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1. Introduction

One of the major problems in the theory of diffusion processes is to construct
the process for a given set of diffusion coefficients. A diffusion process in Rd is
hopefully determined by the two sets of coefficients

a =a(t, x) = {aij(t, x)}, 1 _ i, j _ d, te [O, o), xeRd,
(1.1) b = b(t, x) = {bj(t, x)}, 1 .j _ d, t e [O, cc), x E Rd.

Here a is a positive semidefinite symmetric matrix for each t and x, and b is a
d vector for each t and x. There are various ways of describing exactly what we
mean by a diffusion process corresponding to the specified set of coefficients.
We shall adopt the following approach.

Let Q be the space of Rd valued continuous functions on [0, cc). The value of
a function ow = x( ) in Q at time t will be denoted by x(t). The a-field generated
by x(s) for t1 . s < t2 will be denoted by M'8. If t1 = 0, we will denote this by
M,2 and by M" in case t2 = oc, where M is the a-field generated by x(s) for
0 . s < cc. The space Q can be viewed as a complete separable metric space,
with uniform convergence on bounded intervals defining the topology. Then M
is the Borel a-field in Q. A stochastic process with values in Rd, defined for
t _ to, is a probability measure on (Q, Mio).

Given the coefficients {aij(t, x)} and {bj(t, x)}, we define an operator L, acting
on functions f(x) e Ct (Rd) by

(1.2) (Ltf)(x) = - aij(t,x)
a f + E bj(tx) Ef2 ax(t, ax;,

We say that a measure P is a solution to the Martingale problem corresponding
to the given coefficients, starting at time to from the point x0 if

(a) P is a probability measure on (Q, M'o) such that P[x(to) = x0] = 1, and
(b) for each f c C' (Rd), f(x(t))-Jt (Lf ) (x(s)) ds is a martingale relative

to (Q., M"O, P).
Under suitable conditions on the coefficients a and b, one should attempt to

answer the following questions:
(1) For each to and x0, does a solution Pox exist?
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(2) Is it unique?
(3) Is the solution a strong Markov process?
(4) Does the solution depend continuously, in some suitable sense, on to, x0,

a and b?
(5) If a diffusion process can be constructed in some other natural manner,

does it coincide with the above construction?
Let us take up question (5) first. There are at least two other possible ways of

constructing diffusion processes for given coefficients. If we use the stochastic
differential equations of 1t6, we take a matrix u(t. x) such that

(1.3) a(t, x)a*(t, x) = a(t, x).
If /3(t) is Brownian motion in d dimensions, one can set up the stochastic
differential equation

(1.4) dx(t) = u(t., x(t)) d3(t) + b(t, x(t)) dt.

If a and b are assumed to be bounded and uniformly (with respect to t)
Lipschitz continuous in x, one can show that the above equation has a unique
solution x(t) for t _ to, for each initial condition x(to) = x0. The process so
obtained is the diffusion process corresponding to a and b starting from the
point x0 at time to.
One can prove that if the solution to the stochastic differential equation exists,

then the solution to the martingale problem also exists. Moreover, if the former
is unique, then so is the latter. Furthermore, one shows that the two solutions are
the same in the sense that the solution to the martingale problem is the distribu-
tion of the solution to the stochastic differential equation.

Another possibility is to use the theory of partial differential equations. We
consider the fundamental solution p(s, x, t, y) of the equation

ap 1 aPa
(1.5) eP + 2 aij(, x) + E bj(s, x) =0,

where p(s, x, t, y) serves as the transition probability density of a Markov
process. This is taken as the diffusion process corresponding to a and b. One
can verify that, in this case also, the solution to the martingale problem exists,
is unique, and coincides with the process constructed through the fundamental
solution. The existence of a fundamental solution is proved under the assump-
tion that a and b are bounded, satisfy a Holder condition and a is uniformly
positive definite.

2. Existence and uniqueness: the general case

Let us now assume that a(t, x) is bounded continuous and positive definite for
each t and x. Assume b(t, x) bounded and measurable. Under these assump-
tions we can answer the questions (1) through (4) raised in the introduction,
affirmatively.
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THEOREM 2.1. The solution P,., to the martingale problem, starting from the
point x at some s, exists and is unique for every s and x. Moreover. P is a strong
Markov process with transition probabilities P(s. x. t. A) = P, Ex(t) EA].
Further, the solution depends continuously on s. x. a(. ), and b(. ) in the
following sense: if a,(. , a (. *) uniformly on compact sets, b, (. *) b(,.
in measure, sn-- s, x,, x and ifan( .*b,*(*,*) are uniformly bounded, then the
solution P,, corresponding to an, bn starting from xn at time sn converges weakly
to the solution Pfor the limiting coefficients starting from x at time s.

This theorem can be found in [2] and [3].

3. Boundary conditions

Let us suppose that G c Rd is a smooth region. More precisely, there is a
function 0(x) E C'(Rd) such that

G = [X: (X) > 0].
(3.1) 6G= [X: (X) = 0].

VG|| _ 1 on 6G.

As before we shall assume that a is bounded, positive definite for each t and x
and is continuous on [0, oc) x G. Assume b is bounded and measurable. One can
check that some sort of boundary condition on 6G is needed to describe what
happens to the process when it reaches the boundary 3G. A class of these
boundary conditions are of the form

a d

(3.2) p(s. x) - +± y(s. x) = 0.

where p and y are suitable function on the boundary [0, -c) x 3G. We shall
assume the following regarding p and y:

(i) y is Lipschitz continuous in t and x, is bounded, and there is a constant
/3> 0, such that (y, V+> _ p > 0; for all t, x E [0, oc) x 6G;

(ii) either p is identically zero or it is everywhere positive, is bounded, and
satisfies a Lipschitz condition in t and x.
We formulate the problem in the following manner. A solution corresponding

to a, b, p, and y, starting a time to from the point x0, is a measure P on (Q, Mto),
where now Q = C[[0, cc), G] and M0o is the natural a-field as before. The
measure P is such that

(a) P[x(to) = x0] = 1, and
(b) for every u E C' [[0, cc ) x C] with p (au/ls) + y. Vu > Oon [0. oc) x 6G,

(3.3) u(t. x(t))-X (U, + Lu)(s, X(s))XG(X(s)) ds,

is a submartingale relative to (52. MtO, P). We will call P. if it exists, a solution
to the submartingale problem.
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THEOREM 3.1. Under the assumptions (a) and (b) on p and y, along with the
assumptions on a, b mentioned in the earlier section. for each x e G and s _ 0.
there is a unique solution P,.x to the submartingale problem. The solution is a strong
Markov process. Moreover, the solution depends continuously on s. x. a. b, p,
and y.
REMARK 3.1. In the homogeneous case, that is. when a, b. p. and y are

independent of t, assumption (b) on p can be replaced by the assumption that
p is bounded, continuous and nonnegative.
These results can be found in [4].

4. Invariance principle

Using the results of Sections 2 and 3, one can prove general theorems con-
cerning the convergence of Markov chains to diffusion processes. The con-
ditions for convergence are very natural and involve essentially the first two
moments. For simplicity, we shall treat the homogeneous case and assume
further that d = 1. The general case is quite similar. Let us suppose that there
is no boundary.

For each 6 > 0, 7r5(x, dy) is the transition probability of a Markov chain
with R as its state space. The transitions of the chain occur in multiples of time 3.
Let us define

bb (x) = it, x)7x)Z (x. dy),

(4.1) a.(x) = b J (y x)27t(x, dy).

0a(x) = {y - x 7izb(x, dy), j > 2.

We assume:
(a) Ibj(x)I . C and bb (x) converges as 3 tends to zero to a continuous limit

b(x) uniformly on bounded intervals;
(b) |a,(x)| . C and ad>(x) converges as 3 tends to zero to a continuous limit

a(x) uniformly on bounded intervals;
(c) 0,(x) -O 0, as 3 tends to zero, uniformly on bounded intervals;
(d) the solution to the martingale problem for any starting point, corres-

ponding to the coefficients a and b is unique.
THEOREM 4.1. Under the above assumptions the Markov chain converges as 3

tends to zero, to the diffusion corresponding to a and b.
The general case for the d dimensional case, where a and b could depend on t

is treated in [3]. There are similar results when a boundary is involved and these
can be found in [4].
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5. Special case: d = 2

The method of the main theorem mentioned in Section 2, involves several
steps. The hypothesis of continuity of a(t, x) is superfluous. What one needs is
that the discontinuities of a(t, x) should be small compared to the eigenvalues
of a(t, x). The actual constants are hard to follow through in general. But
when d = 2, in the homogeneous case, this leads to the following theorem.
THEOREM 5.1. If a(x) is uniformly positive definite on compact sets and if trace

a(x) 1, then for any bounded measurable b(x), existence and uniqueness hold
for the martingale problem.

By a random time change, the condition that trace a(x) _ 1 can be removed
and replaced by the boundedness of a. Once uniqueness is established, one shows
by a standard reasoning that the process is strongly Markovian. With a little
more work, one can establish the continuous dependence of the solution on the
coefficients and the starting point.
These results can be found essentially in [1].

6. Special case: d = 1

When d = 1, the results are even stronger. If a(t, x) is bounded measurable
and uniformly positive on compact sets and if b (t, x) is bounded and measurable,
then the solution to the martingale problem exists and is unique for every
starting point. Since a proof has not appeared anywhere, we will give a quick
sketch. From the way uniqueness is proved in [2] for the general case the basic
step is a perturbation in LP. When d = 1, p can be taken to be 2. We write the
operator

(6.1) 1 a(t ) a
+2 ax2 at'

as

(6.2) -( +±-(a(t,x) + a
2 ax2 2 a t

where t is chosen to be a suitable large number. For this to work in L2, where
the norms of the various operators are explicitly computable, it suffices that

(6.3) Ia(t, x) - {p < /' < {.

If a is such that 0 < al _ a _ x2 < co, then t can be taken as a2 and t' can
be C2 -X. Since uniqueness is purely a local property, our assertion follows.
We fix 0 < ox < 0C2 < 00 and consider the totality of all bounded measurable

a(t, x) satisfying ac . a(t, x) . 0C2 For simplicity, we shall assume that b is
identically zero. By existence and uniqueness mentioned above, we know that
there are transition probabilities {pa(s, x, t, dy)} depending on a. As a varies
over the above class, one can check that {'Pa} varies over a compact family. The
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convergence notion is weak convergence in dy which is uniform over compact
sets of s, x and t. The limits are all again transition probabilities corresponding
to some a in the same class.

This means that there is a notion of "weak" convergence such that an -+ a

"weakly" if and only if Pan Pa as described above. It will of course be very
interesting to know precisely what this convergence is. There are two special
cases worth noticing. If a,(t, x) are purely functions of x. then Pan '> Pa if and
only if

()2 dx r 2 dX
a,,a(t) afa(x)

for - °°< {l < {2 < Xo. If a,(t, x) are purely functions of t, then pan Pa if
and only if

(6.5) I an(s) ds -i a(s) ds

for 0 _ /l - (2 < °°.

For the general case when an depends on both t and x. these special cases
provide conflicting clues. The problem is more involved than one expects to
begin with.

7. An example

Let us define the coefficients

( a if K] is even.

(7.1) ah+ (x)=
if X is odd.

and

DCa if xh]is odd.
(7.2) a_(x) {1

lif [- is even

/3 > c > 0. (Forx < 0, [x] = -[-x] - 1.)
Let nt'h+ (t, x. dy) be the transition probabilities corresponding to the homo-
geneous coefficients ah+ (x). Let us define

a+ (x) if [] is even,
(7-3) aki h(t Kx) = ]

t [k]~~~~~~
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Let 7rk'h(s, x, t, dy) be the transition probability corresponding to akh. We
denote by pkh, the process corresponding to akh starting off at time s from x.
THEOREM 7.1. Let h, and kn tend to zero such that p,, = knh-2 converges to

a limit p, 0 _ p < cx. Then tkr',hn converges to a limit 7t which is Brownian motion

(7.4) it(s, X, t, dy) = [27r(t - s)o2]-112 exp { y r
X

}

where a2 = U2(p) is a continuous function of p with U2(O) = 4 (a + /3) and
U2(Co) = 2a3/(a ± /3).

PROOF. There are always convergent subsequences because of compactness.
The limits are uniform in s, x, and t, so that the periodicity of 7tkh leads to the
invariance of the limit 7a, with respect to space and time translations. Therefore,
any possible limit i is Brownian motion. We only have to compute U2

Let us denote by 7t, the transition probability 7kn, by an the corresponding
coefficient and by P,, the process starting from 0 at time 0. Let us define

(7.5) U 2 = EPIX(1)12 = E'- f a%(s. x (s)) ds.

The computation of u 2 really involves an idea of how much time, on the
average, the process spends in the regions where a = a and a = /. We shall
suppose that N is such that 2Nkn = 1. This involves at most an error of magni-
tude kn in the computation of u. Instead of considering the process x(s), let us
consider the process

(7.6) y(s) = h-,x(kn1S).
We denote by 0,, the measure corresponding to it. The generator of the y(s)
process can be written as

(7.7) -2 Pna(t, x) e2

wherePn = k,,h-h and a(t, x) = a" 1 (t, x). Now for the y process it is a question
of how much time is spent in regions {a = a} and {a = /3} relatively up to
time 2N. Since the problem is periodic, we consider the reduced problem on the
circle. A+ and A- are the upper and lower semicircles. 7t' and n- are the
transition probabilities for the homogeneous processes corresponding to a+ (x)
and a - (x), where

(7.8) a + (X) = ~a onA'.
on A-.

and
,B on A+

(7.9) a-(x) =
o

ta on A-.

If n + (t) denotes the semigroup corresponding to a-, then the p,, in front of the
generator changes n+(t) to n+(tpn). We can now write
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(7.10) U2 = EPnL}' an(sx(s)) dsj

= knEQn [aJa(s, y(s)) ds]

N (2r N-1 ((2r+ 1)

= kn En a(s, y(s)) ds + k EQn a(s. y(s)) ds
r1= J(2r-1) r=O J2r

N ('2r N-I r (2r+ 1)
= kn Y EQnj a(y(s)) ds + kn E EQn j a+(y(s)) ds.

r= 1 (2r-1) r=0 2r

Since kn is nearly (2N)', it suffices to look at EQn f¶22r +l) a+(y(s)) ds and
EQn 1(2r a-(y(s)) ds for large r and n.
We have

¢(2r+ 1) /r

(7.11) EQnJ' a'(y(s)) ds = [r+(p.)n- (p")]r(J + (spn)a ds)
and

(7.12) EQn a(y(s)) ds [,t(pPn)7r+(pn)]r1 (J (spn)a )ds)
(2r-1 )O

As p,, tends to p and n -- o, it is clear that we have to look at the invariant
measures pp+ and tp- solving p+C+ (p) n - (p) = u and lp- 1 - (p) 7r+ ( p) = /lp-.
We can then write

(7.13) r no.2= q=-2! [ I47 (sp)a ds + FJ , (sp)a lds]n~~a) 2 L0 0o
where a2 is of course only a function of p. By standard techniques, one can justify
all the steps and even compute a2 (p) when p = 0 or oc.
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