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1. Introduction

Yosida's definition of potential operators for semigroups [17] makes it
possible to deal with transient Markov processes and a class of recurrent Markov
processes in a unified operator theoretical way. In this paper, we prove some
general properties of his potential operators, show which Markov processes
admit the potential operators, and investigate the cases of processes with
stationary independent increments as typical examples.

Let T, be a strongly continuous semigroup of linear operators on a Banach
space A satisfying

(1 .1 ) tsup_oli < c

with infinitesimal generator A and resolvent

(1.2) J, = (2- A)`. >>0.

Following Yosida. we define potential operator V for the semigroup by

(1.3) Vf = s lim JJf.
1 so

when and only when the limit exists for f in a dense subset of X4. The domain
9( V) is the collection off such that the limit exists. We will give conditions for the
existence of the potential operator (Theorem 2.2) and prove some general pro-
perties (Theorem 2.3). summarizing Yosida's results [17], [19] with a few
results added. The relation with other definitions of potential operators is shown
in Theorem 2.4. In Section 3, we consider the case where A is the Banach space
CO(S) of real valued continuous functions on S vanishing at infinity, S being a
locally compact Hausdorff space with a countable base, and T, is a semigroup
induced by a Markov process transition probability. We will prove that the
semigroup admits a potential operator if the Markov process is either transient
or null recurrent, and that it does not admit a potential operator if the process
is positive recurrent. Processes with stationary independent increments on
Euclidean spaces are examined in Section 4. The fact that they admit potential
operators (Theorem 4.1) is a generalization of Yosida's result [18] on Brownian
motions. The domain and the representation of potential operators are
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investigated for Brownian motions, stable processes, and some other processes in
Section 5. We return in Section 6 to a general situation and consider generaliza-
tion of maximum principles for classical potential operators to operators in
Banach lattices. New types ofmaximum principles are introduced for the adjoints
of potential operators.

Several works have been done recently on potential operators of recurrent
Markov processes ([7], [10], and others). Authors use different definitions of
potential operators. It seems that an advantage for Yosida's potential operators
lies in their direct connection with infinitesimal generators.

2. Potential operators for semigroups on Banach spaces

Let X be a Banach space, and X* be its adjoint space. We use the notation
((p, f) = (p(f) for (p e X* and f e M. The limit in the strong, weak, or weak*
convergence is denoted by s lim, w-lim, or w* lim, respectively. By dense, we
mean strongly dense. We say that a subset A of X* is w* dense if for each
p e X* there is a sequence {p,,,} in X4 such that p, weakly* converges to P.
Thus w* denseness implies denseness in the sense of weak* topology. The
symbols -, .A, and X mean domain, range, and null space of an operator. In
this section, {T,; t _ 0} is always a strongly continuous semigroup of linear
operators on M satisfying (1.1), A is its infinitesimal generator, and J, is the
resolvent operator (1.2). It is known that A has dense domain and determines
the semigroup uniquely and that

(2.1) JAf= e-- Tf dt,

(see [3] or [16]). Let T,*, J*, and A* be the adjoint operators of Tt, JA, and A,
respectively. The following theorem has a preliminary character, but is interest-
ing in itself.
THEOREM 2.1.

(i) The semigroup {T,*; t _ 0} is a weakly* continuous semigroup on A*.
(ii) The operator A* has w* dense domain and

(2.2) A*fr = w*limtl(TC*0 - ), fe9(A*).
too

Conversely, if the right side of (2.2) exists, then eE9(A*).
(iii) The following relations hold

(2.3) J*= (2 - A 1.

(2.4) J*p = f e Tq*p dt, D e A*.
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(iv) The operator A* determines T, uniquely.
The integral in (2.4) is defined to be the element / e X* which satisfies

(2.5) (if) = e (T*(p,f ) dt, fE M.

PROOF. Part (i) is obvious. Equation (2.3) is a consequence of (1.2), (see [16],
p. 224). The domain of A* is w* dense since M*q converges to p weakly* as
i oo and MJA*( E -(A*). If 9 is the right side of (2.2), then JA*(AW - (P) =

,

and hence 0IcE .(A*) and A** = q, because we have

(2.6) (J*'pf) = lim t1(TCi/ - i, JJf) = (1f, AJJf)
t-*0

= (r,, Af - f) = (A)JAi , )

for any f e Sl. If / is the right side of (2.4), then

(2.7) (Tt',f) = J' e-s (T.*<p, Tf) ds = Jee-As (Tj*,p, f ) ds
o ~~~~~~o

= eAt eAs (T*q, f) ds

forany f, which implies t-(Tt* - A, f ) (i f-pf),and hence Ee9(A*)
and A** = AO- p. This shows (2.4) by (2.3). In order to finish the proof of
(2.2), note that any 0 E g(A*) is represented as = J*P by (2.3), and hence
w* lim t-'(Tt**-I) exists by (2.4) and the above argument. The operator A*
determines T, uniquely since A* determines J* by (2.3) and J* determines JA.
The proof is complete.
The potential operator defined in Section 1 does not always exist. But we

have simple criteria for its existence.
THEOREM 2.2. The following conditions are equivalent:
(a) T, admits a potential operator;
(b) A(A) is dense;
(c) )JAf 0(0 0) strongly for all f;
(d) 2jf 0 (- 0) weakly for all f;
(e) t' It Ts fds 0 (t -o) strongly for all ;
(f) tf 1 Ts fds O (t oo) weakly for all ;
(g) A* is one to one;
(h) J*q --. (0 -.> 0) weakly* for all 9;
(i) t-1 Jt T3*q ds --0 (t -- oo) weakly* for all (p.

The equivalence of the first four conditions is proved by Yosida [17]. He
introduces also the condition (h) in [19]. Conditions (e), (f), (i) are new. The
following condition is also equivalent, though apparently weaker: for each f
in a dense set in M there is a sequence {An} decreasing to 0 such that AJk. f
converges to 0 weakly (see [17]).
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PROOF. That (d) is equivalent to (h) is evident. The equivalence of (f) and
(i) is also evident, since we have

(2.8) ( l * ) ( ds)

Equivalence of (b) and (g) is of general character ([16], p. 224). Using

(2.9) AIIllbI < M,

where M is the bound of IITII, we get the implication (a) > (c); (c) implies (d);
(d) implies (b) because the closure of St(A) is closed in weak topology by the
Hahn-Banach theorem ([16], p. 125) and AJjf = jf- f - f weakly as A - 0;
(b) implies (c), since if f = Au then

(2.10) IVIJ'fll = I(AJA - 1)uII _ A(1 + M)I1uII - 0,
and since we can use (2.9) and (b) for generalf. On the other hand, (b) and (c)
together imply (a) because JAAu = AJAU-U - u strongly. Thus, (a), (b),
(c), (d) are equivalent. Iff = Au, then

(2.11) t1 f Tjds t { Tuds = U1;T u - u) -0, . cA.

Since we have

(2.12) |t-J Tsf dsi| _ M lif |, f e A3,

(b) implies (e); (e) =. (f) is evident. If (f) holds, then

(2.13) t1 f (PT1f)d5 = t' i Tsfds) -,

for each (p and f, which implies

(2.14) A fe-fs(g, TTf) ds - 0, O0,

by the Abelian theorem for Laplace transforms ([15], p. 181), that is, the con-
dition (d). The proof is complete.
THEOREM 2.3. Suppose that {T,; t > 0} admits a potential operator V and let

V* be the adjoint operator of V. Then, A, A*, V, V* are all one to one, V = -A ,

and V* = - (A*)-1. Subspaces 9(V) = A(A) and At(V) = -(A) are both dense
in A; similarly, _g(V*) = .i/(A*) and bA(V*) = 9(A*) are both w* dense in a*.
Furthermore,

(2.15) V*? = w* lim J*(p, p e
A-o

holds. The collection of up such that the limit in the right side of (2.15) exists
coincides with 9(V*).
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The theorem is proved by Yosida [17], [19]. We give the proof for
completeness.

PROOF. If u E 9(A), then JzAu = Ju - u - u strongly by Theorem
2.2 (c), and hence Au E 9(V) and -VAu = u. If fE 9(V), then AJj -+ -f
strongly likewise, and hence Vf e 9(A) and -A Vf = f by the closedness of A.
Thus, X(A) = X(V) = {0}andV = -A-.Thisimplies X(A*) = X (V*) =
{0} and V* = -(A*)` by [16], p. 224. If J*q has weak* limit I as A 0,
then it follows from

(2.16) ((p - AJA*p, Vf) = (-A*JAp, Vf) = (JAfp),
that (p, Vf) = (/,f) for all f E 9(V), which means cE 9(V*) and V*9 = A.
Conversely, if p e 9(V*) and V*e - 1A, then JAP = -JA*i/, = - M.*1
converges to / weakly*. The remaining assertions are trivial consequences of
the previous theorems.
COROLLARY 2.1. The operator V determines {T,} uniquely, and so does V*.
THEOREM 2.4. Suppose that {Tt} admits a potential operator V.
(i) The following five conditions are equivalent:

(a) f c9(V) and Vf =u;
(b) Jjf - u( --0 ) weakly;
(c) (1 - JJ)U = JAffor some A > 0;
(d) (1 - j)u = Jj for all A > 0;
(e) (1 - Tj)u =JO Tf ds for all t _ 0.

(ii) In order that!f E 9(V), Vf = u, and w lim Ttu (t -o) exists, it is necessary
and sufficient that

(2.17) u = w lim { Tsfds.
t- Go fo ds

(iii) Assertion (ii) remains valid with w lim replaced by s lim.
Equivalence of (d) and (e) is observed by Kond5, and he studies solution of

(d) and (e) in an extended sense for recurrent Markov processes [7].
PROOF. The implication (a) -* (b) is trivial. If u = w lim JJf, then by the

resolvent equation

(2.18) Jif - JJf + (A - W)JAJf = 0,

we have (d). Thus, (b) implies (d). The implication (d) (c) is trivial. If (c)
holds, then it follows from (2.18) that

(2.19) Jeff = Jjf + (A - ju)J,(1 - U)hu = JAf - (- ju)JAJku,
which strongly converges to JAf + Au = u, and we have (a). Also, we see
equivalence of (a) and (e), noting that f = -Au. For (ii) let u be defined by
(2.17). Then u satisfies (e), and hence (a). According to (e) and (2.17), Ttu weakly
converges to 0 as t -- cc. Conversely, let Vf = u and Ttu -> v weakly as t -> a:.
Then we have Tsv = v for every s, and hence v = 0 by X(A) = {0}. Thus, (2.17)
follows from (e). Replacing w lim by s lim, we get the proof of (iii).
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A set .# is called a core of a closed operator T, if J c= 9(T) and if the
smallest closed extension of TI|# coincides with T, where Tj is the restriction
ofT to X (see [6], p. 166). The notion of core is important, because if JI is a core
of the potential operator V, then V 1 # determines the semigroup. Note that
V is a closed operator since A is closed. Although it is usually difficult to find
explicit expression of V, it is sometimes possible to find the expression on some
core. See Section 5 for examples. If XI is a core of T, then # is dense in 9(T)
and T(JI) is dense in 3A(T). But the converse is not true in general. We can prove
the following assertion: let T be a closed linear operator and let X be a linear
subspace of -9(T). Suppose that for each f e 9(T) there are a sequence {fA} in
X and an element g E X such that w limfn = f and w lim Tfn = g. Then, X1 is
a core of T.

3. Potential operators for Markov process semigroups

Let S be a locally compact Hausdorff space with a countable base. Let CO (S)
be the Banach space of real valued continuous functions on S vanishing at
infinity if S is not compact, or the Banach space of real valued continuous
functions on S ifS is compact. We denote the collection of continuous functions
with compact supports by CK(S) or CK, and the collection of nonnegative
functions in CK by CK+. Let {T1; I _ O} be a strongly continuous semigroup of
positive linear operators on CO(S) with norm T,11 _ 1. There corresponds to

{T,} a right continuous, time homogeneous Markov process on S with transition
probability P(t, x, dy) such that

(3.1) TJf(x) = fbf(y)P(t, x, dy).

We call the Markov process (or the semigroup) recurrent if

(3.2) fs P(t, x, U) dt = oc

for all x and all open neighborhoods U of x, and transient if

(3.3) E P(t, x, K) dt < oc

for all x and all compact K. It is null recurrent if it is recurrent and

(3.4) lim P(t, x, K) = 0
t -00

for all x and all compact K, and positive recurrent if

(3.5) lim inf P(t, x, U) > 0
1 00

for all x and all open neighborhood U of x. We will show the relations of these
notions with the existence of a potential operator. In applying the theorems in
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Section 2, note that Co*(S) is the space of signed measures with bounded variation
normed by the total variation, and that {fn} converges weakly to f in Co(S) if
and only if fg(x) converges to f(x) pointwise and sup,, 1IfnII < °° .
THEOREM 3.1. If {T.} is transient, then it admits a potential operator.
PROOF. Since CK is dense, it suffices to show that t-1 lo T, f(x) ds tends

to 0 pointwise as t -- CX forf E CK (Theorem 2.2). But this is easily seen because
oS Tjf (x) ds is finite.
THEOREM 3.2. If {T1} is null recurrent or, more generally, if (3.4) holds, then

it admits a potential operator V and

(3.6) Vf = w lim Tf ds.
t-. o

PROOF. It follows from (3.4) that

(3.7) w lim Ttf = 0
t-. 0

for all f e CK, hence for all f e Co(S). The theorem is then obtained from
Theorems 2.2 and 2.4.
THEOREM 3.3. If {T.} ispositive recurrent, or if theprocess has afinite invariant

measure, then the potential operator does not exist.
PROOF. Property (3.5) implies that condition (f) of Theorem 2.2 does not

hold. Existence of a finite invariant measure p contradicts condition (i) of the
same theorem since T* p = ( 0.
REMARK. If S is a countable set with discrete topology and all points com-

municate with each other, then the following three conditions for the process are
equivalent: to admit a potential operator; to be transient or null recurrent; to
have no finite invariant measure. In fact, transience, null recurrence, and
positive recurrence cover all possibilities in this case, and the process is positive
recurrent if and only if it has a finite invariant measure [2].

If the process is transient, CK is not necessarily contained in g(V). But we
have:
THEOREM 3.4. Suppose that {T.} admits a potential operator V and that

CK C 9(V). Then, it is transient, CK is a core of V, and

(3.8) Vf = s limr Tf ds.
t-00 fo

PROOF. Iff cE C', then

(3.9) f Tjf(x) dt = lim X' e-`Tjf(x) dt = Vf(x) < X.O ~~~A-O .

Hence, the process is transient and we have (3.8) for C' by applying Dini's
theorem to the one point compactification of S. Let VO be the smallest closed
extension of V | CK. We have to prove VO = V. First, let us show that iff E CK,
then JAfe 9(V0). In fact, let u = JAVf and let {g,,} be an increasing sequence in
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C' which converges strongly to JAf. Since we have

(3.10) f TJJf(x) dt = J f esTt+5f(x) ds dt

= f e - 'T5Vf(x) ds = u,

Vg,, tends strongly to u by Dini's theorem, and hence Jjf e 9( V0). Also, we have

(3.11) A)V0Jf + JAf = VOf

forfE CK. It follows from (3.11) that M(V0) is dense. We see that iff E 9(V0),
then JAf E 9(V0) and (3.11) holds. Thus, A(A V0 + 1) contains A(V0), and hence
is dense. If g, = (AVO + 1)f, -. g strongly, then fn= g. - AJg. - g - Akg
and hence g e W(AVO + 1) by closedness of VO. The whole space is thus
A(AVO + 1). On the other hand, AV + 1 is a one to one mapping and an ex-
tension of AV0 + 1, whence V = V0. Iff E CK, then it follows from (3.8) and
Theorem 2.4 that TVf -* 0 strongly as t - oo. Since V(CK) is dense, Tag -- 0
strongly for all g e C0, and hence we have (3.8), completing the proof.

If the process is conservative (that is, P(t, x, S) = 1 for all t and x), then V is
unbounded. In fact, if V is bounded, thenO < JA!, _ Vf, < || V || for 0 f, < 1
and, lettingf, (x) increase to 1, we should get 1- 1 < || V|| for any A > 0, which is
absurd. This is in contrast to the fact that there are many bounded infinitesimal
generators.

4. Potential operators for processes with stationary independent increments

Let X,(co), t > 0, be a right continuous stochastic process on RN starting at
the origin with stationary independent increments defined on a probability space
(Q, F, P). The process x + X,(co) is a Markov process starting at x. Its transition
operator carries CO(RN) into itself and forms a strongly continuous semigroup
T., which commutes with any translation LY defined by Lyf(x) = f(x + y).
Conversely, every strongly continuous positive semigroup T, on CO(RN) with
norm IITII = 1 which commutes with translations is induced in this way. We
denote the totality of infinitesimal generators of such semigroups on CO(RN)
by GN.
THEOREM 4.1. The infinitesimal generatorA E GN admits a potential operator,

except ifA is the zero operator.
This fact, which generalizes [18], is a consequence of Section 3, since the

process is transient or null recurrent. But we will prove this theorem from an
estimation of IITII (Theorem 4.3). Theorem 4.2 gives the representation of
infinitesimal generators GN, and our proof of Theorem 4.3 which makes use of
Theorem 4.2 and decomposition of semigroups may be of some interest. In the
following, Di = 8/axi, Dij = a2/rxiaxj, and C' is the set of C' functions with
compact supports; S(f ) is the support of functionf.
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THEOREM 4.2. Let A E GN. Then,
(i) CK c 9(A);
(ii) CK is a core of A;

(iii) for any u E C', Au is of the form
N N

(4.1) Au(x) = Y ai,jDiju(x) + E biDiu(x)
ij=1 1=1

r ~~~~~~~N
+ J u(x + y) - u(x) -Xu(Y) yiDiu(x) n(dy),

JRN\(0} _ i=1

where ai,j and bi are constants, (ai,) is a symmetric positive semidefinite matrix,
Xu is the indicator function of the open unit ball U, and n is a measure on RN\{0}
satisfying

(4.2) n(RN\U) < co, .fU\0 jy|2n(dy) < o.

Conversely, ifA satisfies (iii) and gi(A) = C', then A is closable in CO(RN) and
the smallest closed extension of A is a member of GN:
The measure n is called Levy measure. A proof is found in [11]. Hunt [4] has

a similar theorem.
THEOREM 4.3. Let A E GN.
(i) If ai, j 0 for some i, j, then

(4.3) |ITf || < (47rt)- 112 If | diam S(f)

for any f E CK and t > 0, where a is the maximum eigenvalue of (aij).
(ii) If the Levy measure n does not identically vanish, then

(4.4) IITJfII . e(2ltit)-1"211f1[1 + s-` diam S(f)]
for anyfe CK t > 0, and e > 0, where

(4.5) p = fi(e) = 1maxN max{n({y; yi > e}), n({y; yi -

In the proof, we use the following lemma, which is easily proved. This is closely
connected with Theorem 1 of Trotter [14].
LEMMA 4.1. Let (), A(2) E GN and let T,1) and T(2) be respective generated

semigroups. Then, T,1) and T(2) commute for any t and s. Let T3 (2)T().
Then T3 is a strongly continuous semigroup with infinitesimal generator A(3) E GN
andA(3)u =-A(u +A(2)ufor u E C.
PROOF OF THEOREM 4.3.
(i) By an orthogonal transformation of RN, we can and shall assume that the

matrix (ai j) is diagonal and a1,1 = a. Let A(') and A(2) be members of GN such
that AX1)u = oDl1,u and A(2)u - Au - A(1)u for u e C' (Theorem 4.2). By using
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Lemma 4.1, we have ||T'fl = .|T,121T,1)fll _ IT,1fll, which implies (4.3) since

(4.6) (X)
exp -y2/4t} f(x + Y1, X2, ,XN) dy.
Rl(47rat) 1/2

(ii) Let us consider the case where /3 = n({y; Yi _ s}). The other cases are
treated in the same manner. Let n(l) be a measure defined by n(')(E) =
n(E n {y; Yi > c}), let A(') be a bounded operator defined by

(4.7) A(')u(x) = f [u(x + y) - u(x)]n(1)(dy).

and let A(2) = A -A(). By virtue of Lemma 4.1, it is enough to prove the
estimate (4.4) with T, replaced by T,( ) generated by A('). Let Y. (co), t > 0, be a
Poisson process with paths being right continuous step functions and EY, = fit.
Let {Zk(w0); k = 1, 2, * } be independent identically distributed RN valued
random variables independent of the process {Y.; t _ 0}, each Zk having distri-
bution B ). Let S0 = 0 and Sk(CO) k= Z(O). Then, Sy,(W)(o) is a process
with stationary independent increments which induces the semigroup T,('). We
have

(4.8) T1()f(x) = E P(Y, = k)Ef(x + Sk),
k =0

and hence

(fit)k\

(4.9) IT,()f(x)I _ e ( max k! ) P(Ske= Of X).
We have

(4.10) Z P(Sk e S(f) x) _ E Z XK,-x (Sk,1) _ 1 + E diam 8(f),
k=O k=O

where K1 is the projection ofS(f) into the first coordinate, and Ski1 =1 Zi 1,

Zj being the first coordinate of Zj. Note that Zj 1 - e with probability one.
Let p(k) = (k!)-le-k(k + 1)k+11/2. Since we have

(4.11) sup p(k) = lim p(k) =e(2-)-
k _ O k oo

by elementary calculus (it will suffice to recall the proof of Stirling's formula),
we have

(4.12) e-'(max (!))=-fit)k- (fit)pt' < (fit)-12p([fit]) _ e(2 1/t)-tV2,
k.0 kI!9 [fit]!

which, combined with (4.9) and (4.10), proves (4.4). The proof is complete.
PROOF OF THEOREM 4.1. In the cases described in Theorem 4.3, T~fstrongly

converges to 0 as t --oo for everyfe CO(RN), which implies the existence of a
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potential operator by Theorem 2.2. There remains the case where Au =
EY 1 biDu for u E CK0 and bi :E 0 for some i. In this case, the semigroup is
Tjf(x) = f(x1 + b1t, * , XN + bNt), and hence Ttf weakly converges to 0 as

t -+ o for every f. This also suffices for our conclusion by Theorem 2.2.
We give some results on cores of the potential operator V of A E GN.
THEOREM 4.4. The collection ,A off E 9( V) such that f and Vf are integrable

is a core of V. Iff e X, then

(4.13) XRN f(x) dx = 0.

PROOF. It is easy to see that if g E CO is integrable, then Jg is integrable and

(4.14) Af Jkg(x) dx = f g(x) dx.

Iff e X, then we get (4.13) from (4.14) by letting g = f + A)Vf, f = g - ZJkg.
Since C' is a core ofA (Theorem 4.2), the set .#1 off e g( V) such that Vfbelongs
to CK0 is a core of V. We claim that Au is integrable if u E C', which will imply

c X# and completes the proof. Let K = S(u). In the expression (4.1) ofAu,
the first two terms have compact supports, and the integral

N

(4.15) I u(x + y) u(x) Xu(Y) E yiDiu(x) dxn(dy)
RNxRN i= 1

is finite because the integral over each of the following four sets is finite: x E K
andyeU;xeKandyeRN\U;X + yeKandye U;x + yeKandyefRN\U.
THEOREM 4.5. If n(RN\B.) = 0 for some B. = {x; lxi _ a}, then CK n 9(V)

is a core of V.
PROOF. The condition implies Au E CK if u E CK. Hence, the set .l defined

in the preceding proof is a subset of CK n g(V).
An open question is whether CK n !( V) is a core of V without any assumption

on Levy measure.
It should be noted that a paper by Port and Stone [10] includes the following

result: let E be the collection of points x such that for each open neighborhood U
ofx there is a t > 0 satisfying P(X, E U) > 0, assume that the closed group gener-
ated by E is RN, and consider transient cases. In case N = 1 and X, has finite
nonzero mean, a functionf in CK belongs to (V) if and only if it satisfies (4.13).
Otherwise all functions in CK belong to 9(V).

5. Examples

EXAMPLE 5.1. Brownian motion. Let A E GN be such that
N

(5.1) Au(x) = E Diu(x), U E C'K,
i= 1
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and V be the corresponding potential operator.
Let N = 1. Then, afunction f in Co(R') belongs to 9(V) if and only if

(5.2) ff(x) dx = 0,

and

(5.3) lim [ xf((x) dx- a f(x) dx + b j f(x) dx = 0.
a,b -r -a

Iff e -9(V), then

a~~~~~~~~~~
(5.4) Vf(x) = lim 2- I[ Y - xlf(y) dy + a J (y) dy].

aoo -a a

Here integrals with infinite endpoints are understood as Riemann improper
integrals.
COROLLARY 5.1. Consider the case where xf(x) e L1. A necessary and sufficient

condition for fe 9(V') is

(5.5) xfR(x) dx f(x) dx = 0.

Iffe9(V), then

(5.6) Vf(X) - y -xLf(y)dy.

Note that there are functionsf in 9(V) for which xf(x) is not an L1 function.
Consider, for example, f = u", letting u(x) equal x' sin x. -1 < x < 0 for
large x.
COROLLARY 5.2. Let I be a closed interval and let f e 9( F). Then, S(f) c I

if and only if S(Vf) c I.
PROOF. It is known that 9(A) is the collection of u e CO(R1) such that u is

of class C2 and u" e Co(R1). We have Au = u" for all u e 9(A). Let fe 9(V).
It follows that u = Vfe 9(A). f = -u". and u' e CO(R'), whence (5.2).
Equation (5.3) follows from

rb f-a r
(5.7) f xf(x) dx = a { xf(x) dx - b { xf(x) dx + u( -a) - u(b).

In order to prove the converse. letf be a function in CO(R1) satisfying (5.2) and
(5.3). Let

(5.8) g1(x) = f(y) dy, g2(X) = f f(y) dy,

(5.9) h1(x) = limn| yf(y) dy + b ff(y) dy
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(5.10) h2(x) = rim yf(y) dy-a | (y) dy

All of these exist and g1 + g2 = 0, h1 + h2 = 0. Define u by the right side of
(5.4). Then we have

(5.11) u(x) = xg1(x) - h1(x) = -xg2(x) + h2(x).

Since xg1(x) - h1(x) is

(5.12) yf(y) dy + x f(y) dy - lim yf(y) dy + b {f(y) dy]
JXOX b~ob XOo

for fixed xO, we have xgl(x) - hl(x) -- 0 as x -.oo. Similarly, xg2(x)-
h2(x) -- 0 as x -- - o, and hence u e C0. Since u" = -f, it follows that
u e 9(A) and Au = -f.
For higher dimensions, the following are classical results. For N = 2, a

functionf in CK belongs to -( V) ifand only iff has integral null. Iff E CR rn 9( V),
then

(5.13) Vf(x) = - 27{f(y) log Iy - xi dy.

For N _ 3, CK is contained in 9(V), and

(5.14) Vf(x) = (N/2) f(|Y)-|N dy
2(N - 2)~/ JRIy X1N2

for! E CK. We do not know the complete description of 9(V) for N _ 2, but
we have the following partial result for N = 2. Let .X be the collection off(x)
in CO(RJ2) which depends only on lxi. Let Ba be the closed disc, with radius a
centered at the origin. Then, f E 9( V) if and only if

(5.15) lim f(y) log IyI dy + (log a) { f(y) dy]

exists and is finite, provided that f E '. Iff E -9(V) n X, then

(5.16) Vf(x) = lirj-[-{ logXy - xif(y) dy + log a f(y) dy]

The relations S(f) c Ba and S(Vf) c Ba are equivalent, provided that
f e 9(V) n . The proof, which makes use of Green functions for discs, is
omitted. In any dimension, CK n 9(V) is a core of V by Theorem 4.5.

In the sequel, we denote by #0 the collection of functions in CK(R1) with
integral null.
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EXAMPLE 5.2. Brownian motion with drift. Suppose A E G1 and Au =
u" + bu', b + 0, for u e CK. The process is transient. Suppose b > 0 for
simplicity. Then, it is easy to see that CK n 9( V) = AO, that AO is a core of V,
and that

(5.17) Vf(x) = f(y) exp {b(y - x)} dy + f(y) dy]

for f E#A.
EXAMPLE 5.3. Deterministic motion. Suppose A E G1 and Au = bu', b # 0,

for u E C'. It is trivial that CK n 9(V) = A0, which is a core of V, and that

(5.18) Vf(x) = b{ f(y) dy

forfe 1O, provided that b > 0.
EXAMPLE 5.4. Stable processes. Let X, be a one dimensional stable process

with index at. Excluding deterministic motions and normalizing time scale, we
have the characteristic function E exp {i4X,} of the form

(5.19) exp {-t_2},
if a = 2,

(5.20) exp -ti|l + ifi tan2 -1 f_._ 1,

if O < a < 1 or 1 < a < 2, and

(5.21) exp{-t||iI(1 - iysgn)}, -x < < 0o,

if a = 1. Equation (5.19) is the Brownian motion examined above. The process is
recurrent if 1 _ a < 2, and transient ifO < a < 1.

If 1 < a < 2, then CKrn(V) = so, AO is a core of V, and

(5.22) Vf(x) = k(y - x)f(y) dy, f E CKn 9(V),

ixl'- 1 (1 -Psgnx) maro
(5.23) k(x) = , h = ftan-.

2(1 + h2) r(a) COS
no 2

Indeed, the fact CK n .9(V) = .4 and the expressions (5.22), (5.23) are proved
by Port [9]. His proof can be simplified by systematic use of Theorem 2.4 (ii).
The proof that A4 is a core of V is as follows. First, note that if u E C', then
Au(x) = O(Ixi-- 1) asIxI -. o, and hence Au has integral null by Theorem 4.4,
becausetheLevymeasure hasdensityc1x- 1 forx > Oand c21xI- 1 forx < 0
with some nonnegative constants c1, C2. Therefore, since {Au; u E C' } is a core
of V, it suffices to show that for each function f E CO with integral null satisfying
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f(x) = O(ixi|--1) as lxi -+ oo there exists a sequence {f,} in A0 such that
-- f weakly and Vf u weakly for some u e CO. Let

(5.24) u(x) = f k(y -x)f(y) dy = f [k(y - x) - k(-x)]f(y) dy.

Since there is an estimate

(5.25) lk(y - x) -k(-x)l . const iyiK-1
([9], p. 146) and since k(y - x) - k(x) tends to 0 as x - oo, u belongs to CO.
Choose a function g e C+ such that g(x) = 1 on [-1, 1], and let f'(x) =
(an + f(x))g(x/n), choosing a, in such a way that f. has integral null. It follows
that a, = O(n ` 1). Hence, llf, - fln -+ 0 as n - oo and f,(x) = O(Ixl 1)
uniformly in n as lxi -- oo. Using (5.22) for Vf, we see that IIVf, - ul| 0,
completing the proof.

If o = 1, then we have similarly CK n 2(V) = A0 and (5.22) with

(5.26) k(x) = log |x| + 2 1iy sgn x
7t(l + y2)

and A0 is a core of V.
To prove this, let p(t, x) be the distribution density (Cauchy) of X, and let

(5.27) q(t, x) = Jf (p(s, x) - p(s, 1)) ds.

We have

(5.28) q(t, x) = 2(1 2)(log t2 + (1 y)2 - 2 log Ixi) + g(t, x),

(5.29) lim q(t, x) = k(x) - y[2(1 + y2)]-1

with k(x) defined by (5.26) and g(t, x) a bounded function. Hence, we have
estimate

(5.30) lq(t, x)l _ c1 loglxll + C2,

(5.31) lq(t, x + y) - q(t, x)i < C31 ogl1 + y/XSl + C4

for x 6 0, -y with cj independent of x, y, t. Let f e A0 and let u be defined by
(5.24). Then we see that u e CO. Using (5.30) and (5.31), we can prove that

(5.32) rOTf(x) ds q(t Y - x)f(y) dy

= fR (q(t, y - x) - q(t, -x))f(y) dt,
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and that (5.32) is bounded in t and x and tends pointwise to u(x) as t cc.

Hence.f c- 9(V) and Vf = u by Theorem 2.4 (ii). Conversely, iff E CK (V),
then Jt Tjf(x) ds is bounded by the same theorem, and hence f must have
integral null because

(5.33) { Tjf(0) ds = { q(t, y)f(y) dy + f f(y) dy { p(s, 1) ds.

The fact that X0 is a core of V is proved by the same idea as in case 1 < DC < 2.
Details are omitted.

If 0 < a < 1, then CK ' 9(V), CK is a core of V, and we have (5.22) with k(x)
defined by (5.23).

In fact, we have

(5.34) L p(t, x) dt = k(x). x =00

for distribution density p(t, x) of X, and so f' Tsf ds converges weakly to the
right side of (5.22) as t o- , iff E CK. Thus. we can apply Theorem 2.4 (ii).
Finally, CK is a core by Theorem 3.4.
EXAMPLE 5.5. Poisson process. If Au(x) = u(x + 1) - u(x) with / =& 0.

then

(5.35) Vf(x) = E f(x + k{), fe'C(CKrn(IV).
k=O

and CK q 9( V) is the collection of f E CK such that I f(x)q(x) dx = 0 for all
9p e (D, where (d is the set of continuous periodic functions with period t.
EXAMPLE 5.6. Symmetrized Poisson process. If Au(x) = u(x + 1) + u(x -

() - 2u(x) with { #E 0, then

1 X
(5.36) Vf(x) = -2- E Iklf(x + k). fE CKr9(V),

2 k=- -

and CK nr9(V) is the set of f e CK such that

(5.37) { f(x)(p(x) dx = { f(x)x9(x) dx = 0

for all ?p e 0, where (P is the same as in 5.5.
EXAMPLE 5.7. Brownian motion on [0. xc) with reflecting boundary condition.
This is null recurrent and the potential operator V in C0([0, o)) is

(5.38) Vf(x) = - i (y - xl + ly + xj)f(y) dy

forfe CK([O, co)) n g(V). The function fe CK([0, x )) belongs to g(V) if and
only if f has null integral. No other condition appears.
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EXAMPLE 5.8. Brownian motion with reflecting boundary condition on a strip
S = R' x [0. 1]. This is also null recurrent. Kimio Kazi [6a] found the
potential operator P' for this process. Iff cE CK n 9(J'). then

(5.39) Vf(xl X2) =J k(xl.x2: yin Y2)f(Y1 IY2) dyidy2,

(5.40) k(x1, x2: Y1i Y2)

= -2-1ly, -x1 + k1(xl. x2: Y1. Y2) + k1(xl. -x2: Yl, Y2).

(5.41) k1(xl. x2; Y1, Y.2)
- (4r)-1 log (1 - 2 exp {-7tiy, - x11}.cos 7riY2 - X21

+ exp {-27rly, - xlI}).
A function f e Cr(S) belongs to -9(V) if and only if

(5.42) fJ f(Xl. X2) dxldX2 = {S X1f(Xl. X2) dxldX2 = 0.

The kernel k is approximately equal to that of the one dimensional Brownian
motion if jy, - x1i is large, but has logarithmic singularity when (x1, x2) and
(Y1, Y2) are close. We do not know such a nice expression of potential kernel for
the similar process on R2 x [0. 1].

6. Some properties of V and V*

Let A be a Banach lattice (see [1] or [16] for definition). The symbols f+, f,
and If mean f v 0, - (f A 0), and f v (-f), respectively. The adjoint space X*
becomes a Banach lattice in the naturally induced order where up . i means that
((pof) . (ifr~f) for all fe 4 such that f _ 0 ([1], p. 368). We call {T1} an M
semigroup on X4 if it is a strongly continuous semigroup of positive linear
operators with norm _ 1. We will show characteristic properties of potential
operators of M semigroups and their adjoint operators.
We use a functional on X x A defined by

(6.1) p(f, g) = lim 8 '(I(f + 8g) || - I|f ).

This functional is introduced in [12] with notation 0(.f, g), and shown to have
several nice properties. We define p((p. V) on X* x X* in the same way.
THEOREM 6.1. Let {T.} be a strongly continuous semigroup on A satisfying

condition (1.1) and admitting a potential operator V. Then, thefollowing conditions
are equivalent:

(a) T, is an M semigroup;
(b) p(Vf,f) > 0for allfe !2(V);
(C) (V ) +II _1|(Vf + ef)+1for allf 9(V) and c > 0;
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(d) p(V*cp, (p) > Ofor allUpe 9(V*);
(e) || (V*(p)+ | _ |J(V*?q + eP)+ || for all C E!p(V*) and E > 0.

PROOF. The family {T.} is an M semigroup if and only ifJx is positive and has
norm _ A` for all A > 0. Hence, the equivalence of (a), (b), (c) is proved in
[13]. Likewise, both (d) and (e) are equivalent to the fact that J* is positive with
norm _ A- ' for all A > 0. The last property is equivalent to the same property
for JA.

If we rewrite the above conditions by using the infinitesimal generator A and
its adjoint A* instead of V and V*, then the theorem is true even in case {TI}
does not admit a potential operator.

In the case 3 = CO(S), we have

(6.2) p(f, g) = max g(x), f+ 7 0,
xe-K(f +)

where K(f+) = {x;f+ (x) = if+ ||I}.. (If f+ = 0, then p(f, g) > 0 for all g by
definition (6.1). Hence, the inequality in (b) is trivial if Vf _ 0. Similar remarks
apply to the other conditions.) Therefore, condition (b) in CO(S) is the weak
principle of positive maximum studied by Hunt [4]. We can prove

(6.3) p((p, A) = L*C(S+) + II(0s)+)l
for all signed measures p, / E C*(S), where A, and Alp are, respectively, the
absolutely continuous part and the singular part of 0 with respect to 191, and
S+ is the positive set in the Hahn decomposition of S relative to q,. Thus, con-
dition (d) seems to be a new kind of maximum principle for adjoint potential
operators.

In order that a given operator V be the potential operator of an M semigroup,
some properties of V* are decisive, as Yosida [20] suggests. Let us define

(6.4) (q, i) = lim 8 (p|q + E*|| -1'I).£0O+

The following theorem is a consequence of [20] and Theorem 6.1.
THEOREM 6.2. Let V be a closed linear operator satisfying condition (b) of

Theorem 6.1 with domain and range both dense in 2. Then the following are
equivalent:

(a) there exists an M semigroup with potential V;,
(b) V* satisfies condition (d) of Theorem 6.1;
(c) V* satisfies condition (e) of Theorem 6.1;
(d) r(V*qp, A) > Ofor all up c g(V*);
(e) ||V*9|1 _ ||V*qp + au11 for all pee (V*) and e > 0;
(f ) V* + e is one to one for all e > 0.
Actually, (d) and (e) are equivalent in general [12]. If we replace closed in

this theorem by one to one, V is closable ([12]) and the theorem remains true
with V in (a) replaced by the smallest closed extension of V. In the case A* =
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C*(S), we can prove

(6.5) (p, a) = f(S ) - i(S ) + 1jVO .

So, (d) is another kind of maximum principle for V*.
If A is a sublattice of a vector lattice X and we require that T, preserves e

majorization (that is, f < e implies Ttf _ e) for a fixed e e AR, then a property
which replaces condition (b) of Theorem 6.1 is investigated in [8] and [12].
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