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1. Introduction

This paper introduces analytic measures and proves several theorems on
projective limits of analytic measures. The usual existence theorems assume
either strong conditions on the conditional probabilities, or compactness of
a-measures and "continuity" of mappings (see Theorem 4.1 below). This is
an attempt.to assume something about measurable spaces only, and nothing
about mappings. More explicitly, we want to find a theorem for general systems
of measure spaces similar to the classical theorem that says the indirect product
of perfect a-measures always exists.
Throughout this paper, we consider a measure to be a finitely additive, finite,

nonnegative measure and a-additive measures are called a-measures. It should
be remarked that all results hold for a-finite measures; the proof of that
generalization is trivial.

In Section 2, the problem of the existence of the projective limit of a-measure
spaces is described and notation is introduced.

In Section 3, the "morphisms" between systems of measure spaces are
introduced and applications to existence problems are mentioned. In Sections
2 and 3, the use of category theory may be helpful, however, no results of
category theory are assumed-what is needed is explained without any
sophistication.

In Section 4, the existence results of S. Bochner [3], J. Choksi [4] and
M. Metivier [24] are recalled in Theorem 4.1.

In Section 5, the relevant properties of analytic spaces are recalled and the
main results are proved, that is Theorems 2.2, 5.4, 5.5, 5.6, and 5.7. In con-
clusion, a short survey of analytic spaces is given.

2. Presheaves of measure spaces

2.1. Let <I, _ > be a directed set (that is, < is a reflexive order on I such
that each finite subset of I has an upper bound), and let

(2.1) <{<X., n, n>}, Vfn.,mI _ m>
be a presheaf of measure spaces (over <I, _ >). That means each
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(2.2) fn,m: <X., As, P.> - <Xm, Rm' Pm>
is a measure morphism (that is, jm is the image of /,, under fn,m, or more
specifically, 1AmB = .f.-m [B] for B in sm), each f,,,n is an identity, and

(2.3) fn,m = fk,mofn,k
whenever n > k _ m.
We shall denote by <X, {f.} > the usual realization of the projective limit ofthe

underlying presheaf of sets; that means that X is a subset of the product
H{X.} consisting of all points {x,J such that fk,mXk = Xm whenever k _ m
and f, X -X are restrictions of projections. Let

(2.4) A = fI [n] - = u {X}

Since I is directed, * is a field on X. If all mappings fn are onto (or, more
generally, if the inner measure of X.- f[X] is zero), then one can define a
measure p on * by setting

(2.5) f,-I[B] = InB.
Obviously, each p,n is the image of y under f., and <X, *, y> is the projective
limit in the category of measure spaces.
2.2. Assume that all the n are a-fields, and all the p. are a-measures.

Certainly we want the limit to be endowed with a a-measure on a a-field; in
other words,-we want to find the projective limit in the category of a-measure
spaces. It is easy to see that if a projective limit exists, then <X, X, p*> is a
projective limit, where X4 is the smallest a-field containing X* and p,* is the
unique extension of p from 9*. Under our assumption that the f. are onto
and the u. are finite, the above is the case if and only if p is a-additive on *.
E. Andersen and B. Jessen [1] gave an example when p is not a-additive. The
presheaf is very simple, namely, the n are finite subsets of integers, the X. are
finite products of the unit interval, the fn,m are projections, but the pi, are not
Borel measures. The projective limit ofthis presheaf is called the indirect product.

There is one simple case when p is a-additive without any assumptions on

<-,pX > orf. (except for being onto). Ifevery countable subset ofI has an upper
bound, then '* is a a-field, and p is a a-measure. Indeed, if {B*I i E N} is any
sequence in X*, then there exists an index n E I and a sequence {Bi} in n such
that B* = f,-1[Bi]; since f,1- preserves unions, intersections and measure,
the result follows.

This observation has an important consequence. By a subpresheaf, we mean
the restriction of the presheaf to a directed subset J of I. IfJ is order isomorphic
to N (integers), or to a subset of N, then the subpresheaf is called simple (finite
or infinite). Denote by <Xj, -4j, PM>, the projective limit of the subpresheaf,
and by f.J XJ- X, n E J, the projections. Clearly there is a mapping
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(2.6) fj:X-XJ
such that

(2.7) fn = fo°fJ
for every n E J.

DEFINITION 2.1. The presheaf satisfies the Bochner condition if fj: X -XJ
is onto for every simple J.
The argument used above yields the following useful observation.
THEOREM 2.1. If the Bochner condition holds, and if every simple subpresheaf

has a limit (that is, the limit measure is a-additive), then i is a-additive.
It should be remarked that it is enough to assume the existence of the limit

for a sufficiently rich family of simple subpresheaves.
2.3. Since the example of Andersen and Jessen, many criteria for existence

have been found. There have been two different approaches; one is based on
the concept of "compactness" of measures, the other puts conditions on the
conditional probabilities associated with fn, m. The latter approach, introduced
by C. Ionescu Tulcea [18], and developed by Choksi [4], J. Raoult [27], and
N. Dinculeanu [11], is in spirit very natural for probability theory, but
unfortunately it is not easy to verify its assumptions. We shall discuss the
former approach which was introduced by Kolmogorov (in a very special case)
and by Bochner, in our setting but with a topological underlying structure, and
further developed by Choksi [4], Metivier [24], and others. It should be
remarked that Choksi's and Metivier's analyses of the work of Bochner profited
from papers on indirect products of compact, or more generally perfect,
measures. The work of E. Marczewski [23], C. Ryll-Nardzewski [31], and
M. Jirina [19] should be mentioned.
The first positive result, which is very old and independent of the two

approaches mentioned above, says that the direct product always exists. At
first sight, there is no connection between direct products and projection limits
of a directed presheaf. One obtains a directed presheaf by considering the finite
subproducts with projections as presheaf maps. Then it is clear that we have a
very special underlying presheaf of sets which will be called an indirect product
presheaf, and very special {its,,}-

The next result, that the indirect product exists if all y,, are perfect, has been
proved by both approaches.

Here we want to prove the following result, the definitions for which are given
below.
THEOREM 2.2. If the Bochner condition is satisfied, if the presheaf

<{<X., A.R">}, {f.,M}> is productlike, and if all a-measures ,u. are analytic (more
generally, pseudoanalytic) then p is a-additive and pseudoanalytic.
The author does not know whether the assumption that the presheaf is

productlike is needed.
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3. Morphisms of presheaves

One way of proving that p is c-additive is by considering the limits of closely
related presheaves. One example was given above in Theorem 2.1. Another
example follows.

3.1. Assume that <{<X", i, y'>}'{f>,m}> is another presheaf over the
same <I, _ >, and let <<X', '*, '>, {f"}> have the obvious meaning. Assume
that {(p, I n E I} is a family of mappings, such that every

(3 .1) (Pn: <Xnbn, , tin > -<X'n A R, /'n >
is a measure morphism, and such that for every n _ m the following diagram
commutes

fn,,m

(3.2) PPn

fn, m
It is easy to see that there exists a unique map p : X -+ X' such that

(3.3) (P. f =fn ° (P

for all n. It is also easy to check that

(3.4) ( <X, e*d,u> <X', .', '>

is a measure morphism. It follows that if fL is a-additive then so is It'.
Therefore, if we know that our presheaf is the image of a presheaf with

a-additive limit measure, then p is c-additive. This result is hardly useful,
because there is no theory concerning liftings of presheaves to good ones.

3.2. If j' is a c-measure, then p need not be c-additive on
however, in some cases it follows that ju is a cr-measure. This situation gives rise
to the following observation.

If (p is onto, then

(3.5) 9- :X'X

preserves countable unions and measure. Hence, to prove that P is c-additive,
it is enough to find, for every disjoint sequence {Bi} in * such that the union
B of {Bi} belongs to X*, a morphism {9p0} into a presheaf with c-additive limit
measure such that cp is onto.

This observation is usually combined with Theorem 2.1 in an obvious way.
This is the idea of the conceptual proof of the fact that the indirect product of
perfect measures is c-additive, and this is the way to prove Theorem 2.2.

DEFINITION 3.1. Assume that I = N. Then the presheaf <{<X,,, 9if >}, {fn,m}>
of measurable spaces is called productlike if for every countable 9 c AR* there
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exists a morphism {(p.} into a presheaf <{<X", n>} {f",m}> such that (a) the
map cp is onto, (b) all Rn, are countably generated, and (c) 9 c rl[X'*]. A
general presheaf is called productlike if every infinite simple subpresheaf is
productlike.

It is obvious that every indirect product presheaf is productlike. Observe
that "productlike" is a measurable property, independent of measure, but
depending essentially on the measurable structure.
The result of Section 3.2 can be considerably improved. The same con-

clusion can be reached by replacing "p is onto" by "the inner measure of
X - p[X] is 0." One then gets the direct proof of the existence of the projective
limit of indirect product presheaves of perfect measures.
EXAMPLE. Let XA be the Stone space of n, let n be the a-field of Baire

sets in X., let (pn be the natural map from X,, into X', and let ut' be the image of
pln under ,. The mapsf,m induce mapsf,m such that {Cpn} is a morphism; the
limit X' is a compact space by Theorem 3.2 of Bochner [3] (and measure u' is
a-additive). Now it is clear that u is a-additive if and only if the inner measure
of X -qp[X] is 0. It is instructive to observe that p is one to one.

Mallory [22] developed a similar idea. On the product fl{<X", n>}, one
can construct something whose trace on X is 9 whenever p is a-additive.

4. The theorem of Bochner, Choksi, and Metivier

4.1. Assume that I = N. To prove that p is a-additive it is enough to verify
that if {B*} is a decreasing sequence in-4* such that AB* > r > 0 for each i,
then the intersection of {B*} is nonvoid. One can easily check that there is no
loss of generality in assuming that B, = fi-1 [B] for Bi E Mi. For every k in N
define

(4.1) Dk = nl{f,k[Bf]|In > k}.
Now if, for each k in N,

(4.2) fk+ l,k[Dk+ 1] - Dk # 0,
then it is easy to construct (by induction) a point X = {x,,} in X such that
xn E Dn ' Bn for each n. Clearly relation (4.2) would hold if the fn k were
continuous, and the sets Dk were compact, while (4.2) would not hold in general,
even if Xn were compact and fn, k were continuous. On the other hand, it is
easily checked that it suffices to assume that (4.2) holds for enough sequences
{B,} in *. This is the proof of the existence part of the following theorem and
corollary, the credit for which should be given to Kolmogorov, Bochner,
Marczewski, Ryll-Nardzewski, Choksi, and Metivier. The definitions are given
after the statement of the theorem.
THEOREM 4.1. Assume that I = N, and that for each n there is an No compact

class n c' n such that the following three conditions are fulfilled:
(i) W7n is an approximating class for Rn;
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(ii) fn,n['n] c tmfor n > m; and
(iii) f, '[(Xm)] n ['W.] is an No compact class for any n _ m, and xm e Xm.

Then y is a-additive and NO compact.
COROLLARY 4.1. Assume that the Bochner condition holds and that every

infinite simple subpresheaf satisfies the assumptions in Theorem 4.1. Then J is
a-additive and perfect.

It should be remarked that N0 compactness implies a-additivity. For very
detailed proofs we refer to Metivier [24].

DEFINITION 4.1. We say that ' c -d is an approximating (inner or from
below) class for p on AR if for each B in AR and each r > 0, there exists a C in W'
such that C c B and

(4.3) pC > AB-r.

A collection W of sets is said to be No compact if the intersection of every countable
subcollection of if with the finite intersection property is nonvoid. A measure p
on -i is said to be No compact is there exists an NO compact approximating class
W c Bfor M. A measure p on -4 is said to be perfect ifp is compact in any countably
generated a-field contained in M.
For a list of various characterizations of perfect measures we refer to

Ryll-Nardzewski [31], or Frolik [17].
4.2. Capacity No compact measures. It is not necessary to assume that
c--' ,. Of course one should assume something which relates %, to 9". A

condition which is needed for Theorem 4.1 reads as follows (omitting the
subscript): if Ci E W, and

(4.4) n iii< k = B g
then

(4.5) n {BiI i _ k} c B
for some BiE 4, Bi Ci.
The measure admitting such an NO compact approximating class is called

capacity compact. The analytic measures (introduced in Section 5.2) give,
perhaps, the most important example of capacity compact measures. The theory
of capacity compact measures is developed in Frolik [17]. The theory contains
a very general theorem on extension of measures. It is a mixture of the capacity
approach, and of the Caratheodory outer measure approach to measure theory.
In the proofs of our theorems on projective limits of analytic measures it is
sufficient to use Theorem 4.1 if one takes Theorem 5.3 into account.

4.3. Regular Borel measures. Theorem 4.1 is usually applied in a topological
setting, namely when the fn, m are continuous, and the p. are regular Borel
measures (that means, the X. are endowed with topologies). The details are
obvious, and we shall use the topological setting (the original theorem by
Bochner) without any further comment.
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5. Analytic measures

5.1. Baire measures. In the topological context the measures are considered
either on the a-field of all Borel sets (the smallest a-field containing the closed
sets), or on the a-field of all Baire sets (the smallest a-field such that every con-
tinuous real valued function is measurable). The former measures are called
Borel measures, the latter are called the Baire measures. In the literature there
is a strong preference for Borel measures, in particular for regular Borel
measures, because then all compact sets (at least in the Hausdorff spaces) are
Borel sets, and not many compact sets are Baire sets in general. There is one
very important property of the Baire a-field which is not enjoyed by the Borel
a-field. The Baire field reflects important properties ofthe underlying topological
space. For example, ifX is a compact space, and if the Baire a-field is countably
generated, then X is metrizable; if we know that the Borel field is countably
generated, then we may not conclude that X is metrizable, and in addition, it
seems that nothing interesting can be said in this situation. The advantage of
regular Borel measures is weakened by the fact that, in many important cases,
every a-measure on the Baire a-field extends uniquely to a regular Borel
measure. This is the case of Baire measures on analytic spaces (see Section 5.3).
The point is that considering measures on the Baire a-field, we have a choice
of good topology. Perhaps the most striking example using this fact is
Theorem 5.4.

NOTATION. If X is a topological space we denote by Baire (X) the a-field of
the Baire sets in X, as well as the set X endowed with the a-field of all Baire sets.
CONVENTION. In this section a topological space, means a completely

regular Hausdorff space. This is a very natural convention, because we are
interested in Baire sets, and completely regular spaces are precisely the spaces
with enough continuous real valued functions.

5.2. A short survey of analytic (K analytic, in the terminology of Choquet
[5]) spaces is given in Section 6. Here we recall one possible definition: a topo-
logical space X is called analytic if there exists a continuous mapping of a Ke,5
onto X where by K, a we mean a countable intersection of a-compact subspaces
of some space.

It is important to bear in mind that every compact space is analytic and every
analytic space is Lindelof (in particular, every metrizable analytic space is
separable).

DEFINITION 5.1. A measurable space <X, R> is said to be analytic if there
exists an analytic topology t for X such that a is the a-field of all Baire sets in
<X, t>; the topology t is then called an analytic topologization of <X, AR>. A
measurable space is said to be pseudoanalytic if every countably generated
measurable image is analytic. An analytic (pseudoanalytic) measure is a a-
measure on an analytic (pseudoanalytic) measurable space.

5.3. We proceed to state three very important theorems on analytic spaces
and measures. The first two theorems are taken from Frolik [16], the third one
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is new (for the proof we refer to Frolik [17]). The second theorem is a
generalization of the classical theorem of Lusin (the classical theorem assumes
A separable metrizable, and M separable).
THEOREM 5.1. Let f be a continuous mapping of an analytic space X onto a

space Y. Then Y is analytic (this is obvious), and

(5.1) f: Baire (X) -. Baire (Y)
is a measurable quotient map (that is, M c Y is a Baire set in Y if and only if
f 1 [M] is a Baire set in X). In particular, iff is one to one thenf is an isomorphism.

This theorem has the following consequence.
COROLLARY 5.1. Let f be a map of space X onto a space Y such that the

graph p off is an analytic subspace of X x Y. Then X and Y are analytic, and
the projection of p onto X is a Baire isomorphism.

Corollary 5.1 is applied as follows. If the graph of f is analytic, we can,
without changing the Baire a-field, replace the topology of X by an analytic
topology such that f is continuous with respect to the new topology.
THEOREM 5.2. Let f be a Baire measurable map of an analytic topological

space X onto a metrizable space Y. Then the graph off is analytic, Y is analytic,
and f: Baire (X) -. Baire (Y) is a measurable quotient map.

COROLLARY 5.2. If f is a measurable mapping of an analytic measurable
space onto a countably generated measurable space Y, then Y is analytic and f is
a measurable quotient map. In particular, every analytic measurable space is
pseudoanalytic.

Theorem 5.2 is applied as follows. Suppose that {h,} is a countable family of
Baire measurable maps of an analytic measurable space into metrizable spaces.
There exists an analytic topologization of the domain such that all maps h. are
continuous.
THEOREM 5.3. Let p be an analytic measure on <X, AR>. For every analytic

topologization t of <X, A@> the measure i extends (uniquely) to a regular Borel
measure v on <X, t>. In addition, v coincides with the outer measure ,A (generated
by it) on compact sets in <X, t>, A is a regular capacity with respect to the compact
sets, and for every analytic subspace A of <X, t> (in particular, for every Baire
set in <X, t>),

(5.2) dA = sup {vCI C compact, C c A}.

The standard proofs apply throughout. The above theorem has one important
corollary.
COROLLARY 5.3 (Sion [34], Blackwell [2]). Every analytic measure is perfect.
The proof follows immediately from either Theorem 5.3 (every regular Borel

measure is perfect), or from Theorem 5.2 and the last statement of Theorem 5.3.
REMARK. Every atomic measure is perfect. Hence if every a-measure on

<X, .V> is atomic, then every a-measure on <X, X> is perfect. R. Darst and
R. Zink [9] gave an example of an uncountable subset of the line such that every
Baire a-measure is atomic; such a set cannot be analytic because every metrizable
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analytic space contains a copy of the irrational numbers. The set is a universal
uncountable negligible set.

5.4. Limit theorems. Using the* notation introduced in Section 2, recall
that all f,: X -X are onto, and that all I,i, are a-measures.
THEOREM 5.4. Assume I = N. Let all the it, be analytic measures. If there

exist analytic topologizations tn of <X", -4,,> such that all the

(5.3) f.,m: <X., t,> <Xm, ti>
are continuous, then It is a-additive, and the extension of /i to X is analytic.

PROOF. The a-additivity follows from Theorem 5.3 and Section 4.2. The
space X is a closed subspace of the product Z of {<X,,, t4,>}, because the tn are
Hausdorff, and hence X is analytic because all tn are analytic. It remains to be
shown that 2 is the field of all Baire sets in X. This follows from two facts. The
first is that * consists of the intersections with X of cylinders in Z over Baire
sets in the factors, and these sets generate the a-field of all Baire sets in Z. The
second is that if X is an analytic set in a space Z, then every Baire set in X is a
trace on X of a Baire set in Z. (The latter fact is not completely obvious. It
follows from the Separation Theorem 6.1.)
THEOREM 5.5. Assume that I = N, and that there exist analytic topologiza-

tions t, of <X., .A,,> such that the graph of each f,,, M is an analytic subspace of
<Xn, tn> x <X., ti>. Then ju is a-additive, and the extension of M to X4 is analytic.
PROOF. For each n let

(5.4) Y. = Hl {<Xk, tk> I k < n},

and let X' be the subspace of Y, consisting of all points {xk Ik . n} such that
f., kXn = Xk for n _ m _ k. Thus,

(5.5) Xn = lim <{<Xk, tk> I k _ n}, {f.,k}>
and
(5.6) (P= {x - {fn,kx k n}}: Xn Xn
is a one to one mapping onto. If we define f X' -+ X' by fn,mo9 =
p of,,, then fn, is easily seen to be the restriction of the projection of Yn
onto its subproduct Ym. Hence, each fn,, is continuous. The inverse of each
9Pn is the restriction of the projection of Y. onto the nth coordinate space, and
hence -p is continuous. Assume that each X' is analytic. By Theorem 5.1 each

(5.7) on: Xn Xn
is a Baire isomorphism. Define u4 to be the image of isn under cn. Evidently,

(5.8) : <X, X*, kL> -+ <X', 4'*, >

is a measure isomorphism. Theorem 5.4 applies to {X'}; thus j' is a-additive,
and 4' is the Baire a-field of X. Hence p is a-additive, and to prove that a is
the set of all Baire sets in X it is sufficient to observe that (P X' -+ X is con-
tinuous, which follows from the fact that all p,- X' -. Xn are continuous.
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It remains to be shown that each X,, is analytic. Fix n. For each m < n,
m > 1 let Fm be the set of all x = {xi} in Y. such that fmx. = xm- 1. Clearly
(up to a formal distinction between two different ways of looking on finite
products)

(5.9) Fm = XI x ... X X.-2 x (graphfm,m_1) x Xm+i x ... x X

and evidently

(5.10) n= A {mlm _ n}

Hence Xn is analytic, because countable products and countable intersections
of analytic sets are analytic.
COROLLARY 5.4. Let I = N, and let all M be countably generated and

analytic. Then p is a-additive and gj is analytic.
PROOF. For each n let tn be a metrizable analytic topologization of <Xn, !,>.

By Theorem 5.2, the graph of each fn,m is analytic in <Xn, tn> X <Xm, ti>, and
hence Theorem 5.5 applies.
REMARK. In the proof we only use the classical part of Theorem 5.2. In

addition, we need not use Theorem 5.5 because the classical part of Theorem 5.2
reduces Corollary 5.4 to Theorem 5.4. For a particular case of indirect product
presheaves Corollary 5.4 is found in Blackwell [2].
We are now in a position to prove Theorem 2.2.
PROOF OF THEOREM 2.2. Assume that I = N, that the presheaf is product-

like, and that -all .n are analytic. Let 9 be a countable subset of X"*. Since the
presheaf is productlike, there exists a morphism {9p,} onto a presheaf

(5.11) <{<Xn", A', g'>), {fn,.I>
such that

(5.12) : X X'

is onto, all V are countably generated, and p-1 [ .9*]v 9. Since 9p is onto, each

(5.13) (Pn Xn Xn
must be onto, and by Theorem 5.2 (nonclassical case), each <X', V> is analytic,
and it follows now by Corollary 5.4 that it' is a-additive. By Section 2, p is
a-additive on .*, and p is pseudoanalytic by Theorem 5.2.
REMARK. I do not know if the assumption that the presheaf is productlike

is needed.
5.5. Letf be a Baire measurable mapping of an analytic space A onto a space

A'. The space A' need not be analytic even if f is a Baire isomorphism. For
example, let A be the unit interval and let A' be the unit interval with the
topology having for an open base the intervals [x, y).
Assume that A' is also analytic. The graph off need not be analytic even if A

and A' are compact. For example, consider a Baire isomorphism g of the unit
interval J onto the Cantor space 20o, and let f = gi, thus
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(5.14) f: J- (2o)m,
with m uncountable. This shows that the assumptions in Theorem 5.5 are very
restrictive, and moreover, it shows that the concept of "analytic graph" depends
on the topologizations (it is not a measurable property).

If <X, X> is an analytic measurable space, and if t is any analytic topologiza-
tion of <X, X>, then every B in X4 is an analytic subspace of <X, t>; and more
generally, every Souslin set derived from X4 is an analytic subspace of <X, t>. In
other words,

(5.15) Souslin (X) - n {anal (t) I t analytic topologization of <X, X>},

where anal (t) denotes the collection of all analytic subspaces of <X, t>. It
follows that if f is a measurable mapping of an analytic measurable space
<A, V> ontQ an analytic measurable space <A', '>, and if the graph off is a
Souslin set derived from measurable sets in <A, > x <A', 4'>, then the graph
off is analytic in <A, t> x <A', t'> for every analytic topologization t and t' of
XJ and R', respectively. Thus, Theorem 5.5 implies the following theorem with
no topological assumptions on fn,m.

If all p,, are analytic, and if all fn, m are Souslin sets derived from the measurable
sets, then 4u is a-additive and aJ is analytic.

It is easy to see via the nontrivial Theorem 5.2 that this result is equivalent to
Corollary 5.4 (if the graph is a Souslin set derived from the measurable sets,
then the range a-field is countably generated).

If f: <A, V> -4 <A', B'> is measurable, if B E AR, and if -4 and _' are
analytic, then f[B] need not be a Souslin set derived from measurable sets
(unless R' is countably generated), and, moreover, given an analytic topologiza-
tion of <A', g'>, f[B] need not be analytic. Using a more complicated version
of the proof of Theorem 4.1 one can prove the following result (which is not
worthy of the work needed for the proof).
THEOREM 5.6. If I = N, and if there exist analytic topologizations tn such

that the preimages of points under the fn,m are closed, the images under the fn,
of measurable sets are Souslin sets derived from measurable sets, and if the
compact elements of each 9,, form an approximating class for p,3, then ,i is
a-additive, and the extension of ui to X is compact.

5.6. Assume that our presheaf satisfies the Bochner condition, and that for
every simple subpresheaf the limit measure is a-additive, and the limit a-field
is pseudoanalytic. From Section 3.2, u is a-additive; and since every countably
generated a-field contained in .f is contained in the preimage of the limit
a-field of a simple presheaf, say over J, under the canonical map fj, X is
pseudoanalytic. This concludes the proof of Theorem 2.2, and proves the
following general theorem.
THEOREM 5.7. Assume the Bochner condition. If every infinite simple sub-

presheaf satisfies the assumptions in Theorems 5.4, 5.5 or 5.6 or Corollary 5.4,
then 1i is a-additive, and X is pseudoanalytic.
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The concept of analytic measurable space depends on topology. It was
noticed by G. Mackey [21] (and others) that analytic countably generated space
can be defined without any topology. Indeed, every countably generated
analytic measurable space is a measurable quotient of the Baire a-field of the
Cantor space 2K0, and Baire (20O) can be defined as the smallest a-field con-
taining the sets B7, n e N, i = 0, 1, where B? consists of all points with the nth
coordinate equal to i.

It follows that "pseudoanalytic" is purely measurable concept. No topological
characterization of pseudoanalytic measurable spaces is known. It is very
important that the class of all pseudoanalytic spaces is closed under the
formation of arbitrary products (it is obvious that the class of analytic
measurable spaces is closed under countable products, because the class of
topological analytic spaces has this property, and the behavior of uncountable
products is not known).

6. Short survey of analytic spaces

The theory of analytic sets in nonmetrizable spaces has been developed by
Choquet, Rogers, Sion, the present author, and others. A survey of the theory
of analytic sets and related topics is given in Frolik [13]; for the theory in
general spaces we refer to Frolik [15], and for the abstract theory of analytic
spaces to Frolik [14]; the last two papers have the advantage that the proofs
and definitions are clearer and more economical. Here we recall the basic facts
which have been used in Sections 5.3 and 5.4 without any reference, and we
add a few new facts which may help to clarify the relevance of analytic sets
for some questions in topological measure theory.

Each of the following conditions is necessary and sufficient for a space X to
be analytic:

(a) X is a Souslin set in every Y v X;
(b) X is a Souslin set in some compact Y v X;
(c) there exists an upper semicontinuous compact valued map (usco compact)

correspondence from the space I of irrational numbers onto X;
(d) there exists an usco compact correspondence from a separable completely

metrizable space onto X; and
(e) X is a continuous image of a proper (that is, perfect) preimage of a closed

subspace of 1.
It follows from description (c) of analytic spaces that the class of all analytic

spaces is closed under usco compact correspondences (in particular, under
continuous maps), countable products, countable sums, and the formation of
closed subspaces. Each of the conditions implies that every compact space is
analytic, and every analytic space is Lindel6f.
For any space X the collection anal (X) of all analytic subspaces of X is

closed under the Souslin operation (that is, operation A), and if X is analytic
then anal (X) coincides with the collection of all Souslin sets. It follows that in
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every analytic space X every Baire set is analytic, and using the separation
theorem given below, we get

(6.1) Baire (X) = E{Y IY E anal (X), X -Y E anal (X)}.

The following result is the main fact needed for the proof of Theorem 5.1.
THEOREM 6.1 (Separation theorem of Frolik [12]). If A1 and A2 are disjoint

analytic subspaces of a space Z. then there exists a Baire set B in Z such that
A1 c B c: Z - A2

This is a generalization of Lusin's first separation principle.
If A is analytic then the topology generated by compact subspaces of A is

analytic. It follows from Theorem 5.1 that every analytic measurable space can
be topologized so that the compact sets generate the topology (such a space
is called a k space). This is a useful property. Topological measures on k spaces
have been studied by Scheffer [32].
A space X is said to be Borelian if there exists a disjoint usco compact corres-

pondence from F. onto X. One can show that X is Borelian if and only if X is
a one to one continuous image of a proper pre-image of S. This implies
(Theorem 5.1) that every "Borelian a-measure" is compact with respect to
compact sets in <X, t> for some Borelian topologization of the measurable sets.

If we are interested in the regular capacities rather than in Baire a-measures,
then the proper class of topological spaces for developing the theory of analytic
sets is the class of all Hausdorff spaces. The main theorems are due to Choquet.
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