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1. Introduction

This article proposes a theory of sequential observation as a basis for a
definition of random sequences-which is more general than the approaches
inspired by the intuitive situations of gambling and sequential testing. It investi-
gates implications of the constructivist thesis which equates sequential observa-
tion and extrapolation, in the case ofrepeated independent random experiments.
As shown in Section 4 this leads to a definition of the concept of "infinite

random sequence" considerably narrower than those proposed by Martin-L6f
[10] and Schnorr [21] (a discussion of these approaches can be found in
Section 3). There exist sequences random in the sense of Martin-Lof and
generated by finite rules (of the class 12 n HI2), revealing the incompatibility of
these notions and intuition.
The approach of this article will be guided by the intuitive notion of random

phenomena as collections of finite samples which will, on the average, be
ultimately observed in sequential experiments. The corresponding class of
random sequences does not show pathologies of the type indicated.

In Section 5 "on the average" is interpreted as "with high probability" rather
than "with probability 1" (as before), and distribution limit theorems (in-
variance principles) are stated yielding the probability levels of certain sequen-
tially observable events related to almost sure convergence theorems.

Let xI x2 ... be a machine generated sequence subject to sequential
observation, information about the computing mechanism not being available.
After a large number of observations x1 x2 ... x. have been taken it is
possible to reconstruct the generating rule from the data; this is equivalent to
an extrapolation of xI x2 ... x". The number n being unknown, however, all
one can say is that an extrapolation is possible ultimately.

In contrast to the above, assume now that xI x2 ... is generated by a
random experiment (say, coin tossing). Then, despite considerable regularities
that might occur in the first outcomes, the observer will find himself unable
to extrapolate, the complexity of a random sequence being unattained by any
extrapolation.
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However, functionals operating on the initial segments of a sequence may
very well have a regular set of values, under the assumption of randomness.
An example is given by

1k
(1.1) D(xl ... xJ) = sup -_ Xi

1005k5n k i=1

withP[xi = 1] = P[xi = -1] = i _ 1.
The collection of all functionals which have regular values with probability 1

should summarize the intuitive impression of randomness. This thesis may
appear objectionable since intuition associates the recurrence of certain events
with randomness as well (for example, the crossing of zero by partial sums of
independent centered random variables). However, as a statement about a
completed infinity, recurrence has a merely mathematical meaning unless
supplemented by information about the frequency of recurrence times. In this
case again, it can be described by a functional with regular values.
The notion of a functional with regular values ("observable") will be

weakened to that of a constant partial recursive functional or "trace class,"
which is a set of finite sequences that, for almost every infinite sample, contains
all but finitely many of its initial segments. How far the family of trace classes
can be reduced will be studied in Section 4; the author conjectures that no
single trace class suffices to describe the event of randomness. Intuitively this
would mean that randomness fails to be a "random phenomenon." However,
as will be shown, a surprisingly small family of trace classes turns out to be
sufficient, namely those consisting of segments with high A2 complexity.

Notation (Section 2 to Section 4). Let N be the set of positive integers. Call
7 the space of all infinite sequences x = xl x2 ... where the xi are real
numbers or where, as in Section 3 and Section 4, the xi are 0 or 1. Let a be
the corresponding space of all finite sequences x = xl ... x,, of arbitrary
length {(x) = n 2 0. The sequence of length 0 will be written 0l. If x e X we
write x"] = xl ... x. for the nth initial segment of x. The same notation will
be used for x E Q2, x"] being equal to the string of the first n terms of x if
{(x) > n, and equal to x otherwise. The space Ql is ordered by << (the
ordering of continuation): x << y if e(x) _ e(y) and y(.(x)] = x. In the case of
binary sequences < will be the lexicographical ordering in Q: if e(x) = e(y)
then x _ y if y - x (coordinatewise) is of the form 0 ... 01 zj ... ZI(x); other-
wise if 6(x) < 6(y) then also x _ y. The product xy of x E Q2 and a (finite or
infinite) sequence y is x1 ... xe(X) YI Y2 * - - . Throughout, unless otherwise stated,
X is supposed to be endowed with the product topology and the sigma field of
Borel sets d: the sigma field generated by the first n coordinates is d?n. For any
subset (D c Q, let sup (D = U.>0 {x:x"] e I(} and inf 'D = nf,o {x:x,, e(DI
lim sup 4z = nm,O U,,",. {x:x.] e (}, lim inf D = Urn>0o nf,,, {x:x,,] (DI
"Function" means real valued or integer valued function, "partial function"
partially defined function. The indicator function of the set A is IA.
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2. The logic of sequential experience

This section states definitions and simple consequences.
DEFINITION 2.1 . A function FP on Q is called trace function iffor every n > 0

the restriction of cF to sequences of length n is Borel measurable.
Let lim* denote the limit operation in the discrete topology of the reals.
DEFINITION 2.2. A partial function f on X is called observable if there is a

trace function (D such that
(i) lim*_-F(D(x.]) = f (x) whenever x is in the domain off,
(ii) this limit does not exist otherwise.
Every observable is an d-measurable function on an di-measurable domain,

its range is countable. A constant observable will be called observable event
(under an obvious identification); the observable events turn out to be precisely
the domains of observables.

DEFINITION 2.3. An event E c X is called observable if there is a constant
observable with domain E.
PROPOSITION 2.1. The following statements are equivalent:

(i) E is an observable event;
(ii) there is an observable being equal to 1 exactly on E;

(iii) E is the domain of an observable;
(iv) there is a function Q O-* {0, 1, 2} such that E = {x E : n - (Xn]) is

a recursive function}.
PROOF. For (i) => (iii) the proof is immediate.
Now we prove (iii) = (ii). Letf be an observable with domain E being defined

by the trace function (D. Define another trace function W by

(2-1) qD (xl *.*.* x") = I if D(xl . . . x") = (D(xl ... x )
0 otherwise.

0' defines an observable with values 0 and 1 only, equal to 1 precisely on E.
Next we prove (ii) =i (i). Let f be an observable being equal to 1 exactly on E,

defined by the trace function D. Define another V' by

(2-2) (D'(x ... ): I{1 if (D(xl ... x) 1,
(2.2) 'D'(x1 ... x~~) if cD(x1 ... x,,) #1.

Then V' defines E.
For (ii) => (iv), let 0 be a {0, 1} valued trace function defining E in the sense

of (ii); define by
Ji ~~~~~~if(D)(x1 ... x,) =1

(2.3) H(x1* x.) =F(n- E 4D(xl . . xi)) otherwise,
j5n

where F is a nonrecursive function with values in {0, 2}.
Finally we prove (iv) = (ii). Define 4( by
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I1 if K(E(X1) * (X1 Xnn)
(2.4) (D(xI ... x"):= < max K( (x1 )*.x** (x I ... xj) Ij),

I ~~~~~j<n
t0 otherwise,

where K is a version of Kolmogorov's complexity measure; (F defines E after
Proposition 3.1.

PROPOSITION 2.2. The observable events are the events of the form E =
U, 1 inf Ti, where Ti c Q are such that

(2.5) {x:xe Q, (x) = n} n Ti EP ad,
n, i E N. In particular, Fe subsets of 7 are observable.

PROOF. Without restriction of generality one can assume inf Ti '_ inf Ti +1,
i E N; thus EC is the intersection of the decreasing family {sup Ti' : i E N}. On Ql
define
(2.6) m(x) := max {n : sup {x} c sup Tn}

Then x1 << x2 implies m(x1) . m(x2). Moreover x E sup Tc, - sup Tc,+ 1 if and
only if maxi m(xi]) = liMi- m(xi]) = n. Hence x E Ec is equivalent to m(x1])
unbounded as n oo. Now for x E QI put

(2.7) ¢(z)::={ if m(x) < max {m(y) : y << x, y # x},
(2.7) D(x)

O otherwise.
The function (F defines E.
COROLLARY 2.1. The class of observable events is closed with respect to

countable unions and finite intersections; it is not closed with respect to
complementations.
COROLLARY 2.2. Let X = {O, I}N; then the class of observable events coin-

cides with the class of Fa subsets of X.
COROLLARY 2.3. Let P be a probability measure on X, and E an event of

P measure 1. Then there is an observable event E' c E such that PE' = 1.
COROLLARY 2.4. For every observable f there exists an observable g, defined

almost everywhere P (with P as above) and extending f.
PROOF. Let E denote the domain off; we can assume PE < 1. There is an

observable event E' c EC such that PE' = 1 -PE. Let (DI, 02 be {0, 1} valued
trace functions for E, E', respectively, and let P be a trace function for f. A
{1, 2} valued trace function E will be defined inductively as follows:

(X1 *'- * + 1I)
teither (F(x 1 ... x,+X) 1& (xI ... x) 1

:=1ifgor 4D,(xl ..**x.+l) > (D2(xl ...x*X+ & E,_(x xn,) 2

(2.8) tor (F1(x1 ... x.+1) = 2(x1 ... x+) = 0

(X1 ...

Xn + 1 )

2if{either (D2(xl ... x,+1) = 1 & =(x1 ... x") = 2

(or (D2(x1 ...x*+1) > (DI(xl ...x* +I) & (xI ... x") = 1.
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The trace function (D defines g:

D(2.9).X.): = D1(X1.. X.) V (D2(X1.x) if (xl x-) = ^(xl .X-I)'
O otherwise.

PROPOSITION 2.3. The almost everywhere P defined observables elements of
'' (P) form a dense subalgebra and a sublattice of S' (P).
PROOF. For every simple function there is an observable function differing

from it only on a nullset; the detailed proof of this uses the construction of the
preceding proof and is omitted.

3. Martingales and randomness tests

This section is mainly a historical one. It reviews the approaches by J. Ville,
P. Martin-Lof and C. P. Schnorr towards a definition of random sequence. The
appendix contains a short exposition of the complexity theory of Kolmogorov
and Martin-Lof. In the sequel (Sections 3, 4) X and Qi will always refer to the
binary case; P will be the "coin tossing" measure (product of uniform distribu-
tions on {O, 1}).

3.1. According to Ville [27] the concept of random sequence refers to a pre-
assumed gambling system ("martingale"): whenever a "random" sequence
occurs the gambler's gain stays bounded throughout the whole infinite game.
A gambling system in the sense of Ville can be characterized by two functions
A, i on Q. The value A(x) (respectively y(x)) is the proportion of the gambler's
capital s(x) he is willing to bet on "1" (respectively "O") in the (e(x) + I)st trial
to gain 2A(X)S(X) or 2p(x)s(x), respectively. Clearly A(x) + Y(x) _ 1, and s(O)
may be taken to be 1. The sequence s is a nonnegative martingale with respect
to (.?n), with s(O) = 1 (called simply martingale in the sequel); and each such
martingale results from some gambling system A, u. Ville's definition will now
be stated.

DEFINITION 3.1. Let s be a martingale (in the sense indicated above). Then
x E X is called s random if SUP. 8(Xn1) < x.

This concept is very flexible as the following theorem shows.
THEOREM 3.1 (Ville [27]).
(i) P{x :sup,s(Xn) < 0} =1;
(ii) for every event E, PE = 1, there is a martingale s such that

{x SUP. 8(Xn]) < 00} c E.
PROOF. Part (i) follows from the martingale inequality

(3.1) P{X: Sup s(xi1) _ A} < Es(xn])
As for part (ii) a martingale can be generated by a suitable function f: let

{Gn: n E N} be a family of open sets such that EC c GO,,,+c G, PO. = 22n
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n eNand putf(x): = ZI 1 2IG. (x) such thatEf = 1. Define s(x): = If(xy)P(dy),
xc Q.

Ville could not settle the question of which reference martingale should be
used for the definition of random sequence. Further criteria are needed. The
following is widely accepted.
POSTULATE A1. Recursive sequences are not random.
The set of all recursive sequences being countable there is a martingale so

unbounded on every recursive sequence, whence "s8 random" implies "non-
recursive." However, every such martingale is noncomputable in the sense that
its integer part is not a recursive function.
THEOREM 3.2. If the martingale so is unbounded on every recursive sequence

then [so(x)] = max {n e N : n . so(x)} is not recursive as a function of x E Q.
This is a consequence of Theorem 3.3 below.
DEFINITION 3.2. An observable event E is called regular if there is a recursively

enumerable set CD c Q such that lim inf CD = E and xO E CD or xl E (I) whenever
x c (D (see Definitions 4.1, 4.2, 4.4). A (D of this type will also be called regular.
THEOREM 3.3. Every nonempty regular event contains a recursive sequence.
PROOF. The proof is clear.
PROOFOFTHEOREM3.2. For every martingale s the event {x : SUp. S(X.3) < 00}

is regular. This follows from the martingale equation s(x0) + s(xl) = 2s(x)
which implies [s(xO)] A [s(xl)] _ [s(x)].

In addition this proves that {x : sup, s(x.]) < OO} = lim inf CD where CD is
recursive.

3.2. The idea of taking the behavior of infinite sequences towards sequential
tests as a defining property of randomness is due to Martin-Lof [10]. It leads
to an observable event E which can be written in the form lim inf 0, where
CFD is recursively enumerable. Indeed, this corresponds to intuition since for
any test, the critical region has to be fixed in advance, and hence in some
constructive way. Moreover, tests for infinite sequences should be sequential,
a sequence being rejected (at some level) on the basis of only finitely many
observations. Critical regions, therefore, are suitably represented by open sets.
The following is Martin-L6f's definition of a sequential test.

DEFINITION 3.3. A sequential test is given by a recursively enumerable set
U c N x Q such that

(i) if U. = {X E Q: (n, x) FE U} then the regions sup U. are nested: sup U, v
sup U2 ' ;

(ii) P(sup UJ) _ 2-, n E N.
DEFINITION 3.4. A sequential test U c N x Q is called universal iffor every

sequential test V there is a constant c such that sup V,,+ C sup U", n e N.
Sequences being rejected at every level a > 0 by some sequential test will

also be rejected by a universal test. Consequently the nullset RCM of those
sequences rejected at every level a > 0 by a universal test does not depend on
the particular choice of this test.
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THEOREM 3.4 (Martin-Lof [10]). There exist universal sequential tests.
The set RM is an observable event; it satisfies Postulate A1.
COROLLARY 3.1. The set RM does not contain recursive sequences.
PROOF. Every recursive sequence defines a sequential test in an obvious way.
THEOREM 3.5. RM = lim inf 4) with 4D c Ql recursively enumerable.
PROOF. This is an immediate consequence of Theorem 4.1 below.
3.3. In this connection another class of events has been proposed in the

literature (Schnorr [21]): namely the nullsets of sequential tests (Definition
3.3) which satisfy the additional requirement

(iii) {PUm : m = 1, 2, * } forms a recursively enumerable sequence of com-
putable real numbers.
These nullsets are called "totally recursive" in [21].
THEOREM 3.6. The complements of totally recursive nullsets contain regular

events of P measure 1.
PROOF. Let U be a sequential test such that EC :n=fl. sup Ui is totally

recursive. We are going to construct a recursively enumerable 4D c Q2 such that
4) is regular, lim inf 4) c E and P(lim inf 4)) = 1. The essence of this procedure
can be described as follows: let

(3.2) U. = {x e 0 P(sup {x} ri (sup U,)') > 0} D U,
n e N; then U,C is a recursively enumerable tree (that is, containing y << x
whenever x e f'C), inf (C.C) is regular and differs from inf (U.) by a P nullset.
Discarding x E U.* with suitably small P(sup {x} r- (sup U, )C) one replaces U,C
by a subtree En, n e N, such that (i) inf T. is regular, (ii) P(inf 'n) _ 1 - 2-1
(iii) WT C Tn+ I (n e N), (iv) {(n, x): x c En} c N x Ql is recursive. Then E'
U.> 1 inf T. is a regular subset of E of P measure 1. To verify regularity, let
m(x) = mi {n : x E T. }. This is a monotone increasing recursive function
for <<. The set

(3.3) 4:= {x e ( : m(x) = M(t(x) - 13)}
defines a regular lim inf 4) = E'. Essentially the same ideas lead to
THEOREM 3.7 (Schnorr [21]). RM is contained in, but not identical to, the

intersection of all events whose complements are totally recursive nullsets.
3.4. Historically the theory ofrandom sequences as reviewed above originated

from the theory of complexity of finite sequences (Kolmogorov [8]; Chaitin [3],
[4]), although it does not depend on this concept. However, a generalized com-
plexity measure will play a role in our exposition of Section 4. We state
Kolmogorov's and Martin-Lof's theorems without proof.

DEFINITION 3.5. An algorithm is a partial recursive functionA : Ql x -Q .

The conditional complexity (with respect to A) of x given y (x, y e Ql) is

(3.4) KA(xIy) := min {&(p): A(p, y) = x}.

It is < oo, with equality if A(p, x) ¢ x for all p, y in the domain of A.
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The conditional complexity KA (x y) is the minimal length of a program
needed to compute x from the "input" y on the "machine" A. In the sequel
the second argument of KA (x y) will always be (the binary expansion of) {(x).

Since KA depends on the choice ofA and moreover assumes infinite values in
general, the following theorem is of basic importance.

DEFINITION 3.6. An algorithm U is called universal iffor every algorithm A
there is a constant c (depending only on A and U) such that

(3.5) KU(xIy) _KA(X|Y) + c, x,ye Q.
Obviously Ku(x I6(x)) _ {(x) + c for some constant c.
THEOREM 3.8 (Kolmogorov [8]). There exist universal algorithms.
In the sequel, K(x I y) will always denote Ku (x y) for some universal algorithm

U, fixed once and forever. The following simple lemma is fundamental.
LEMMA 3.1. For every c, n e N

(3.6) card {x: e(x) = n; K(x In) _ n - c} > (1 - 2-c)2.

Let us summarize the asymptotic theory of K.
PROPOSITION 3.1. For x E X sup, K(x]1 n) < Xo if and only if x is recursive.
A proof of the "only if" part can be found in [9].
The following two results concerning large values ofK are due to Martin-L6f

[11], [13]. The first theorem reveals the surprising fact that K(xfl] In) cannot
stay _ n - c (c some constant) as n - co, for any x E X.
THEOREM 3.9. (i) If F(n) is a recursive function having E 2-F(n) = cc, then

for every x e X, K(x.] In) < n -F(n) for infinitely many n.
(ii) If F(n) is a recursive function such that E 2-F(n) is recursively convergent

then for every x E RM, K(x.1 I n) _ n -F(n) for all but finitely many n.
THEOREM 3.10. (i) If there is a constant c such that K(xflhln) > n - c for

infinitely many n, then x E RM.
(ii) Case (i) occurs with probability 1.

4. Randomness and the class A2 of the arithmetical hierarchy

4.1. As indicated in the preceding chapter gambling and sequential testing
presuppose effective descriptions of the complement of 4X, where lim inf 4D is
the corresponding class of random sequences; moreover, at least the gambling
approach implies that both (D and VC should be recursively enumerable. In
contrast to this, Section 1 rather suggests considering those lim inf (D for
which (D is recursively enumerable.

DEFINITION 4.1. A trace class is a recursively enumerable subset of Q2.
DEFINITION 4.2. An event E c . is called observable if there is a trace class

(D such thatE = lim inf (D.
DEFINITION 4.3. A sequence x Ec is random provided x is an element of every

observable event of P measure 1. The set of all random sequences will be denoted
by R.
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The author conjectures that R is not an observable event.
The following theorem is a consequence of Theorem 4.2 (which is used in the

proof).
THEOREM 4.1. RM is an observable event.
PROOF. Let Ubeauniversaltest (Definition3.4);henceRc = ni21 (sup Ui).

There is a recursive function F: N -* N x Q2, with range U; the function F is
called an enumeration of U. Using F we construct a recursive function
a: N -& U with the property: for every n E N and x E , {i: (n, x11) e G(N)} is
finite. This is simply achieved by omitting any pair (n, y) provided some (n, z),
z << y, has been enumerated before. Thus RM = lim inf G(N)c. But G(N)c e
nI c n2. After Theorem 4.2 there is a trace class such that lim inf =
lim inf G(N)c.
As follows from Corollary 3.1 and Theorem 3.3, RM is not regular.
4.2. In this section we summarize the elementary part of the theory of the

arithmetical hierarchy which we apply later (a detailed presentation can be
found for instance in [20]). The basic reference set will be N which, without
further comment, will be identified with its recursive equivalents such as Q and
Nk, k E N. The symbol 10 represents the class of all recursive relations (:=
recursive subsets ofNk for some k). A relation is said to belong to the arithmetical
hierarchy if it can be obtained from some S E 10 by a finite number of comple-
mentations and projections; that is, if it is of the form (Qlxl) ... (Qk-lxk-1)
T(xl ... Xk) where the Qi are quantifiers and T E :0. The relations of the form
(3x1)... T(xl ... Xk) (respectively (Vx1)... T(xl ... xk)), which have n - 1
alterations in the prefix (that is, n - 1 = card {e : Q +1 # Qe) form the class
1.(respectively HIe), n > 0. Thus I1 are the recursively enumerable relations,
Hl their complements, 12 projections of IH1 relations, and so on. The hierarchy
theorem says: , - II, * 0, n > 0. The symbol A. denotes En r II.. Thus
A1 = So. We are particularly interested in A2. The importance Of 12, rI2 and
A2 results from the following propositions (see Putnam [18]).

PROPOSITION 4.1. The following statements are equivalent:
(i) E E12;

(ii) there is a recursive function F(n) such that

(4.1) E = {n : n = F(m) for an odd number of m};

(iii) there is a recursive sequence of finite sets En (that is, a recursive set
S c N x N such that E. = {i : (n, i) E S}) with theproperty IE = lim inf, IE. .

PROOF. First we prove (i) =. (ii). According to the assumption there is a
recursively enumerable set T c N x N such that

(4.2) E = proj2 TC: = {n: (3j) (j, n) e TC}.

The set TC can be described by a recursive function G N -m N x N, the
multiplicity card G-'G(n) of each G(n) being <2, such that TC = {((n):
card G-1 G(n) = 1}. This G(n) "enumerates" TC if one interprets the second
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occurrence of an element in the range of G as cancellation. Adopting this
interpretation for the time being we write

(4.3) cardG (A)
card {G(j): G(j) E A, card [G-1 G(j) r) {1, **,n}] = mod 2}.

The function F(n) is defined inductively: let k1 < k2 < ... be the arguments
for which

(4.4) min card' (proj l (proj2 G(kj))) = 0
t=kj-1,kj

(that is, those "times" at which proj2 G(kj) appears as an element of E or is
cancelled from E). Put F(n) : = proj2 G(kn).
Now we prove (ii) => (iii). Let E : = {F(j): cardF (F(j)) = 1}, n E N. This is

a recursive sequence of finite sets having lim infn- 'En = E-
For (iii) inplies (i): E = {k : (3n) (Vm) (m _ n => k e Em)} e S2-
COROLLARY 4.1. Thefollowing statements are equivalent:
(i) E-A2;
(ii) there is a recursive function F(n) such that

(4.5) E = {n : n = F(m) for an odd number of m},

(4.6) for every m card {j: F(j) = F(m)} is finite;
(iii) there is a recursive sequence offinite sets En such that IE = limne IE.-
PROOF. We prove first (i) = (ii): Ee 2 n HI2 means that E e 1:2 and

EC e 12. Hence, according to the preceding proposition, there is a recursive
function 0(n) such that E = {n : n = G(m) for an odd number of m} and a
recursive function G'(n) such that EC = {n : n = G'(m) for an odd number of
m}. Let H be a recursive function that enumerates each n, t + 1 times whenever
G' enumerates it t times. Then EC = {n : n = H(m) for an even (positive)
number of m}. Now F may be chosen as a modification of G, only the multi-
plicity being restricted: let p (n) be the recursive function defined inductively by:
q(1) : = 1,
(4.7) qp(n)

= min {j: j 0 {(p(I), , p(n - 1)} and multn (G(j)) < multn (G(j))},

n > 1; here multG (m) := card {k : k < n, G(k) = m}. Put F(n) := G(9(n)).
Then multF (n) multG (n) mod 2 if n E E and Omod 2 if nE EC.
For (ii) => (iii) En is defined as above.
For (iii) = (ii) EC e 12 since (ii) is symmetric in E and E'.
Condition (ii) shows that sets of class A2, although not necessarily being

recursively enumerable, can still be generated by a computing machine, if
cancellations (at most finitely many per element) are allowed. This motivates
POSTULATE A2. Sequences of class A2 are not random.
4.3. The importance of the class A2 for our theory of sequential observation

results from the following fact.
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THEOREM 4.2. The set E is an observable event (Definition 4.2) if and only if
there is a subset (D of fQ, of class82, such that E = lim inf (.
These (D will be called "H12 trace classes" occasionally.
PROOF. Because of the inclusion 11 C Hl2 it suffices to show that for d E H2

there is a TEl1 such that lim inf b = lim inf T. After Proposition 4.1 (ii)
one can find a recursive function F(n) such that

(4.8) 4D= {x: card {n: F(n) = x}-1 mod 2 or = oo}.

For x E Ql, n e N, let B(n, x) be the finite set of minimal (with respect to <<)
y e Q, y >> x, y * F(i), i _ n, y 0 B(i, z) - {x} for all i < n and z _ x. The
B(n, x) which are + {x} are pairwise disjoint. We now start an inductive
definition of ' = {X1, x2, * * } by setting x1 = F(1). Suppose that xl, , xk
have been defined in the n first steps of this procedure, then the (n + 1 )st step
is described as follows:

suppose mult n+ I (F(n + 1)) -1 mod 2; let xk+l, * *, Xk+r be the
F(i) e Uj5 B(j, F(n + 1)), i _ n; if F(n + 1) 0 B(i, F(i)) for all those
i _ nforwhichmult"' (F(i)) = multf (F(i)) _ 0 mod 2thenxk+r+:
F(n + 1). Otherwise proceed to the next step.

COROLLARY 4.2. For every subset (D of Q2, of class 12, lim inf cC is an
observable event; in particular: for every sequence x e X of class A2 there is an
observable event of P probability 1 not containing it.
COROLLARY 4.3. R does not contain sequences of class A2.
Corollary 4.3 can be considerably sharpened (see Corollary 4.5) by means of

a generalized complexity theory. Before, let us show that RM does not satisfy
Postulate A2. Thus, some random sequences in the sense of Martin-L6f can be
generated by a computer.
THEOREM 4.3. There is an x E RM of class A2.
This can be derived from the more general
THEOREM 4.4. To every P nullset of the form E = lim sup (D, D c Q recur-

sively enumerable, there is an x E (lim sup f)C of class A2.
PROOF. One can assume that (sup I9C #6 0, which otherwise is obtained

by omitting finitely many x E (D. Furthermore, card (D = oo without restriction
of generality. Let F(n) be a recursive function enumerating F. The following
describes the construction of a sequence x e EC of class A2. First step: let
xl, x2, **..., x(F( be the successive initial segments of the lexicographically
lowest Xt(F(l)) E {0, 1}(F(1)) - {F(1)}. For the nth step, with x1, X2, * * *, Xm
already defined in the first n - 1 steps, let xm+ 1, . * *, Xm+max((F(i)):in) be the
successive initial segments of the lexicographically lowest z = xm + max{6m(F(i)): i n} E
{0, I}"maxt(F(i)) satisfying F(1) + z, - * *, F(n) + z. Let (&m:m = 1, 2, * * ) be the
sequence (xm: m = 1, 2, * *) without repetitions. Then the following is true:

(i) put En : = {x1], * , n,}, n E N; there is a (unique) x E X such that

I{x,,x21, *-- = limn. IE.;
(ii) x E.
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For the proof introduce

(4.9) y': = max,, {xi:xi occurs in the ith step and sup {xi} r) sup (D = 0};
one can assume that this maximum exists, otherwise nothing has to be proved.
We have y' << y+ ', i E N, since yi41+y1 would be contrary to construction.
Because of (sup f)C # 0, t(y') cannot be bounded as i - oo whence
x?s)] := y', i E N, defines an infinite sequence x.

Clearly x satisfies (i), and no other sequence does. Furthermore, if (ii) would
be false then for some F(n) there would be a y' >> F(n), contrary to definition.
Since the E,, form a recursive sequence, (i) is equivalent to x e A2 (Corollary 4.2).
COROLLARY 4.4. To every P nullset of theform lim sup 4D ((D c Q2 recursively

enumerable), there is a nullset lim sup 'P (' c Ql recursively enumerable) such
that lim sup (D is properly contained in lim sup T.

PROOF. This follows from the equation

(4.10) lim sup (0 u {9m: m E N}) = lim sup CD u {x},
which is immediate from the preceding proof (notations are as above).

It would be desirable to have a theorem of this nature for m, 'P II1 (instead
of S1).

NOTE. In view of Proposition 2.1 (iv), we have the following characteriza-
tion of observable events.
THEOREM 4.5. The set E c X is an observable event if and only if there exists

a function 3 Q-* {0, 1, 2} of class A2 (that is, its graph {(x, 3(x)) x EQ}
belongs to A2) such that E = {x e 7 : n -3(X]) is a recursive function}.
The proof follows the lines of our proof of Proposition 2.1 and moreover uses

Theorem 4.2.
4.4. The following presents a generalized complexity theory of the class A2.

A A2 complexity measure should be bounded on the initial segments of any
infinite sequence x E A2 (see Proposition 3.1). The asymptotic theory of such a
measure is analogous to that of Kolmogorov's complexity measure (see Section
3.4).

DEFINITION 4.4. A S2 algorithm A is a function with domain in Ql x Q and
range in Q) having a graph of class 12. The conditional A2 complexity (with respect
toA)ofxgiveny,withx,yeQ,is

(4.11) KA(X IY) := min {1(p) : A(p, y) = x}, _ oo.

The function A can be interpreted as a machine computing approximations
of increasing accuracy, KA (x I y) as the length of the shortest program for which
the corresponding procedure used to compute x from y converges.

DEFINITION 4.5. A 12 algorithm U2 is called universal if for every 12
algorithm A there is a constant c (depending only on A and U2 ) such that

(4.12) KU2(Xly) _ KA(X|y) + C, X,yeQ.
THEOREM 4.6. There exist universal 12 algorithm8.
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The proof uses a 12 enumeration of all 12 algorithms (the program p
representing, in part, the Godel number) and follows the lines of Kolmogorov's
proof in [8]. Let K2 be the A2 complexity with respect to some universal 12
algorithm U2, fixed once and forever.

PROPOSITION 4.2. There is a constant c such that

(4.13) K2(x I {(x)) . K(x I {(x)) + c, x eQ.

The functions K and K2 essentially differ by their degree of computability:
{(x, y, &) : K(xly) . (} being recursively enumerable whereas {(x, y, t)
K2(xly) _ {}e 2 -E
LEMMA 4.1. For every c, n E N,

(4.14) card {x : e(x) = n, K2 (x I n) _ n - c} _ (1 - 2-c)2.
PROPOSITION 4.3. The complexity K2 (x"]In) stays bounded on every infinite

sequence x E A2 as n -+ oc.
PROOF. The relation A(p, n) :x=X,, p E Q, n E N, defines a 12 algorithm.
THEOREM 4.7. Let F(n) be a recursive function such that 2-F(n) = oo. Then

for every x E X, K2 (xn] In) < n - F(n) for infinitely many n.
PROOF. This is an immediate consequence of Theorem 3.9 (i) and Proposi-

tion 4.2.
As in Section 3 one gets a converse for random sequences x (now in the sense

of Definition 4.3).
THEOREM 4.8. Let F(n) be a recursive function such that 12-F(n) < oo. Then

for every x E R, K2(XnlIn) n - F(n) for all but finitely many n.
PROOF. For every no, we have

(4.15) P{x E .7: K2(xnj In) < n - F(n) for infinitely many n}
< £ P{x E 7:K2(xnl]In) < n -F(n)}

n>no

< s£ 2-F(n)
n>no

whence

(4.16) P{x E Y: K2(xniIn) _ n - F(n) for all but finitely many n} = 1.

The set (F: = {y e Q: K2(y e(y)) _ e(y) -F(t(y))} is a rI2 trace class for this
event; x E lim inf (, since x E R.
COROLLARY 4.5. There is an observable event of P measure 1 containing no

sequence of class A2-
PROOF. Put F(n) := [(1 + £) 2log n], E > 0, in the previous theorem and

define the event by the corresponding H2 trace class (D. The statement then
follows from Proposition 4.3.
None of these conditions seems to imply randomness (see our conjecture).

However, there is an interesting connection between randomness and A2
complexity.
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THEOREM 4.9. If there is a c such that for infinitely many n, n-K2(Xn] n) . c
then x E R; the set of these x has P measure 1.
PROOF. We have to show that x E lim inf (D for every trace class (D (such that

P(lim infcF) = 1). Since (D' e A2 there is a S2 algorithm AD which, given n,
successively enumerates the class of x1 ... xn for which x1 (D, x1x2 0 D, * * *,
xi ... Xn 0 (D, then the class of x1 ... x. for which exactly n -1 initial segments
are 0 (D, and so on, lexicographically within each such class.
For y E Q, 1(y) = n, let Z(y) be the number of initial segments of y in V.

Then

(4.17) KA2(y In) _ 2log card {z : e(z) = n and Z(z) _ Z(y)} + 1,

such that if a function F(m, n) is defined by

(4.18) 2log card {z : {(z) = n, Z(z) _ m} + 1 = n -F(m, n), m < n,

then

(4.19) KA,,,(y I n) < n -F(Z(y), n).
Hence,

(4.20) K2(yIn) < n - F(Z(y), n) + co

for some constant c0 depending on the choice ofthe particular enumeration of (D.
Consequently, after assumption,

(4.21) F(Z(x1]), n) _ n - K2(x] In) + co . c + co
for infinitely many n. This means that there is an £ > 0 such that for infinitely
many n

(4.22) P{y E .92: Z(Yn]) _ Z(Xl])} _ E

Now it is easy to deduce a contradiction from the assumption that x 0 lim inf (D,
which also can be stated in the form Z(xl]3) -00 as n -- oo:

(4.23) P{y E .9: Z(yn1) _ M} _ P{y Ee : lim Z(y1) _ M} < e,
n-o

for some sufficiently large M, x being element of the first event for all but
finitely many n. Together with (4.22) this yields Z(x"]) < M for infinitely many
n, contrary to the above assumption. Hence x E lim inf (D. The second part of
the theorem is a simple consequence of the lemma.

5. Observables related to almost sure convergence

In this section we consider observable events which occur with high proba-
bility, but in general not with probability 1. Obviously our systematic framework
does not provide reason for studying any particular event of this type. However,
there are observables traditionally attracting the interest of probabilists and
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statisticians. Consequently, the question of how to determine the probability of
related observable events deserves some interest. In the sequel we restrict our
attention to those observables which are naturally related to almost sure con-
vergence theorems like the strong law of large numbers and the Glivenko-
Cantelli theorem. The appendix will briefly outline a "large deviation" approach
due to V. Strassen concerning observables not belonging to this class.
The observables considered now are those having a regular range whenever

a particular almost sure convergence statement holds..For example, in the case
of the strong law, we study observables lim* 4I(x,, ) (cb a trace function), whose
domain contains all x = x1lx2 ... for which lim inxiln = Ex,, and
the corresponding events of the form {x: lim* (D(X,]) < ax}. We are going to
evaluate probabilities of such events by means of certain distribution invariance
principles. This idea is suggested by the following proposition: let X1, X2, * * -
be a sequence of random variables with values in a separable metric vector space
og (the metric being pt); then lim,_ Xn = 0 almost surely if and only if the
distribution of the (infinite dimensional) vector (X", X,,+1-** ) converges to
the unit mass at (0, 0, ...) E 8N pointwise on the space of bounded continuous
measurable functions on gN with respect to uniform topology. From the
following reformulation it becomes apparent in which way.this proposition
can be sharpened: to each vector x = (x1, x2 . )eCN let t -* x(t) be its
linear interpolation defined by

(5.1) x(t) = (1 - (-[t]))x[t] + (t - [t])xJ,1+1, t _ 1.

Let Wg[1, oc) be the space of all bounded continuous functions with values in 8
and domain [1, oo), endowed with the uniform topology. Then lim",0 X. = 0
almost surely if and only if the distribution of t -s X(tn) converges to the unit
mass at 0 e W [1, oo) pointwise on all bounded continuous measurable functions
on .J1,oo), as n -* oo.
Once almost sure convergence is known one can restrict oneself to the sub-

space Wgo[1, oo) of Wg[1, oo) of those x which satisfy lim,_ x(t) = 0. On this
(separable) space the uniform topology can be described by the metric p

(5.2) p(x, y) := sup Pe (x(t), y(t)), x, y e<[1, oo).
t21

The above proposition suggests to look for the limit points, if any, of the
distribution of t -&* N(n)X(tn) as n -+ oo, where {N(n) n E N} is a sequence of
norming constants, N(n) -+ oc. In all interesting cases such norming constants
will turn out to exist (that is, yield nondegenerate limit points) and, moreover,
there will be convergence to a limit distribution.

5.1. Let '60, oo) be the (separable) Banach space of continuous functions
x on [0, oo) such that (i) x(0) = 0, (ii) lim,-. x(t)/t = 0, endowed with the
norm

(5.3) IIxII*:= sup Ix(t)l
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The space W. [0, oo) will play the role of the path space of a process 4 obtained
from a sequence of partial sums of independent random variables by linear
interpolation; more precisely: let X1, X2, * * * be a sequence of independent
random variables having EXi = 0 and 0 < EX < oo, i E N, satisfying Linde-
berg's condition and the strong law of large numbers in the form

(5.4) P lim - E = E=1,:= E X.
n-oo Sn iSn iSn

We consider stochastic processes t -m,(t) with the properties: (i) 4(0) = 0,
(ii) ~((sn) = liSn Xi, (iii) t - c(t) is monotone and continuous in each of the
intervals [sr. 1, sn], n E N.
THEOREM 5.1 (Muller [15]). With probability 1, 4 E <[0, oo); the sequence

of distributions of t -(s" t)/sn, 0 _ t < oo, converges (pointwise on bounded
continuous functions on e[0, oo)) to the distribution of a Wiener process
t C,(t), 0 < t < oo,c(0) =O .

Before proceeding to the applications of this theorem let us mention an
estimate of the speed of convergence, extending a result of Skorohod [22], [23].
Let X1, X2, - - - be a sequence of independent identically distributed random

variables having EX1 = 0, EX2 = 1 and sup Ilx = C < oo. Let (k) be the
kth partial sum of this sequence as above. We are interested in comparing the
probabilities of the following events for a _ 0:

n= = [ ()< n-'/2 ((k) < k2n for all k _ on0 n E- N,

Z = [g1(t) < 4(t) < g2(t) for all t _ a];

here gi are continuous functions on [0, oo) having continuous derivatives subject
to the following conditions:

g1(0) <0° < g2(0),

-oo < lim g (t) < O < lim92(t) < +oo,
t-oo t t o

+t
(5.6)

d
lim sup gi(t)- t- gi(t) < cc, i = 1, 2.

t-00 ~~dt
Only the following six bounds for the above quantities (and C) will enter the
error term: 0 < G1 < Jgi(0)J _ G2,

0 < 03 < lim t -G4,
t- cx t

(5.7) d
sup |-gi(t) < K1,
O_tlI dt

d
sup gi (t) - t - g1(t) <.K2, i =1, 2.
t.1--Id
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THEOREM 5.2 (Muller [15]). There is a constant L, depending only on C,
K1, K2, G1, - . G4 such that

(5.8) JPE, - PZ| _ -L -g , n _ 2.

The theorem remains true if one puts g1 (t) = -, t > 0, disregarding the
above assumptions about this function.
The following corollaries are true under the assumptions of Theorem 5.1 and

Theorem 5.2 respectively. Moreover, in order to simplify the formulas, it will
be assumed that EXi = 1, i E N.
COROLLARY 5.1.

(5.9) lim [E2 max {n: xi > < = (2irun eXi-£ du

uniformly in a. There is a constant L depending only on C and ax > 0 such that
for all a _ a1, we have

(5.10) max {n - Xi -£} < a]- (2i,u)112 eu2/2 du

< - L £ log £.
COROLLARY 5.2.

(5.11) lim pLe2max n:- Xi > < a]
~~10 n i=

l in a. T i s exp {-( )uniformly in o. There is a constant L depending only on C and a1 > 0 such that
fora _ al, we have

(5.12) P[s2 max{n: n Xi| _ } <a] rc
4 I)

{
(2n + 1)27r2<expj- 8a ~ -6oe

COROLLARY 5.3.

k.= a] ( 1/2('(5.13) lim PI[v/;max E Xi) < ]= () J e U22 du

uniformly in a. There is a constant L depending only on C, a1, and a2 such that
for O <a1 . a . a2,

(5.14) P / max ( E Xi) <a] _ (_ J e-u2/2 du <L lo n
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COROLLARY 5.4.

(5.15) lim P[vi/n max - Xi|< a
n- 00 k2n k i

4 (-1) (2n+ 1)2n2
7n=02n + 1(2 82 1

uniformly in a. There is a constant L depending only on C, ol, and ac2 such that
forO <o ._ a < O2,

[ k2n k|E 4l < ]--E )lep{ (2n + 1)2ff }(5.16) P[V§,rn-ax( E Xi)< o] -n=o2n+1 (2+127}

< Llog n

-,/n
COROLLARY 5.5. For x _ ,B v 0, we have

(5.17) lim P /; maxI Xi > a Xi = e]= e
n-oo k2n ki= 7n=1

uniformly in a. There is a constant L depending only on C, ai, ,Bi, i = 1, 2, such
that forO .< a1 < aX < 2, 0 < /13 . #. P2

(5.18) P[ max k- Xi)>aI Xi > 2je2 -i) <L gn

COROLLARY 5.6 (Muller [17]). Let N£+ be the number of n such that
T'% I Xi/n > £. Then

(5.19) lim P[I2N + < a] = rf (t) dt,
CI0

where

f+(t) = (2)e-t/2 -erfc(t),
(5.20) \r

(2)1/2 IO -2}erfe (t) = () exp {} du.

PROOF. This follows as in the proof of Corollary 5.7.

COROLLARY 5.7. Let N, be the number of n such that |7 1 xi /n > £. Then

(5.21) lim P[62N, < a] = {f(t) dt,
40Iof
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where f(t) is by definition equal to

(5.22) f+(t) - E [(2n + 1)!!]2(2n + 1)2[f+[(2n + 1)2t] + 2]*
n>O

n

I0* [f+((2j + 1)2t) - 6].
j=o

Here 6 denotes the Dirac delta "function" which is only used for convenience
of notation: the convolution products which actually occur are functions.
This limit distribution will be derived from an identity for Markov processes
to be stated next.
PROPOSITION 5.1. Let C be a strong symmetric (that is, pa[C, E S] =

p-a[ - , e S] for all real a and all measurable subsets S of the path space) Markov
process having continuous paths; moreover we assume that it fulfills the additional
requirement

(5.23) A := supEa f I[C(t) > t + C(O)]dt < oo.
a2~,0 f0

Denote by T(t) the (random) amount of time JC(u)I spends above C(O) + u,
u < t;in other words

(5.24) T(t) = f I[IC(u)I > C(Q) + u] du.

The random time T has the following addition property for s < t,

(5.25) T(t) = T(s) + T5(t -z(s) A t) + (T(S) A t -S)I[JC(S)I > s + C(O)];
here

(5.26) ST(s) = inf {u _ s: IC(u)l = C(O) + u}, < + oo,

and

(5.27) T8(t) = fI[IC(T(S) + u)I > IC(T(S))J + u] du.

Put L(a, 2) = Ea e-AT(o), (T(oo) beingfinite because of (5.23)). Then the following
identity holds for oc _ 0:

(5.28) L(a, 2) + A r EaI[IC(s)I > C(O) + s] {e-A(T(s)-s)L(T(s) + a, A)} ds = 1.

This is a Volterra integral equation of the second kind, having L(-, A) as its
bounded solution, 0 < A < 1/2A.
PROOF. For the proof put L(a, K, A) = lo eKtEae-T(t) dt, K > 0. Using

(5.25) we get the following chain of equalities (the interchange of integrals
always being justified by (5.23)):
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(5.29) L(a,iK, A) -
I
= Ea f e-Kt[e-AT(t) _ 1] dt

-Ea e dtjr eATs)I[IC(s)1 > C(O) + s] ds

= - dsE`I[IC(8)j > C(O) + 8] J exp { -Kt - A[T(t) - T(s)]} dt

= - A dsEaI[IC(s)j > O(o) + s]

x E f exp {-Kt - ATs(t - T(S) A t) - A[T(s) A t - s]} dt I T(8)

= -A r J exp{-(K + A)t + As}Paf"[I(8) I > C(O) + s& T(S) > t] dt ds
xs* 00=

-A r
o' e Kt EaI[IC(8)I > C(O) + S] & T(S) . t]

s= t=s

x (exp {-A[T(s) -s]}Ea[exp {-AT(t-T(S))} IT(S)]) dt ds

= 0(1)[IC 0] - Af Ea[j(s),> C(O) + s]

x f exp {Kt - A[T(S) - s]} Ea[exp {- AT(t - T(S))} IT(S)] dt) ds

= 0(l) - Af EaI[IC(s)j > ~(0) + 8]

x (exp {(K + A)T(s) + As}Ea[J exp {-KV - AT,(v)}dv IT(s) ds

= 0(l) - A f EaI[I4(s)l > C(0) + 8]
VS=0

x (exp {- (K + A)T(8) + As} EC(T(s)) [f exp {-KV - AT(v)} dv])ds.

Now according to a Tauberian theorem (see Feller [5], p. 423), limK_o
lcL(a,K, A) = Eae-zT(-) = L(a, A), so that after application of Lebesgue's
bounded convergence theorem our assertion will follow.
PROOF OF COROLLARY 5.7. In the case of a Brownian motion C we solve

the integral equation (5.28),

(5.30) L(,A) + AKAL( ,A) = 1,
where

(5.31) (KAT) (a) =

L dsEaI[IC(s)I > C(0) + s][exp {-A[z(s) - s]}T(a + T(S))].
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This may appear to lead to insurmountable difficulties since not even its kernel
KA can be expressed by elementary functions. The following lemma, however,
reveals its unexpected simplicity.
LEMMA 5.1. We can write

(5.32) Kj(e"t) (a) = c(A, ))e -Pa + c(A, M) exp {-[i + 2(1 + (1 + 2,)11/2)]a}
with

(5.33) c(,t, y) = (1 + 2y)1/2[(I + 2pq + 2A)1/2 + (1 + 2y)1/2], . 0.

PROOF. Let ,(t) = C(t) - t. First we remark that with Ua(S) = inf {tt
s: ,(t) = a}, and for x _ a > 0 andK > 0,

(5.34) EXe KGa() = rO eKtpXa[4(t) . 0] dt [Jr e KtPO[c(t) < 0] dt]

(for a proof in a simpler case see Ito and McKean [6], p. 25), which will be
used in the following evaluation:

(5.35) KA(e- t)(a) -e- af E°I[c(s) > 0] [exp {-(2 + ju)aO(s) + As}] ds

+ e-a Jr EOI[ (s) > 2a] [exp{- 1 + P)C2a(8) + )s}] ds

= I + H.

We confine ourselves to computing II.
The following formula will be used twice (see [6], p. 17):

('ce f~~~~exp{-(I + 2K))/21Y y - X)fyIdy(5.36) Ex J e-Ktf( (t)) dt = (1 + 2K)1/2 e f

Thus,
(5.37) II = e-aur e' ds PoP[ (s) E dx]

x EX(exp {-(A + p)(C2a(0) + S)})

= e-l"fa e-'l ds fIO Po[(s) - 2a e dx]
s=0 x=o

x EX+2a(exp {-(A + PU)U2a(0)})
= e uaf e-ldsf Po[L(8) - 2aEdx]
==a x=+

"K fr' e -(1 ")Px[4(t) _ O] dt fr e -(A ,)tP° [4(t) _ O] dtj
= e-ua r E° r'' e-"lI[4(8) E dx + 2a] ds
x Evx fO e-('"I[)t)r:+ < 0]l dt 0 e-(A+'U)trr[:lt) < 0] dt,
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-=ua { { exp {-(1 + 2)12 IYI} -YI[y 2a + dx] dy(1 + 211)1/

7 exp {-(I + 22 + 2u)1/2 IZ - XI} e-zx) dz
=0 (I-ep(+ 2a + 21) 1/2

exp {[(I + 22 + 21)1/2 - ]Z} -1]U
c

(I + 22 + 21)1/2 dzl

ea exp {[(I + 211)1/2 + 1] (2a + x)} d
J0= (1 + 21)1/2

x exp I{-x[(l + 22 + 211)1/2 - 1]}
exp {-Ma - 2a[1 + (1 + 2,1)1/2]}

(1 + 211)1/2[(1 + 22 + 211)1/2 + (1 + 2u)1I2]

LEMMA 5.2. Let E be the space of all functions of the form I: I anZ2n(n+ 1)
with z = e-t and nI0 anI < oo. Then KAE c( E.

PROOF. It suffices to check that the recurrence relation

(5.38) Mn+1 = 11n + 2[1 + (1 + 21tf)1/2],
Po = 0

has the solution1n = 2n(n + 1), n . 0.
On E our integral equation (5.28) has the form

(5.39) E an(2)zM + 2

E an(2)c(, Yg.)(ZI" + zuln+) = 1,

n20 n2O

such that

(5.40) ao()=( 1 +2Ac(2,1PO)'

(5.41) an (A)= - 1n - I n > 0.
1+ 2C(2, jin)

Thus,

(5.42) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~an(A) = ao(2)(-1I)nAn C(
(5.42) H-= 1 + Ac(2, lj)
which, by (1 + 2pn )1/2 = 2n + 1, becomes

n
(5.43) f-H (q(2j + 1)-22)X((2n + 1)-2),

j=o

where

(5.44) (p(A) 1 + (1 + 22)1/2 + 2' x(A) = A-'[1 + (1 + 22)1/2].
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Thus

(5.45) L(a, A)
1/2 ~~~~n(I + 2A) - - H(p((2j + 1) 2A)X((2n + 1)-22A) e-2n(n+)a

2 n>0j=

is the bounded solution of (5.28).
As to the inversion of the Laplace transform it suffices to observe that

(5.46) (i) (1 + 22)1/2 - 1 -

is the transform off+ (t) - 6.
Let us now consider observables related to relative occupation and crossing

times. For simplicity we assume X1, X2, * * * to be a sequence of independent
identically distributed variables having EX1 = 0 and EX 2 = 1. Let X1 be a
centered lattice or centered nonlattice variable (see Breiman [2]). We denote
by 4 the process of partial sums of the Xi (linearly interpolated) and by v the
occupation time of the compact interval I = [a, b], that is, v(t) = card {n E N:
n < t, (n) E I} (linearly interpolated). The process (v, I4 |) will be studied in the
space IV °[0, oc) of all continuous functions x: [0, oo))_- [0, x)2 having
limt_00 x(t)/t = 0. A topology on this space will be induced by the norm

(5.47) llxii sup
lX(t12

t20 t V I

where 1 12 denotes the two dimensional Euclidean norm.
The following invariance principle extends a result of Stone [24].
THEOREM 5.3. With probability 1, (v, II) E W [O, oo); the sequence of distri-

butions of

(5.48) t n-1/2(v(nt), 1I(nt)j), t _ 0

converges (pointwise on bounded continuous functions on W [0, oo)) to the
distribution of

(5.49) t -# (III max C(8), max C(8)-( t)),O.<s -..t OSsSt

where Ij is the number of lattice points in I or b - a, respectively.
PROOF. The proof will be divided into five parts.
Part 1. The following result due to Kallianpur and Robbins [7] will be used:

(5.50) lim P[n-112v(n) < ac] = P[|II 14(1)1 < ac]
n -oo

uniformly in a; moreover, there is convergence of all moments.
Part 2. The limit distribution stated in the theorem coincides with the

distribution of (III L(t), 14(t)j), where L is the local time of 4 at 0 (see [1], [6],
[14]). The process (IlI L(t), I4(t)l) is Markovian (so is n - (v(n), ,(n)), but in
general not n -m (v(n), I|(n)I)).
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Part 3. According to Kallianpur and Robbins there is a constant c such that
E(n- l12t- lv(nt)) _ ct-l12, n E N, t > 0; and from Kolmogorov's inequality
applied to 4 (see [15]) it follows that it suffices to prove the theorem for the
processes restricted to [0, T], for every T > 0. In the sequel, we carry out the
argument for T = 1.

Part 4. In a preliminary step we show that coordinatewise convergence
holds, that is, that the distribution of t -II maxo<,,<, C(s) is the limit distribu-
tion of t -m n -12v(nt). To this end we first prove an invariance principle about
the inverse processes a -, n v1I (\/na). These processes have almost inde-
pendent increments as follows, in the nonlattice case, for noci E N, B open,
from the following relations

(5.51) P[n-1v-1(\/;ao) eB & n-1v-1(\/;(c, + aC2)) _ to]

= ,LB,yeI P[n v (_F/;2) toto (0) = y]P[n1v- (\/aocc) E dt
& ,(t) e dy]

= P[n-1v-1(\/;aC2) _ to]P[n1'v-1(,/;cL)e B] + Rn,
Also

(5.52) Rn _ max IP[n- 112v(nto)
YeI

<_ a21(0) = y] - P[n-12v(nto) <_ a21(O) = 0]1-
By the following lemma this tends to zero as n -. oo.

LEMMA 5.3. Let XI be centered nonlattice. For every K > 0, a > 0, the
sequence offunctions

(5.53) y - P[n 1/2v(n) < ocj(0) = y], y E [-K, K]

converges uniformly to a constant.
PROOF. For every £ > 0 and yo E [-K, K] there is a neighborhood U of yo

and a pair of intervals I, [ such that

IcI- ycI, ye U,
lim sup IP[n112v1(n) < oa] - P[n-12v,(n) < a]|
n-m

where vI, vI are the occupation times of I, I, respectively (this is a consequence
of the Kallianpur-Robbins theorem). But for y E U, n E N,

(5.55) P[n112v1(n) < oa] _ P[n"-12v(n) < al (O) = y]
< P[n- 1/2vI (n) < a]].

Convergence of the one dimensional marginals of the inverse processes can
be concluded from the following formula: for A > 0, c > 0,

(5.56) E ,f e- tI[n-l12v(nt) > ac] dt = E J eA) t dt
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= !Eexp {-An- 1v-1(Jo)},

which implies

(5.57) lim E exp {-An-v1(,/0)} = e -AtP[|II L(t) _ a] dt

Eexp -AL-' ot)}
We are going to show that the distributions of o -* n' v1 (\/no) converge (to
the distribution of a -A L1(a/|I|)) in an appropriate sense. To this end let us
introduce the function space 0[0, oo); this is the space of all functionsx such that

(i) x: [0, cc) [0, 0c),
(ii) x(t1) _ x(t2) whenever t1 < t2,
(iii)x(t)- oo as t- oo,
(iv) x is right continuous.

The function space #[0, cc) will be endowed with a topology by means of its
isomorphic relationship to the space 4[0, oo) of "graphs" of functions

(5.58) xe [0, cc) - A[0, cc) {U {t} x [x (t),x+(t)]:xe [0, cc)},
t.O

which carries the family of pseudometrics

(5.59) pA(Z1, Z2) = dist (z1n [O, n]2, Z2rn [0, n]2), Z1, Z2e [O, cc);
here dist denotes the Euclidean Hausdorff distance of compacts. Let us point
out the following properties of M [0, cc):

(a) x -s x- 1 is a homeomorphism of .AY[0, oo);
(b) diffuse measures with compact support are continuous on MN[0, oo);
(c) a fundamental family of compacts of #[O, oo) is given by the order

intervals [xI, x2] (with respect to coordinatewise ordering, xI, x2 E A{0, cc));
(d) a sequence of stochastic processes c, eE#[0, cc) has a tight family of

distributions if and only if the following two conditions are satisfied:

lim lim sup P[4 (t) > b] = 0, >_ 0,
b-oo n-oo

(5.60) lim lim sup P[c-1 (o) > b] = 0, a > 0;b-*o n-'0

The tightness conditions are easily verified for the processes cz n-lv-l
(.,§ca) since

lim P[n- 12v(nt) > b] = P[IIIL(t) > b],
n-oo

(5.61)
lim P[n-lv-l(,/no) > b] = P L-1(Il > b]



26 SIXTH BERKELEY SYMPOSIUM: MULLER

Hence the distributions of a -m n - v1 (.,/n) converge weakly to the distribu-
tion of a -m L-1(c/III) in &[0, oo). By (a) above, this implies the analogous
statement about the inverse processes t - n-1/2v(nt) and t -| I|L(t), in
,#[0, oc); for these processes, however, convergence takes place even in the
space W[0, 1] of continuous functions with respect to uniform topology. This
follows from the fact that for each £ > 0,

(5.62) lim lim supP[ max (n-1/2v(n(k + 1)) -_n"/2v(nk6)) > g] = 0

which can be proved with the help of (b) above.
Part 5. Proceeding to the general case we only have to establish the con-

vergence of finite dimensional distributions for the Markov chains t -M

n- 1/2 (v(nt), ,(nt)), nt EN (tightness is an immediate consequence of the previous
section and Donsker's invariance principle). The method of proof will be out-
lined in the case of one and two dimensional marginals.

Convergence of one dimensional distributions follows from the formula

(5.63) lim E r e--tI[n- 1/2v(nt) > a] exp {ign1 /12 (nt)} dt

= E exp {-L-1()} E f exp {-it + ijuC(t)} dt,

p real, A > 0. Since, on each compact,

(5.64) t -m+ pq,(t) = EI[n-1/2v(nt) > a] exp {ipn'12 (nt)}, n c N

has a uniformly equicontinuous family of uniform limit points, a, p fixed, this
implies

(5.65) lim v",(t) = EI[IIIL(t) > a] e

for each t, a, p. Uniform equicontinuity follows from H6lder's inequality
together with a previously stated limit theorem (see (5.57)) for nt2 > ntl,
integers, explicitly

(5.66) Iq<>(t2) - (P.(tl)l
< EII[n-12v(nt2) > ax] - I[n-12v(nt) > a]|

+ (E exp {ipn - 12 (nt2)} - exp {iyn- 1/2 (nt1)}j 12)1/2
< P[n-112v(nt2) > ac & n-1 2v(ntl) _ oc] + 191(t2 -tj)/2

= P[n-1v1-( /nca) e [(t1, t2)] + 11 (t2- to)1/2.

This tends to P[L-1(z/III) E (t,, t2)] + pI(t2 - tl)112 uniformly in tl, t2 as
n ( cc. The limit is equal to

(5.67) ca[III(27rs3)1/2]' exp { r1112}ds + 1p1(t2 -tl)
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which is less than or equal to c(t2 - tl)112, the constant c depending only on
a and 1iu. Equation (5.65) is equivalent to the convergence of one dimensional
distributions.
For the two dimensional distributions the argument will again be outlined

only in the nonlattice case; in general linear interpolations of the occurring
lattice functions have to be considered. For any two dimensional open set B,
and t2 > tl, ntl, nt2 e N, we have

(5.68) P[n-112(v(ntl), ,(ntl)) e B1 & n -1/2(v(nt2), ,(nt2)) _ (42, u2)]

= J P[n-1/2v(n(t2 - ti)) _ - el
& n-'12 (n(t2 - tl)) > U2 - ulIn-1/2(0) = U1]

x P[n- l2(v(ntl), 4(ntl))c-d?, x duj]
This expression converges to the corresponding quantity of Brownian motion
provided that the integrand converges to a continuous function uniformly on
compacts. For the purpose of proving this let us put

(5.69) wn (u, uO, 6) P[n - 1/2v(n(t2 - t)) _ 4 - e

& n-1/2 ,(n(t2 - t1)) _ u2 - uln-1/2(0) = uO].
LEMMA 5.4. In (4j, ul) and uniformly on compacts, we have

(5.70) lim w"(ul, ul, e1 )

= P[(|I'L(t2), W(t2)) _ (V2, U2)1 (jIIL(tl), C(t1)) = (el, uij.
PROOF. Application of the triangle inequality to

(5.71) w (ui, ii, 1) - wn(u, u, 6)

= wn(i, iu, W)-w(u, iu, 6) + wn(u, iu, 6) -wn(u, u, 6)
+ Wn(U, U, te) - Wn(U, U, el), U > U, >

yields

(5.72) Iwn(ii, u, 1) - wn(u, u,
< P[n-"12 (n(t2 - t1)) e [U2-, U2 - u)In-1/2 (0) = u]

+ IP[n- 12v(n(t2 -tl)) 62 _- 1n-1/2(0) = i]

-P[n-112v(n(t2 -tl)) _ 62 - 1n-1/2(0) = u]|
+ P[n 12v(n(t2 -tl)) e [62 - 6, 62 - )In-112 (0) = u]

I + II + III.

The smallness of II and III as t2 approaches t, and n -+ oo is a consequence of
the following fundamental lemma (see Blumenthal and Getoor [1], p. 87 4.14)).
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LEMMA 5.5. Let {Y,, : n e N} be a sequence of functionals on the paths of 4
such that 0 < Yn < 1, neN, and let yn(u) denote E(Y In-124(0) = u). Then
{yn : n e N} (their domain being restricted to a compact K) has a uniformly equi-
continuousfamily of uniform limit points provided that thefollowing two conditions
are satisfied:

(i) lim sup lynu + t/,/n -Yn(I) = 0, A > 0;
n- tj S A,ueK

(ii) lim lim sup P[ sup IY - YnosI > eIn-1/2c(0) = u] = 0,
-0 "n-.o o0sS6

u e K, £ > 0; 0, denotes the translation operator on the space of all continuous
functions x defined by O0x(t) = x(s + t).

PROOF. It suffices to show that given £ > 0 for every uo, there is a 6 > 0
such that for all but finitely many n

(5.73) {U : Ju - uol < 6} c( {U Yn(U) - Yn(u0)I < £}

The set {u: jyn(u) - yn(uo)I < £} can be written as A(uo, £, n) uB(uo, £, n),
where

A(uo, £, n) = {u: yn(u) - yn(uo) _ £},
B(uo, 8, n) = {u: yn(uO) - yn(u) > £}.

Assume that there does not exist a 6 > 0 with the above property; then there
exists a sequence {Un} converging to u0, Un e A(uo, 8, n), say, n e N; and Dn : =
{u: lu -Unj < An-112} will be contained in A(uo, c/2, n) for all but finitely
many n and every A > 0, according to (i). Moreover, if Tn : = inf {t : nt e N &
n-'12 ,(nt) e Dn} (almost surely finite, if I[0, A]| > 2), we have

(5.75) E(Ylo6TnflIn 12t(O) = uo) = E(y(n- 1/2 (nT.))In-124(0) = Uo)

_ Y. (uo) + -
2

= E(Y|In-1124(0) = UO) + 2as n o-.

On the other hand

(5.76) E(IY,,oOTn - YnIIn1/2(O) = uO)
- P[lYnoOTn - Y"j > E21n 1/2<(O) = uo] + g2
< P[T, > 6In112c:() = U0] + P SUP IYn°O5- Y"I > g2] + E2

leading to a contradiction since this quantity will be smaller than 282 when 6 is
chosen properly and n - oc.
The preceding lemma applied to functionals Yn of the form Y,=

I[n-"12v(n) > A] yields Lemma 5.4.
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5.2. Let X1, X2, - - - be a sequence of independent random variables having
uniform distribution over [0, 1] and let

(5.77) s- F.(s) :=1 card {i_n: Xi _s}, sE [0, 1],Fo-0n

be their nth initial empirical distribution function. We consider the processes

(5.78) t- /4_D(nt), ncEN, t > 0,
where

F,t(S)- S t E- N, s CE [O, I],
(5.79) D(t)s = I(1 (t- [t]))Ftt] (s)

+ (t - [t])F[P]+1(s) -s, t N.

Let 9[0, 1] denote the space of functions on the unit interval without discon-
tinuities of the second kind, endowed with the Skorohod topology, and let p.9
be a metric generating this topology such that

(5.80) p.9(x1, x2) < sup IxI(s) - x2(s)1, xI, x2 E 9[0, 1].
se[O, 1]

THEOREM 5.4 (Muller [16]). There exists a process t -/\ A(t) E _9[0, 1] deter-
mined by the following two conditions:

(i) A has independent increments A(t + h) - A(t), h > 0;
(ii) the distribution of A(t + h) - A(t) coincides with the distribution of

s /Mh[C,(s) - sC(l)] ("Brownian bridge"). The process (t, s) -m* A(t),(=A(t)
evaluated at s) is a Gaussian process over [0, cc) x [0, 1], continuous with
probability 1, having covariance function

(5.81) EA(t)8A(t')%, = ts(I - s'), s < s', t _ t'.

The process

(5.82) t - A(t) = 5tA(I/t), t > 0

has the distribution of A.
As n -+ oo the distributions of t -s VnD(nt) converge pointwise on continuous

bounded functions on O[O, 1][1, oo) to the distribution of t - A(t)/t, which is the
distribution of t -s A(1/t), too.

Moreover, if dn denotes the Prohorov distance of the distributions of AID(n*)
and A/t on the space W9[o 1][1, cc), then dn = o(n"-1/6+) for every E > 0.

Furthermore, if

(5.83) Zn = [i (-, 8) < /AD(k)s < 92 (- 8) for all k _ n, s E [0, 1]]

(5.84) Z = [gJ(t, s) < A(t) < 92(t, s) for all (t, s) E [1, oo) x [0, 1]
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where gi, i = 1, 2, are continuous functions on [1, oo) x [0, 1] subject to the
conditions

(5.85) lim sup g1(t, s) < 0, irm sup g2(t, s) > O,
t- s(1-s)-O t- s(1-s)-O

then

(5.86) IPZ| - PZ| = o(n 116+E)

for every E > 0.
COROLLARY 5.8. Let Xi, i E N, be as in Theorem 5.4 and let j be the linear

interpolation of the sequence median (X1, . . , X,,), n E N. The distributions of
t -#>/ [It(nt) - 4] converge to the distribution of t -* C(t)/2t as n -. oo, point-
wise on bounded continuous functions on W [1, oo).

PROOF. It suffices to show that for each £ > 0,

(5.87) lim P[sup I/(nt)-] + nD(nt)112J > E] = 0.

This follows from

(5.88) v/ (inf{s :F,,,(s) > -2 )

= inf n/(s -): An/D(nt)s _ n/(4- s)}
= inf {T: A/nD(nt)?/I+,1/2 _ -T}

which is close to -v/ D(nt)1/2 (in probability, as n oo).

APPENDIX

The following theorem on the large deviations of last entrance times is due
to Strassen [26].

Let X1, X2, - * * be a sequence of independent identically distributed random
variables having EX1 = 0, EX' = 1 and Ee"X, < oo for A in a neighborhood
of 0. Moreover let (p be a function on the positive line satisfying the following
conditions:

(i) Tp(t) > O, t > O;
(ii) q0(t)/01 is nondecreasing in t;

(iii) q has a continuous derivative qp';
(iv) limt1S-1, t_ 01T)(s) = 1;
(v) 0 _ th for some h < 35.
THEOREM A.1 (Strassen [26]). Provided that the left side tends to zero,

(A.(1) P[max {k i Xj xpk {> )} d

|(2ict) -112?p(t) exp {- 20t }
dt, n oo0.
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