers, and a and b are

integers, we will write Xu Yu b\a instead of(Xu Yu {b})\{a}.
The proof of Lemma 2.1 is simply an application of (2.8) and will be left to

the reader. Recall that we are assuming that U(a. b) = 0 if la - b > L.
THEOREM 2.1. With A(.) and jI, as defined above, A (Cu) is a nonincreasing

function of t.
PROOF. Recalling that /3 = 1/T. we may revise (2.7) slightly to obtain

(2.12) A(,t) = lim sup-21 1 jN(X) [log ju (X) + /3U(X)]
Nero 2N + X'[-NN]

1 Ny
= sup /3 2N + 1 x -[-NN] P(X)

where P(X) = exp {-/3U(X)}. To finish the proof, it will be sufficient to show
that

d /N(X)(2.13) - E MNt(X) log PlXdt xc[-NN]
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is bounded above by some constant which is independent of p, and N. Now

(2.14) d NZ - 14, (X) = 0.
X-[-NN] dt

and therefore. interchanging the summation and differentiation in (2.13) yields

(2.15) {d mN(X) log M<(X)

Note that we are sure that the expression in (2.13) exists for all t only if we
permit the derivative to take the value minus infinity. If for some X, J4t(X) = 0
and (d/dt) MuN(X) > 0. then both (2.13) and (2.15) are minus infinity. If for some
X, p N(X) = 0 and (d/dt) P4N(X) = 0, then by first using (2.8) to prove that ,gN(X)
has two continuous derivatives, it can be seen that (d/dt)(j4N(X) log ,t(X)) = 0.
Thus, using our convention about 0 log (0), we can then write

d(N d Id X lgP()(2.16) d (j4(X) log UN(X)) = - 14(X) log _t(X),

and it is still true that (2.15) equals (2.13).
We will omit the subscript t from the notation during the rest of the proof.
Substituting (2.10) into (2.15), we have

(2.17) E [Z E W(Xu Yu b\a, b) MN+L(XU Yu b\a)
X Y (a, b)

- EEW(Xu Y. a),AN+L(XU My) log 11 (X)
where the summations are on (a, b) E D(N, X, Y.). Now set

(2.18) D1(N, X, Y) = D(N. X. Y) n {(a, b) Ial . N - L and Ibi _ N - L}
and D2 (N, X, Y) = D(N, X, Y)\D1(N. X, Y). Note that D1(N, X. Y) does not
depend on Y: hence, we will write it D1(N. X). Expression (2.17) can be broken
into two terms, one with D1 replacing D and the other with D2 replacing D. We
first consider the expression resulting when D is replaced by D2:

(2.19) Y| E IW(Xu Yu b\a. b)PN+L(XU Yu b\a)
xL Y (a, b)

- YZ V(X u Y. a)N+L(XU Y) log 1,'
Y (a,b) ] P(X)

=ZZE ZE W(Xu Yu b\a, b),uN+L(Xu Yu b\a)
X Y (a,b)

N(X) mN(Xu b\a)
log P(X) log P(Xu b\a)

where the summations are on (a. b) E D2 (N. X. Y). One of a or b may not be in
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[-N, N]. In that case, we must understand 4uN(XU b\a) to be LN(Xu b) if
a 0 [-N, N] or to be MNN(X\a) if b j [-N, N]. Similarly, for P(Xu b\a).

If there exists X, Y, and (a, b) E D2(N, X, Y,) such that pN(X) = 0 and
, N+L(Xju Yu b\a) > 0, then (2.19) is - oc. Therefore, since we are trying to
show that (2.19) is bounded above, we may assume that ifiiN+L(XU Yu b\a) > 0,
then gN(X) > 0.
Now

NI~jU [ NX) PANjxu b\a)1
(2.20) pN+L(XU Yu b\a) log(X) - log P(Xu b\a)

-,,N+L(XhPJ YP(Xb.a
MN L -uYu b\a) log (XU b\a)

+'2p E U(m, n)-23 E U(m, n)]
mneX m,neXub\a

<

- N+L(Xu Yu b\a)
o

M(xu b\a) N
-<NX) lo_ V (X) >)

+ pMN+L(Xu Yu b\a)K,
where K = 2fi, k-LI U(0, k) .

Since MiN+L(XU Yu b\a) _ MN(Xu b\a) and -xlogx < e-, the right side
of (2.20) is bounded above by e-lgN(X) + KMNN+L(XU Yu b\a).
From the definition of W(Xu Y, a), we see that W(Xu Y, a) _ 2 exp 'K.
Substituting this bound and the bound for (2.20) into (2.19), we see that (2.19)

is bounded above by

(2.21) 2 exp } [xp {-1}PN(X) + KN+L(XU Yu b\a)]
X Y (a,b)eD2(N,X, Y)

-< 2 exp {jK- 1}22L4L + K exp {1K}4L.
In the future, we will denote the right side of (2.21) by K1.
We now return to (2.17) and consider the expression obtained if D(N, X, Y)

is replaced by D1 (N, X). The first thing to note is that

(2.22) E [I E W(Xu Yu b\a, b) N+L(Xu Yu b\a)
X Y (a,b)eD,(N,X) N()

- E W(Xu Y, a)uN+L(XU Y)] log P(X)
Y (a,b)eD,(N,X) ( )

- fi [ E W(Xu b\a, b)MN(Xu b\a)
X (ab)eDI(N,X)

- E W(X, a)uN(X)] log M X .
(a,b)eDi(N,X) ( )

For if (a, b) E D, (N, X), then neither W(Xu Y, a) nor W(X u Yu b\a, b) depend
on Y. Hence, we may first perform the summation on Y.
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LEMMA 2.2. Let D1, W, and P be as above. For z _ 0 set F(z) = z -
z log (z) - 1. Then

(2.23) E [ E W(Xu b\a, b),MN(Xu b\a)
X (a,b)eDl(N,X)

- Z W(X, a)PLN(X)] log PN(X)
(a,b)e D1(N, X) P(X)

(P(X) JPN(Xu b\a)\ W(Xu b\ b) P(Xu b\a) N

X Di(N,X) \jiN(X) P(Xu b\a) P(X)

REMARK 2.1. For (2.23) to be correct, we must make the following con-
vention. For a, b, c > 0 we understand F(' bc) 0 to be minus infinity and
F(' °)* 0 to be zero.

Let us assume Lemma 2.2 for the moment. One easily checks that F(z) < 0
for all z > 0, and thus the expression appearing in (2.23) is nonpositive. Since
(2.17) is the sum of (2.22) and (2.19), we see from the above results that (2.17)
is bounded above by K1, which is independent of N and Mu.
The proof will be complete as soon as we prove Lemma 2.2.
PROOF OF LEMMA 2.2. Let each X _ [-N, N] be represented as XOu X1,

where XO - [-N, N]\[-N + L, N - L] and X1 - [-N + L, N - L]. Then
we can rewrite the left side of (2.23) to get

(2.24) ,1 W(XOu Xu b\a, b),uN(X0uX1u b\a)log Xj°(U X1)
Xo Xi (a,b)eDI(Xi) P(X0u X,)

N(XOU i)lo NJxux)1Xi
- Z Z W(XOu X, a),I(XOu X1) log p(X X ]

Xi (a,b)ED1(Xi) ( oU 1)

We write D1(X,) instead of D,(N, XOu X1), since D,(N. XOu X,) depends only
on X1 and N is fixed throughout the proof.
We next notice that for fixed XO there is a kernel Uxj(, *) defined on the

subsets of [-N + L, N - L] by the formula

W(XOu A, a) ifB = Au b\a for some aeA,
J b ¢ A with Ia - bj = 1,

(2.25) Uxo(AB) W(X0u A. a) if B = A,
(a,b)eDl(A)

0 otherwise,

and that

(2.26) E P(X0u A)Uxo(A, B) = 0
A

for all XO and all B.
This last assertion is an easy computation which will be left to the reader.
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Now (2.24) may be rewritten to yield

(2.27) E [Z L Ux°(A. B)fuN(XO u A) log P(Xu B) J

Since EB Uxo(A. B) = 0. we have EA 'B PN(X0u A)UxA(A. B) = 0 and

(2.28) E E ,uN(XOu A) log (PN(X uA
u xo(A. B)0.

A B P(X0uA )
Using these observations and (2.26), we see. after some simplification. that

(2.27) is equal to

XO[ B A No(Xu B) PX0uA}{)) P(Xou B)

P(X0uB) (X0uA) P(XouA) N(XB).
(2.29)z [z F(P XOuB NxA) Uxo(A. B) M~io i

E B A#B Q(XOU B) P(XJuA) P(XO u B) )

We may delete the terms where A = B because F( 1) = 0. Now by substituting
the formula for Uxo(A, B) into the right side of (2.29). the lemma is proved.
REMARK 2.2. Since F _ 0 and for z =E 1. F(z) < 0. it is clear from Lemma

2.2 that if the expression in (2.23) is equal to zero and ifA and B are two subsets
of [-N + L, N - L] with the same number of elements, then for all XO con-
tained in [-N, -N + L - 1]u [N -L + 1. N],

(2.30) mN(xOu A) N(XOu B)
P(XOu A) P(XOu B)

Indeed, there is a finite sequence A = B0. B1, . B, = B such that Bi+1 =
Biu bi\ai for some ai E Bi, bi 0 Bi with ai -bil = 1; and it is immediate that
if the expression in (2.23) is equal to zero. then

(2.31) ,N(Xou Bi) _ PN(XOu Bi+1)
P(XoU Bi) P(XOu Bi+1)

3. Shift invariant states

If X = Z. we will set X + a = {x + aix E X}. A state pi is shift invariant if

(3.1) ,uA(x) = A+a(X + a)

for all finite subsets A c Z, all X AA. and all a e Z.
Let X# be the space of all states on E and give /# the weak topology. Denote

by /1/ the closed subspace of all shift invariant states.
We will need the following facts about shift invariant states.
PROPOSITIoN 3.1. If po is shift invariant, then Iu is also shift invariant for all

t _ 0.
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PROPOSITION 3.2. In the definition of A(Mu) (see (2.7)), the limit supremum is
actually the limit. Thus, if pu is shift invariant,

11 F IIiNX)loPN(X)](3.2) A(M) = lim 1 2 + E N( log
±-N Lx _[-N,N] PX

A proof of (1) based on the techniques in [1] is routine and is left to the
reader. A proof of (2) can be found in [2], Section 7.2.

If m is large enough so that 2' - 1 _ L, let

(3.3) H. (M) E E Fat P(X)
M' '(Xu b\a))

X (a,b) 1A 2-1(X) p(Xu b\a)J

W(X u b\a, b) P(Xu b\a) 1 2 (X,P(X) ~

where X C [-2' + 1, 2' - 1] and (a, b) e D,(2' - 1, X). Using the con-
vention in the Remark 2. 1, it is easily seen that Hm( .) is an upper semicontinuous
function on S.
We will also need the following fact, which can be easily proved from the

results in [1].
PROPOSITION 3.3. The map (/lo,t) -, is continuous in the product topology

on / x [0, cA).
LEMMA 3.1. Let Iu e X14. Then Hm(,,) _ 2Hmi(L).
PROOF. Let

(3.4) A1(X) = {(a, b) e D,(2 - 1, X) a _ -L - 1 and b . -L - 1}
and

(3.5) A2(X) = {(a,b)eD,(2m- 1,X)Ia_ L + 1 and b > L + 1}.

Then, since F < 0 Hm (Mu) is less than or equal to the sum of the two expressions
obtained if D1 in (3.3) is replaced by A1 and subsequntly by A2.
Now each X - [-2"' + 1, 2-_ 1] can be written as X = V1u V2, where

V1 _ [-2"' + 1, -1] and V2 - [0,2m- 1]. Wethen noticethatA1(Vu V2)
depends only on V1, and hence may be written A1(V,). In fact,

(3.6) Al(V1) = D1(2m-1 - 1, V1 + 2m-1) - (2m-1 2m-1).

Similarly, if (a, b) e A1 ( V1), then W( V1 u V2, a) depends only on V1, and in fact,

(3.7) W(V1u 1V2, a) = W(V1 + 2 1, a + 2m 1).
And finally, if (a, b) eA1( V1), then it is easy to check that

(3.8) P( V1 u V2u b\a) _ P(V1 u b\a)
P(V1 u V2) P(V1)

To simplify the notation, we will write D1(V1) instead of D1(2m1,
V1 + 2m1) - (2m1. 2m1), W(V1, a) instead of W(V1 + 2m 1, a + 2m1),
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and 1i'(X) instead of p2-- 1(X).

(3.)Y F( P(X) i'(Xu b\a) W(Xu b\a, b) P(Xuba) )
X (a,b)eAi(X) \/I(X) P(Xu b\a) P(X)

= EEE F( P(V1) (V1U V2u b\a)) W(V1 u b\a b)
Vi V2 (a,b)c-D1(Vi) YUV1 U'2) PVuba

P(V1 u b\a) 1i'(V1 u V2) )

P(V1) (V2,+ 1 u-1I('7) b

Y, I, FK P(2V1,)1 P-m~'(V, tb~a)
V1 (a,b)ceDi(Vi)V1VZ ZabED~l /1[ 2m+ 1.-1 Z'7) P(V1 Ub\a) /

W(V1 u b\a. b) P(V1u b\a) [-2 +b-11 )P( V1)
The last inequality follows from Jensen's inequality, since F is concave. In the
above argument, we have assumed that all p[-2m- 1,-11 (V,) > 0. If this is not
the case, then the inequality in (3.9) follows directly from the convention given
in Remark 2.1.

Since p and P are both shift invariant, the right side of (3.9) is equal to
Hm,-(p). Similarly, if D1 in (3.3) is replaced by A2. the result is less than or

equal to Hm- 1(p), and the lemma is proved.
LEMMA 3.2. The function

(3.10) M(H) =- lim Hm (p)fM-. 2m+ 1 - 1

exists on #, (it is possibly minus infinity) and is upper semicontinuous there.
Moreover, if MuO E X1, then A(M,) - A(guo) _ 1' H(Mj) ds.
PROOF. Let G(m) = [li'-m[(2i+2 - 2)/(2i+2 - 1)]. Then by Lemma 3.1, if

p e

1 2m+2 - 2 1
(3.11) G(m + )2m+2 _1 Hm+i(M) . G(Mr + 1) 2m+2 _ 1 2m+1 1 H.

= G(m) 2"l _ Hm

Therefore, G(m) (1/2m+ 1 _ 1) H (At) is a decreasing sequence of upper semi-
continuous functions on S Hence, the limit exists and is upper semicontinuous
on X., Since G(m) goes to one as m goes to infinity, this limit when divided by
f3 is equal to H(M).

In the proof of Theorem 2.1, we showed that

(3.12) E -N(X) log
' X Kt

Xi[-NN] ( T)

is a nonincreasing function of t. Therefore an application of Lebesgue's theorem
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and Fatou's lemma yields

(3.13) E HMN(X) log.t - E (X(X) log )(3.13) ~_ _ -K1t
lo [ (X c NA(X) log P(X) -Ki1ds.

Now if i0 E .I, we may use (3.1) and (3.2) together with this inequality to
get

(3.14) A(Mt) -<A(,N lo

m-mm fl(2m+' - 1)| d8 xEJIfsm-N g P (X)j

In the middle expression, the summation extends to all X _ [-2'" + 1, 2' - 1].
The last inequality follows exactly as in the proof of Theorem 2.1.
Now since 0 < 0(m) < 1 and Hm(/1) _ 0, Hm(4L) _ 0(m)Hm(,t). Therefore,

using this inequality and monotone convergence, we have

(3.15) A(pt) -A(po) . rim | f(2m+l _ 1) [Go H(Ps) +K1]ds

={H(#u1 ) ds,

and the proof is complete.
LEMMA 3.3. Let 1EJ(1. Then ifp,¢C,H() <0O.
PROOF. Wemaythinkof 1 asameasureon U U S(2-1, n, Y)(here

S(N, n, Y) is as in Section 2.2), and it is easily seen that p is the weak limit of the
p-1. From Remark 2.2, it is clear that if Hm(8)= 0. then 2.-1 is equal to

one of the v2ex1 used to describe the set C. Thus, ifH(to ) = 0 then all Hm(P)
are zero, and therefore p E C.
THEOREM 3.1. Let Po e A11 and suppose that t, -°° and that ps,,n converges

weakly to pl. Then p E C.
PROOF. Sinceq is weakly closed and eachrns, e have, E 1. Suppose that

p ¢ C. Then by Lemma 3.3, H(p) <0O. Therefore, there is a (5 > 0 such that if

(3.16) = {veJ4IH(v) < GmH,
then , e G.,. Since H is upper semicontinuous, Go, is open. Therefore, there is an
open subset G., of .#1 x [0, cc) containing (p, 0) and such that if (v0, s) E C,,
then vs E G., (see (3.4)). Since(t, 0) E G.,, there is an open set G., c .A and an
e>Osuch thatVe2G, andto x [0,E)hee C=. Thus, ifvH E G., and alls<HE,

thenH{(vv)< -.
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Since 1uAn converges weakly to A, ,,, E GA, for all sufficiently large n. Thus, by
Lemma 3.2, for all sufficiently large n. A(M+j - A~ut) . - b.

This together with Theorem 2.1 implies that limper A(M,) = - x. But it is
easily seen from the definition of A(v) that infcA A(v) > - x. This is a con-
tradiction and completes the proof.
COROLLARY 3.1. Let G be a weakly open subset of 1/ containing C. and let

MO e /. Then for all sufficiently large t. M, e G.
PROOF. This follows immediately from the compactness of ,/ and Theorem

3.1.
COROLLARY 3.2. All shift invariant equilibrium states are elements of C.
REMARK 3.1. It is clear from the proof of Lemma 3.1 that if the state at time

t is shift invariant, but not an equilibrium state, then the Helmholtz free energy
at all future times is strictly less than it is at time t.

4. Pressure

We first modify the Markov process q, introduced in Section 1 in order to
motivate our definition of pressure. We need a "wall" from which the particles
"rebound." so we let Z- be the negative integers and take D = {O, 1}z as the
state space. The intuitive description is the same as before except that no particle
is allowed to jump from minus one to zero. A proof that such a process exists
can be given by imitating the one in [1]. The attempted jumps from minus one
to zero are to be thought of as collisions with the wall, and we will take the
pressure of a state to be twice the expected number of collisions withthe wall
per unit time. Thus, if pu is a state, its pressure is given by the formula

(4.1) p(Mu) = j' 5(1)exp{E U(-1.k)q(k)}IA(dq).

Pressure is usually defined only for equilibrium states. so perhaps this should
be thought of as instantaneous pressure.
The temperature will no longer play a role in this section: thus, we have

absorbed the P3 into the potential U. However, it will be important to display
the chemical potential explicitly and so we will require U(x, x) = 0 for all x.
Now let y be any real number and set SN = e D (X) = 0 if x < - N}.

We define a probability measure VNY with support SN by the formula

1 (-1(4.2) VN,,(A) = Eexp{ y 1(X) -2 tl(X)1(Y)U(xY)}t1eArnSN Ox xX =-NJ

Here O(N, y) is the normalizing constant. It can be proved (see [3]. footnote 7)
that there is a probability measure v, on D which is the weak limit of the VNY.
Just as in the case where the state space is E instead of D, it can be shown that
the v. are equilibrium states for the Markov process Ct. Then v. are moreover
the only states for which the pressure is usually defined.
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The usual definition of pressure is given in terms of the normalizing constants
O(N. y), and we will make use of the following result (see [2]. Section 5.6).
LEMMA 4.1. There are constants I(y) > 1 and c(ty) > 0 such that

(4.3) lim A-N(y)O(N. y) = C(yj).
N- 2e

The usual definition of pressure associated with the state v. is taken to be
P(y) = log 2(y) (see [2]. Section 3.4).
THEOREM 4.1. The functions P(y) and p(v,,) are both strictly increasing in y.
PROOF. A proof that P(y) is a strictly increasing analytic function of y can

be found in [2]. Section 5.6; therefore, we will restrict our attention to p(v,)).
Since q(-1) exp {YX-=2 U(-1, x)q(x)} is a continuous function on D. we

have

(4.4) f i(-1) exp b(U-.1 x)1(x)} v,(dq)

= lim q(-1) exp { 0U(-1. xTh(x)} VN.Y(dnl)N% ~~~~~X=-X1

O(\ y) e[p{ U(-1. X)h(x)}

exp {y - X) - 2 E
'

?q(x)i(Y)U(X.Y)
x= -N X y

Here we have set 8N = e1c-N|, (-1 ) = 1 }. Some elementary manipulations
reduce this to

(4.5) lim exp {e'p}e P{y Z ,(X) -2 qE ?(x)(y)U(X. Y)
N-. O(N. Pl) ,i~ x.xN y)

In our last expression. = SN\N. No\w
(2

(4.6;) Z exp{y Z q(x) - 24ZY,1(x)q(y)U(x. y) = O(N - 1, 4)
ncEsy X = -N X Y

and thus

(4.7) p(v,,) = lim exp {y} 1 - 1. )
N-x 0O(N. y)

= exp {y}m (y) = exp {y - P(y)}.

We have now reduced the problem to proving that y - P(y) is a strictly
increasing function of y. To do this we clearly need more information about P.
and this can be found in [2]. Section 3.4. The crucial fact is that there is a function
f(p) defined on the interval [0. 1) such that

(4.8) P(y) = sup (py - f(p)).
Op< 1
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Therefore, y - P(y) = info.,<1 [(1 - p)y + f(p)], which is clearly a non-
decreasing function of y. As mentioned in the first line of the proof, P(y) is
analytic; and thus if y - P(y) is not strictly increasing, then it is constant. But
this cannot be since P(y) > 0 for all y. Hence, p(vy) is also a strictly increasing
function of y.
We conclude this section by giving a physical interpretation of Theorem 4.1.

The parameter y determines what the density p(y) of the state v' will be; and in
the case which we are considering, it is known that p(y) is a continuous strictly
increasing function of y. Thus, Theorem 4.1 tells us that at constant temperature
the pressure is an increasing function of the density. Moreover, the pressure is a
strictly increasing function of the density, and this is interpreted to mean that
there is no change of phase for the model with which we are dealing.
The pressure p(v) is defined for states other than the v,, and Theorem 4.1 says

nothing about how the pressure varies with the density for the other states.
However, if v is not an equilibrium state, one would not expect any nice relation-
ship between the pressure and the density. Because of the results in Section 3,
we feel that it is highly unlikely that there are any equilibrium states besides the

v. and convex combinations of the v,. We are unfortunately unable to prove this.
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