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1. Introduction and basic definitions

In many domains of application of probability theory. it becomes necessary
to study various properties of random formations of points. Random sequences
of arrival times in queuing systems were studied by C. Palm [17], A. Hincin [9],
F. Zitek [23], D. K6nig, K. Matthes and K. Nawrotzki [11] and others.
Statistical radiotechnica is also a source of similar problems. Here it became
necessary to study the set of times corresponding to the crossing of a fixed level
by a random signal (S. Rice [19]. V. Tihonov [22]). It is of interest to study
random point formations on the plane, on surfaces, and so forth. In this papei.
we describe a general approach which makes it possible to investigate a wide
class of random point sets, generated by random processes and fields, from a
common point of view.
The theory of random point sets and the random streams which correspond

to them can be regarded as a special branch of the theory of random processes.
However, this branch can lay claim to a certain degree of independence. Specific
concepts and methods of investigation arise in it. Ifwe are considering a random
sequence of points on the line, then its definition is easily reduced to the problem
of specifying a suitably defined random process. In a general setting, such an
approach is frequently insufficient.

We shall consider an adequately general scheme for defining random point
sets and random streams (Belyayev [2], [4]). Let [T, tlT] be a measurable space
of values of a parameter t e T, where J/'T is the a-algebra of measurable sets,
and [Q, En, P] is the initial probability space of elementary events co E Q.

DEFINITION 1.1. By a random stream ,q(A) on [T. J1T] is meant a random
function with domain S1T (we denote an element of S#T by A), C (A, = 0, 1, .o,
satisfying the relation n (Uj Ai) = li q (Ai) for every countable sequence Ai E AT
for which Ai n Aj = 0 whenever i :& j.

DEFINITION 1.2. A random point set defined on [T. #T] is a functio?
S = 8(w) defined on i. whose values are subsets of T. and such that for every
'A E56 T the number of points in S r A, denoted by q (A), is a random variable.
The system of all such random variables 1(A) is called the random stream generated
by the random point set 8.
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Interesting examples of random point sets arise in problems involving level
crossings. If 4, is a real valued random process with continuous sample functions,
T = R', Xl#T is the family of Borel sets of R', then S. = {t: X, = u}, that is,
the trace of the process on the level u, is a random point set. The set S0 =
{t: VC, = 0}-the set of stationary points of a random field 4, on T = Rm whose
sample functions are continuously differentiable-is also a random point set.
Here

(1.1) v; = (dt; atmJI8t = (to , t.)' E T.

where denotes transposition of vectors or matrices. One can give many
examples of a variety of random point sets defined on the trajectories of random
processes and fields.

Let - (A) be the family of all possible partitions d (A) of a set A c X#T, that is,
all countable collections d(A) = {Ab}, A,. e 11ST All n A22=0 0C1 c a2. For
a random stream 1(A), we introduce the set function

(1.2) A(A) = sup E P{q(A\) > 0}.
d(A)e (A) Aeed(A)

THEOREM 1.1. The set function defined by (1.2) is a measure on IT
PROOF. The property A(A) . 0 is obvious. If A = Ui Ai, Ail r Aj2 = 0

il :E i2, Ai E XT, then for d(A) = Ui d(A). d(A4) = {A,_}, we have

(1.3) A(A) _ L E P{7(Ai,j) > 0}.
i Ai,ed(A,)

Now the d(A4) can be chosen arbitrarily; therefore it follows from (1.3) that
A(A) _ i A(Ai). It is hardly more complicated to prove the opposite inequality.
Theorem 1.1 makes it possible to introduce a useful numerical characteristic,

which generalizes the concept of the parameter of a random stream given by
Hincin [9].

DEFINITION 1.3. The measure A(A), defined by the relation (1.2), is called
the parametric measure of the random stream q(A). The principal measure of
q(A) is defined by the relation /(A) = Eij(A).
We shall call a system of subsets, W = {Ank}, n, k = 1, 2, , of the space

T a fundamental system, if (1) An,keCI/T. (2) An,knAnfl' = 0 for k + In
(3) An,k = Uielnk An1,i'In,k = {1, 2,.}, (4) for any t1, t2 E T, t, IS t2, there
exists n = n(t1. t2) and positive integers i1 =& i2 such that tl CAne~i t2 E An i2
(5) the a-algebra generated by the family W coincides with tT. The following
assertion is a natural generalization of the well-known result of V. S. Koroljuk
(see [9]) that the parameter and the intensity of a stationary ordinary random
stream coincide.
THEOREM 1.2. If the random stream n(A) on [T, #T] is generated by a

random point set and a fundamental system W exists, then A(A) -/(A), A E XT
PROOF. The proof is based upon the construction of a sequence of random

functions
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(1.4) ?ln1n){ n (tA.,> 0,

(1.4) qfl(A~~~~k) = 0 i(An,k) = 0,

i4n(UieI An,k) = li4,-(AI~ ), I c {1, 2, }, which is nondecreasing and con-
verges to i(A) from below.

Let us consider [Tk, STk], the direct product of k copies of the measure
space [T, AT], whose points are of the form (tl. , tk), t1, tk E T. Let S
be a random point set on [T, AT], and q(A) the random stream generated by S.
We construct the random set S*k on [Tk, k ], taking for its points all those of
the form (s81 *., Sk) E Tk, where si E S and si =6 sj for i j. We denote by
n*k(Ak) the random stream generated by S*k.

DEFINITION 1.4. The k-parametric (k-principal) measure Ak(Ak) (,kk(Ak)) of
the random stream tq(A) generated by a random point set S is defined as the
parametric (principal) measure of the stream 1*k(Ak) on [Tk, XT]

If T has a fundamental system, then we obtain as a corollary of Theorem 1.2
that Ak(Ak) pk(A), that is,

(1.5) Ak(A) = Eq .(), Ake tk

From (1.5) and the definition of S*k, we obtain the possibility of calculating
various moments of properties of random point sets. The appropriate result
can be stated in the form of a lemma.
LEMMA 1.1. If r(A) is a random stream generated by a random point set on a

space [T, #T] with a fundamental system W, then the value of the k-parametric
measure onarectangular set Ak = X ... X A1 X A2 X ... X At X ... X Ae.
where A1 is repeated k, times, , At is repeated ke times, k = k, + + ke,
AiE =T i 1, t], and Ain Aj 0fori =& j, isgiven by

(1.6) Ak(Ak) = E{1 H1 [n (Ai) j + 1]+}
i=1 j=1

where [x]+ = max (x, 0).

It follows from Lemma 1.1 that for a cubical set Ak = A X * x A A e
the value )kk(Ak) equals the kth factorial moment of the number of points q (A).
If ki = 1 and Ai n Aj = 0, i,j e [1, f], i =& j, then it follows from (1.6) that
Ak(Al X A2 X ... X At) = E{=1 q(Ai)}, which fork = 2 enables us to com-
pute the covariance of the number of points falling into nonintersecting sets in
terms of the 2-parametric measure. We especially single qut the possibility of
computing the higher moments of characteristics in terms of the parametric
measure, due to the fact that in many problems it is possible to compute the
value of the parametric measure in explicit analytic form.

If a measure v(A) defined on [T, AT] is such that 2k(Ak) is absolutely con-
tinuous with respect to the product measure vk = v x ... x v, then

(1.7) )k(Ak) =( Ak(tl, , tk)v(dtl) * v (dtk),
. (t1, tk)Elk
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where Ak(tl, , tk) is called the k-parameter function of the random stream
or random point set with respect to the measure v.

Thus, with every random point set S on [T, XT] we can, generally speaking,
associate the infinite sequence of k-parametric measures, which in the presence
of a fundamental system 6 enables us to find the moments of higher order. One
of the important unsolved problems is whether or not the sequence of para-
metric measures )Lk(/X) determines all probabilistic characteristics of S.

Under very general conditions on random streams which are homogeneous
with respect to a group of motions in the space T, the parametric measure is
proportional to the corresponding Haar measure, which generalizes the well-
known result of Hincin [9] on the existence of the parameter for a stationary
random stream on T = R' (see Belyayev [4]).

2. Special systems of conditional probabilities

In a large number of applied problems, it becomes necessary to calculate the
conditional probabilities of various events, when the conditioning event is the
appearance in a random point set of a point with given coordinates. That this
problem is not entirely simple is attested to by the fact that a number of papers
have been devoted to the question of methods for determining the distribution
function of the length of the interval between successive events from a stationary
stream on the line (McFadden [15], Ryll-Nardzewski [20], Matthes [14],
Cramer and Leadbetter [7], and others).
We shall assume that the random point set S considered below is defined on

[T, AT], which we shall assume has a fundamental system X6, and that the
parametric measure is given by A(A) = |S A (t)v(dt), where v(A) is some measure
on AT. We denote the corresponding random stream by t1(A, S). A random
point set S' c S generates a substream il(z1, 5') < tl(A, S). The parametric
measure X'(A) of S' is also absolutely continuous with respect to v(A), with
density 2'(t) . A(t) almost everywhere relative to the measure v(A). The passage
to S' c S can be carried out by means of a screening (thinning out).operation,
which is defined in the following way. With every point t e T, we associate an
event A, or its complement At, that is, we assume that it is known for each
co e Q whether the event A, or A, occurred. We consider (for each co) the subset
S(4) c S consisting of those points s e S for which the event As occurs,
assuming that this screening process yields a random point set S(,4). Since the
parametric measures of the random streams n (A, S(sY)) and t(z(A, S) satisfy the
inequality n (A, S(s1)) < q (A, S), their parameter functions A (t) and A(t, A,)
relative to the measure v(A) satisfy almost everywhere the inequality

(2.1) A(t, A,) < A(t).
In most of the problems which the author has investigated, the inequality (2.1)
can be extended to all values of t e T. Assuming that (2.1) holds for all t e T, we
arrive at the following definition.
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DEFINITION 2.1. The conditional probability of the event A, the condition
being that t E S, is defined by the relation

(2.2) P*(AIte S) = (A(t)')
If the random streams 2i(A, S(.sd)) and ?l(/\, S) are homogeneous with respect

to a group of motions G = {g} in the space T with invariant measure v(A), and
A(t) = 2, A(t, A,) = A(gt, Agt) = A(A), then

(2.3) P*(AIt E S) =
A(A)

The probabilities introduced by relations (2.1) and (2.2) turn out to be the
natural ones in many concrete problems. In particular for ergodic random
processes, the probabilities defined in this way, using the random set of crossings
of a fixed level, have a simple statistical interpretation.
As an example, one can consider the case T = R', d#T the Borel sets, v(^)

Lebesgue measure, G = {g} the group of translations t -- t + g, AkAt(v) =
{t4[(t, t + v)]} = k; then in accordance with (2.2),

(2.4) (P (v) = (Ak, (V))

is the conditional probability that in a time interval of length v exactly k points
from S will appear, the condition being that the initial moment of the interval
also belongs to S. The Pk(v) are the well-known Palm-Hincin functions.

Another particular example of this kind would be deducing that the derivative
of a stationary Gaussian process at the moments when the trajectory leaves the
level u has a Rayleigh distribution. However, it is important for us now to
clarify that the method of screening given random streams in a suitable way
enables us to define new probability distributions on the space of sample
functions of a random process or field. We will therefore consider a more
general scheme. This scheme can frequently prove useful in defining conditional
probabilities. Suppose that a random point set S is defined on [T, AT], where
T = T1 x T2, 'T = XT,X.TA, the #T, have fundamental systems Wi, the
vi((Ai) are measures on the 1Tr* and the parametric measure of S is given by

(2.5) A(A) = f 22(t1, t2)V1(dt1)V2(dt2).

We assume further that with probability 1 all the points sa = (81a, 82,a) CE S
have different first coordinate, that is, al a2 implies s1,1 #E sl,', Con-
sidering the random point set S1 = {sl, }, consisting of the coordinates sla
of all points s. = (sl,,, 82,a) E S, on the space [T1, #T,], we find that its para-
metric measure is given by

(2.6) 21 (A51) = ; 1(t1)v1 (dt1), Al E #TI
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where 21(t1) = IT2 22(11, t2)v2(dt2). Thus, in accordance with (2.2), the con-

ditional probability that for a point (S ,a, s2,e) E S we will have S2,m C- 2 E 'T2'
the condition being that sla = 11, is given by

t fA2 A2(11, t2)v2(dt2)
(2.7) P*(82,, E A2 s1 = t1) = 2 (t)

Let us return to the problem of determining the distribution of the derivative,
at the moment of leaving level u, of the trajectory of a stationary differentiable
Gaussian process ;,, Ed, = 0, Et2 = 1, Et2 = 22. Here T1 = R', T2 = R' =
[0, oY), and the "T, are the algebras of Borel sets. The point sl,, = c is the
instant of leaving the level u, and s2,a = i is the value i= x. Here

x ( X~i2 U2)
(2.8) 22Ce, x) =27r42 xp 222 2}

with respect to Lebesgue measure in T. Consequently, in accordance with (2.7),

(2.9) P*(4t > v) = exp {- 2A2}
that is, the conditional distribution of the values of the derivative Qr of a
stationary Gaussian process is a Rayleigh distribution ([22]).

Let us consider a pair of correlated random objects (S, t), where S is a
random point set on a space [T, XT] having a fundamental system @, and Ca
is a random process (field) with values from a phase space [I J8]. Examples
of such pairs would be trajectories of random processes b,, with the random
point set S consisting of those values of the coordinate t for which the trajectory
of the process has a local maximum, a saddle point, and so forth. The operation
of screening the points of S described above can be carried out for every ele-
mentary event at) e Q on the basis of the observed trajectory Ca = t(w) For
example, with every point t e T we can associate a collection of points ti =
ti(t) e T, i e [1, m]. We form a new set 8' by including a point s e S inS' when-
ever E Ai E ., and excluding s from S' when the contrary takes place. If
A(t) is the parameter function of the random point set S relative to some

measure v(A), A E ST, and S' is a random point set with parameter function
A(t. t., *- t., A, *. Am) . A(t),thenonecandefinetheconditionalprobability

(2.10) P*(i e Ail t E S) = (t, t, tm,A),, Am)

which corresponds to the probability that C. e Ai, given that t e S. Regarding
(2.10) as a family of finite dimensional probabilities, one can pose the problem of
constructing new probability measures in the space of sample functions of g,.
Of course there are difficulties here, analogous to those which arise in the con-

struction of conditional probability measures in function spaces. However, the
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approach itself has definite interest and makes it possible to obtain interesting
results.
As an example, which in fact makes use of this approach, we can mention a

paper of the author and V. Nosko [5] on the determination of the asymptotic
distributions of the duration of excursions of a stationary Gaussian process and
of its envelope. In the paper [5], to study the envelope we take T = R' x r,
4 = = {x = (x1, x2)}. Let , = (41,t,42,t) be a two dimensional stationary
Gaussian process, S = {(T, x)}, where r is an exit time and x e r, is the exit
point of the trajectory of C, from the circle Fr = {x: x 2 + x2 = r2}. The com-
ponents of the process Ct are

(2.11)= cos At du(A) + 3' sin At dv(A),
(2.11)°°

42,t = f sin At du(A) - cos At dv(A),

where u(A) and v(1) are mutually independent stationary Gaussian processes
with orthogonal increments;

(2.12) E[du(A)]2 = E[dv ()]2 = dF(A),

Xc A22[log (1 + A)] +̀dF(A) < I, s > 0.

To determine a probability measure on the space of trajectories which exit
at time t from the point x E rr, we put ti(t) = t + ti, Ai c R2, i E [1, m]; then

(2. 13) i (t, x, ti , * * * i to A, . .* , Am )

L.Azie[lm]{(E){(n
+

x
= x e =Xi, i [1, m]}

*Pt,t+ti,-,t+tm (X, 1 X ** X.X) dx, ... dx, xi E R2
The parameter function of the random point set S = {(t, x)} c R' x r, with
respect to the measure v = v, x v2, where v1 is Lebesgue measure on R' and v2
is Lebesgue measure on r[, is given by

(2.14) A(t, x) = E{(n(x)')+ | = x e r,} p,(x).
Here n(x) is the normal vector of the circle r, at the point x, while pt(x) and
Pt,t+t ...,t+tm(x,X1,X * *, Xm) are the probability densities for the values At = x
and C,+t, = xi, i E [1, m]. The conditional probabilities are constructed from
(2.13) and (2.14) in accordance with (2.10). In [7] the probabilities obtained in
this way are called ergodic probabilities. A study of them for r T oc leads to the
following result ([5]):
THEOREM 2.1. If Ct is a two dimensional stationary Gaussian process which

satisfies the conditions enumerated above, then the limit of the distribution of the
duration A ofan excursion of the envelope, that is, g2't + ,2 )1/2,above the level r,
has the following form in terms of ergodic probabilities:
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(2.15) lim P* {rA > v} = exp {- A2 (XV)2},

where
rO ~~~~~~22

(2.16) Ak A|i dF(A), 2 = 1 - 1

3. Random point sets generated by random fields

With every trajectory of a random field at, t e Rm, continuously differentiable
with probability one, one can associate various random point sets. The problems
which arise here are more diverse than problems concerning the crossing of
levels by trajectories of random processes (see Longuet-Higgins [12], [13]).
Ifwe proceed along the path of direct generalization of level crossing problems,
involving the trajectories of random processes, to the case of random fields,
then we arrive at the necessity of studying random point sets S, = {t: at = U},
which for m = 2 form a family of contours (level lines) in the plane. Problems
related to the study of the distribution of the number of such contours, their
lengths, and so forth, present difficulties. The approach discussed in Sections 1
and 2 can be used to study local objects, while the level lines formed from the
curves S, = u are not local objects. However, here one can study random point
sets which are introduced on the level lines in a special way.
A typical example is the study of the random point set SO of stationary points

of a random field C,, t e Rm, that is, the set of points at which the gradient of the
field equals zero. The study of subsets of SO, such as the sets S + of local maxima
(bursts), S. of local minima and SC of saddle points, deserves attention. If we
are studying the reflection from a random surface of a trajectory of Ct, then it is
natural to study the random set of shines, whose definition is given in [2]. We
shall restrict ourselves here to a study of the properties of the random point
set SO.

Let us assume that at is a random field, t e R', which is twice continuously
differentiable with probability 1, SO = {t: V~t= 0} is the set of stationary
points,. where

(3.1) V; 84.. t t = (ti *, t.Y-
We denote bypt(x) the probability density of the values of the vector V4C = x.
We will call the joint distribution of the values of 11a2 C/atiatjiI, i,j E [1, m]
determinantly nondegenerate (det-nondegenerate) if, for every x E R',

(3.2) P{det 2t = OIVC4 = x} = 0.

THEOREM 3.1 ([3]). Suppose that the homogeneous random field C, is twice
continuously differentiable with probability one, p, (x) _ C < oo, and the distribu-
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tion of li24'la/iatjll is det-nondegenerate. Then with probability one we have:
(1) for T e SO, det Ia2g'/atiatj|I :L 0; (2) every bounded region contains a finite
number ofpoints z E S0.

PROOF. It is sufficient to study the random point set SO n Km. where Km
{t: 0 _ ti _ 1, i e [1, m]} is the unit cube. We introduce the following notation
for the modulus of continuity of a random field and of its first and second
derivatives:

o0r,(h) = sup K, -
t',t"c6K-,1tT-PHI <h

coi(h) = sup @, @.
33tEKm, It'-I <h ati ati

a2~t_ a2r
aid, (h) = sup

t',C-K-,It' -t'I<h atiatj atiatjl
m 1/2

t' - t'r=tE(t t'i')2
i

Since the field is twice continuously differentiable, for any E > 0 we can
choose a continuous function ce(h), cow(h)10 for h10, and a constant Cg,
0 < C, < cc, such that for the event

(3.4) E, = jmax sup at2at C_~
{i,j t-m] a3tj mtj m
max cwi(h) _ mCeh, max Cwi j(h) _ cow,(h), for all h < An}
ic-[l,m] i~jC-[l,

wehaveP{E,} > 1 -a
We consider the sequence of decompositions of the cube Km into 2mn cubes:

(3.5) K,,k = {t: -ti 2 1, i[1, m]

tk k2nn = (kin, km

Let G be the event that there exists -c E So nKm for which det lla24t/atiatjll = 0.
In the same way we denote by Gn k the similar event when I E S, n K, k. Since
G = Uk Gnk, we have

(3.6) P{G} _ ZP{G,,,k Er} + P{Ee}
k

where Le is the complement of E,. Using (3.4), we obtain

(3.7) {GknE,,~} = max < C-,n det < (i!)2
iE[1,M] ati - 2 atiat.
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In terms of ordinary conditional probabilities, we obtain from (3.7)

(3.8) P{G,,knEr P det 22S,(3.8) < ~~xi,|_C,2-1,ie[1,m] atiatj

. (m!)2C£ w)Q2) V (tk) = x}p,(x) dx.

Since ptk(x) < C, and the conditional probability in the integrand in (3.8) is
bounded by unity and tends to zero as n -- - for any x, then by Lebesgue's
theorem on passing to the limit inside the integral we obtain, for any 6 > 0 and
n _ n(6),

(3.9) P{Gf,knmEE } < 3(I)
From (3.6) to (3.9), we obtain

(3.10) P{G} _ 2mn6(2) + £.

Since 6 and E can be chosen as small as desired, it follows that P {G} = 0, which
corresponds to the first part of the theorem.
We prove the second part of the theorem by assuming that in some cube the

number of points from S is infinite. This assumption implies that the event G
has occurred, whose probability, as was just proven, is zero.
COROLLARY 3.1. Ift is a twice continuously differentiable (with probability 1)

homogeneous Gaussian field for which the joint distribution of a2 Sltiat1j,
i, j E [1, m] is nondegenerate, then the assertion of Theorem 3.1 holds.
The proof follows from the mutual independence of the random variables

24,/atk and 024t/atiat for any values of i, j, k e [1, m].
It is probable that the assertion of Corollary 3.1 can be strengthened somewhat

by replacing the assumption of the twice continuous differentiability with
probability 1 of fi with the assumption of twice continuous differentiability of
g, in quadratic mean. One can formulate yet another assertion, similar to an
assertion of Bulinskaja [6] on the absence of tangency in the problem of level
crossings.
THEOREM 3.2 ([3]). Let t be a twice continuously differentiable random field

which has bounded probability densities for the quantities fi = u, V~, = i, and
pt(u, t) < C. Then with probability 1 there are no stationary points corresponding
toagivenlevelr.thatis,forS0, = {1: V = 0,° = r} wehave P{S0r 0} = 0.
The proof can be carried out analogously to the proof of Theorem 3.1.
We remark that for m = 2, to transverse crossings of the level line a = r

there correspond saddle points with height r. Since these are absent, the following
alternative must prevail: a connected solution of t = r, t E R2, is either a
bounded isolated contour, possibly containing within itself another contour,
or else it is a curve passing out of any bounded region. Presumably, for homo-
geneous Gaussian fields the boundedness of the contours satisfying the equation
Xt = r is typical.
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The k-parameter function which is needed to calculate the moments of
functions (the mean, variance and so on) of random point sets generated by
random fields, can be obtained in explicit form under weak restrictions. These
restrictions, imposed on the field C,, are conveniently formulated in the form of
the following complex of conditions.

The complex of conditions Cc,k. We assume that the real field C,, t e R', is
with probability 1 twice continuously differentiable, and that the joint distribu-
tions of the quantities 4,i = ui, V,, = zig V,,V' = || I|, at the points t' e R'
have probability distributions ptl ... ,k(uU, Z) which are jointly continuous
in all the variables, where u' = (us, uk), l=Iill, Z = uTi (r e [1, nm],
i E [1, k]. We also assume that in any bounded region C c R' the moduli of
continuity coij(h) of the fields 92 ,/ftiatj satisfy the condition

(3.11) P{coij(h) > e} = O(hkm).

The following theorem gives conditions which are sufficient for (3.11) to hold.
THEOREM 3.3. Iffor a real separable random field a,, t, Z e R',

(3.12) sup P{IC,,i - C. > e(h)} _ g(h),
Sha ,ie[ 1,am

where the functions e(h) and g (h) satisfy the conditions
OD m Q

(3.13) E 2 92+g(2 -2) < 00), E s(2 21) < 00,
n= 1 n= 1

then for the function
00

(3.14) f(h) 2,2n2+ 'g(2 2 ), 22(h)+1 < h < 22ih)
nj(h)

we have for h 10
(3.15) P{coc,(h) > E} _ J()

The proof basically follows the method of A. N. Kolmogorov, which is
presented in a paper of Slutsky [21], and also the method of Dudley [8]. The
partitioning sets have the form

k,
=(2 .*

k

-n)°_k 22, i C [1, m]}

(3.16) T., T.rK.,

K,,,= {t: kin < ti < '2nnie6[1, m]}

and the basis events are

(3.17) A.,k,, = * - (t) . c(2
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wherek = (k .* , km), (t) = Ct, t e Tn l k-
Verifying the hypotheses of Theorem 3.3 for suitably chosen functions E(h)

and g(h), we easily obtain the following corollary from (3.15).
COROLLARY 3.2. If C, t e R', is a separable Gaussianfield, twice differentiable

in quadratic mean, for which

(3.18) max E _ 2 C > 0, a > 0,
iae1mtiatj atia9t. = llog 19II1+8'

then with probability one the fields a2Ct/atiatj have continuous trajectories for
which (3.11) is satisfied for any a > 0 and any integer I = km. The complex of
conditions C: k, k = 1, 2, ... , holds for t.
We will denote the positive (negative) definiteness of a matrix A by A >- 0

(A -< 0), and also put VCV' = Ia2C,/8tiatiIl. We introduce the following
functions:

(3-19) I, (VC, ) =
I, VWYV' < 0, IVTV') = i, VctV' >- 0,
~0, Vc,V' 0, 10, V~V' } 0.

THEOREM 3.4. If the complex of conditions CCk is satisfied, then the k-
parameter functions with respect to Lebesgue measure in Rm of the random point
sets of stationary points SO = {r}, of bursts S+ = {z}, and of local minima
S& = {.r} generated by the random field C, t e Rm, at which C, > u, are given
respectively by

(3.20) RU°t***

= |f i2~i~ie~lJE{nIdet VCXV'I t = uj, VC" = 0, i E [1, k]}
k~u,ie[l,k] i= 1

ptl ...tk(Ul, uk, 0) dul ... duk,
(3.21) AU (,***

= {|i U~iEk{i1detV~tiv'lI+(V~tiV') 4ti = U,VC" = 0, i e [1, k]}
Hi u,ice[1,k] i= 1

A1 ...tk(U1, * U* k, 6) dul . dUk,

(3.22) fu t ... tk)

=-| E{LU det Vjtiv l. (VCEV,{ C'i = U, VC" = 0, i e [1, k]}

pti...tk(Ul, , uk, 0) dul . duk.

The proof is carried out by constructing upper and lower bounds for the
probabilities of the events that there lies in the cube

(3.23) Ah(t) = {t: t- si 2 i E [1, i], t, s e R"'} h40,
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at least one point z from S0, S +, S -, at which f, > u. In this connection, one first
considers those subsets of S0, S+, S- for which

(3.24) max <= A, Idet VV'i > c.
ilj @t.@t.

Using the properties of the moduli of continuity coi, j(h), expressed by (3.11), we
obtain the necessary bounds, following which we let e 1 0, A T oo. The proof is not
difficult, but because the formulas are cumbersome it would take up a lot of
space, and will therefore not be given.
The relations (3.20) through (3.22) could be used as the basis for obtaining

numerical results for concrete random fields. In this connection, it seems natural
to use the method of statistical modeling in order to compute the integrals in
(3.20) through (3.22). The corresponding programs have been tested form = 2, 3,
k = 1, 2. For k = 1 for a homogeneous Gaussian field satisfying C;,1, the
principal terms in an asymptotic expansion ofA.' (t) and A'° (I) for u T oo are found
in a paper by Nosko [16]. It turns out that

UAO (t) = i"+(t) [1 + (

_ [det A(1)]12 __U__p(- ('N
(3.25) = (27)(m+1)I2A(2m-m)I2r exp222 [1L + 0U

E,= 0, Et2 = (, =A(')
It follows from (3.25) that for u T cc the parameter functions ofthe random point
set SO and its subset S+ are equivalent. This corresponds to the intuitive assump-
tion that flattenings of the field, that is, points z where Via = 0, at high levels
correspond, as a rule, to local maxima. This is related to the fact that high saddle
points and high local minima can appear only close to excursions having a com-
plicated structure, for example near two-vertex bursts or vertices having hollows
resembling craters, and so forth. Thus, for normal fields high vertices of a
complicated structure are encountered infrequently.

Numerical calculations carried out for a homogeneous isotropic Gaussian
field At, t E R2, with covariance function R(x) = exp { -x-x22}, have shown
that already at the level u = E/5 the remainder term 0(1/u) does not have a
practical influence. Thus, it may be hoped that calculations with the formula
(3.25) for moderate values of u can be carried out on the basis of the principal
term of the asymptotic expansion.

Using the method presented in Section 2 for determining the special condi-
tional probabilities, it is easy to obtain the distribution of high bursts C, =
u + m., given that a burst with height greater than u occurred at -c = t. In
particular, for uT Xo we obtain from (3.25):
COROLLARY 3.3. The limit of the special conditional distribution of the height

of bursts of a homogeneous Gaussian field C, t eBR', satisfying CC,1, given that
the height of the burst is greater than u, is given by



14 SIXTH BERKELEY SYMPOSIUM: BELYAYEV

(3.26) lim P{um. > v} = exp {-}

for ECt = 0, EC,' = Ao.
Study of the structure of a field C, in the "neighborhood" of a burst also can

be carried out by means of the special conditional probabilities. Here with every
family of points t' e R' and families of sets Ai c R1, Bi c(-', C, c Rm(m+ 1)/2
and so forth, one can associate the random point subset S' of those bursts of
the homogeneous field C, such that if c e 8+, then r e S' if C, c Ao, C,+,i c Ai,
V,,+tRBi, VC4+,iV' eCi, i e [1, n]. If the conditions CCk, k = 1,2,- are
satisfied, then the parameter function of S' is given by

(3.27) 2t+1i...(AoAiBi, Ci,ic[1,n]) =J' |det I|I|ujIlpoti,...,,.(u, U, )dudg,
where

(3.28) GO = {uo eAo, ui e A,, (ti, ..., ti, ) cB-, |Ityi, e|c Ci, i c [1, n],
e,6lC 111M] ti,|;, 0},

du = duo dul ... du, U = ||tii| 2 = |1<. 11 tij = 0.

The special conditional probabilities in the space oftrajectories ofthe field having
bursts at the point X = 0, of height h E Ao, such that Cti E Ai, and so forth, are
introduced as the ratios

(3-29) P,*...,(Ai, Bi, Ci i c [S1, n] Ao) = it+W."(A0, A1, B., C;, i c [1, n])

Interesting results were obtained in a paper by Nosko [16] on the structure
of excursions of homogeneous Gaussian random fields above unboundedly
increasing levels u Too. It was shown that when the complex of conditions
CCk k = 1, 2, . * *, is satisfied, then with probability arbitrarily close to unity an
excursion of a trajectory of the field C, t e R', containing a burst at the point r,
can be approximated within o(1/u) by that part of the second order surface

(3.30) z = u + j(t - -r)'A.(t -T)
lying on the plane z = u in the space Rm+ 1 of points (t1, * ti z), where

(3.31) A. = u |-,i/,/ij = E a

This result was obtained by introducing in the space of trajectories special
conditional probabilities analogous to (3.29). For the particular case m = 2,
the excursions are approximated by segments of an elliptical paraboloid. We
mention here the following result.
THEOREM 3.5 (Nosko [16]). Let C, t E R2, be a homogeneous Gaussian field

satisfying the complex of conditions Cc, k, k = 1, 2, -.. . Then for u T oo the special
conditionalprobabilities of thefollowingfunctionals ofexcursions above the level u:
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the maximum m. of the excursion, its cross sectional area S, and its volume V",
satisfy the relations

(3.32) lim P*{Um. > v} = lim P*{YuS2 > v}
utO t

= lim P*{(2yu3V )112 > v} = exp }

where

(3.33) y = (2Ao )-1 {21,1A2,2 - 12

4. Estimation of the distribution of the maximum of a random field

Problems concerning the distribution of the maximum of a random field 4a
when t E G, where G is a region or surface in R', are interesting. An attempt to
obtain the exact solution for such problems meets with considerable difficulties.
The situation, however, is made easier by the fact that frequently one only needs
to find an estimate for the probability of a trajectory of the field going above a
high level u. In such cases, one can use an asymptotic approach [1]. For example,
if t, t e R', is a real Gaussian random field, and S+ is the random point set of
bursts of C, above the level u, then for a region G c R' with a smooth boundary
DG we have

(4.1) P{suptC > u} _ Ei1"+(G) + Et1"(aG),
teG

where ELi (G) is the average number of bursts in S+ n G, and Enl" (8G) is the
average number of bursts above the level u of the field B, t e WG. One can show
that if the complex of conditions CC, 1 is satisfied, then the principal term in an
asymptotic expression for the right side of (4.1) for u T m has the form A' V, where
V is the volume of the region G and A° can be found from (3.25). Thus, the level
u,, for which P {suptfiIct > u0} ; at can be found from the simple transcendental
equation

(4.2) VCm(j) exp{-(K)> = a,

where

(4.3) C - ~~~~~~~~[detA"1)]112(4.3) Cm = 2f(m+1)/2AmI2

The results of the numerical computations which were mentioned in Section 3
show that, presumably, the u,, obtained from (4.2) gives good results if
u,,/Y"o > 3. However, the problem of estimating the error which occurs here
has not yet been solved.

If one assumes that the random stream of bursts above an unboundedly
increasing level u is Poisson, then following the method of Cramer [7] one can
obtain that for G t Rm
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(4.4) lir P sup < 2log +
(m -1) log log V

V=V(G)t ) x 2logV

+ (m-1) log ( o) + log C. + z = exp {- exp {- z}}.

As G increases, one has to assume that OG is regular, that is, the volume Vd of
the set of points whose distance from G does not exceed d is such that Vd/V -O 0.
The relation (4.4) also can be used to calculate the critical level us. Denoting by
Zp the quantile of the level /3, exp {- exp {- zp}} = /,0 < P < 1, we obtain
from (4.4)

(4.5) /Alu,, og + (m - 1) log log V
2V21--ogV
+ (m - 1) log (V'/I) + log Cm + z1,

It should be kept in mind that for small at (a < 0.05) and small values of V,
calculation of the critical level by means of (4.5) can yield a nonmonotone
dependence upon V. The method of calculation by means of (4.2) appears to be
preferable.
By methods similar to those mentioned in Section 3, we have derived expres-

sions for the parameter functions of the random set of critical points on the level
lines of fields defined on manifolds [18] in R' [1]. These expressions can be
used to estimate the distribution ofthe maximum ofa field defined over a surface.
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