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1. Introduction and summary

We consider stationary. additive. interval functions X(A). These are vector
valued stochastic processes having real intervals A = (x, ,B] as domain, having
finite dimensional distributions invariant under time translation and satisfying

(1.1) X(A1 U A2) = X(A1) + X(A2),

for disjoint intervals A,. A2. Such processes are considered in some detail in
Bochner [5]. Setting

(1.2) X(t) = X(0, t],

-o < t < oo, and in the reverse direction setting

(1.3) X(,B3] = X(f,) -X(x)
we see that a consideration of stationary interval functions is equivalent with a
consideration of processes X(t), - x < t < x, having stationary increments.
These last are discussed in Yaglom [24] for example. Important examples of
processes of the type under consideration are provided by the point processes.
Here the components of X(A) give the number of events of various sorts that
occur in the interval A. A variety of properties and applications of point pro-
cesses may be found in Cox and Lewis [11], Bartlett [4], and Srinivasan [21].
The paper is divided into various sections. In Section 2 we introduce a key

assumption for the processes; specifically we require that all the moments of
X(A) exist and have particular integral representations. We are then able to
define

(1.4) fa1. ,ak(Al, X Ak),
-x << < (o, al, **, ak = 1, r, the cumulant spectra of order k of the
r vector valued X(A). These turn out to be generalizations of the cumulant spectra
of order k of a continuous time series discussed in Brillinger and Rosenblatt
[9]. We then present a spectral representation for X(A). This representation was
introduced in Kolmogorov [17] for real valued processes with stationary incre-
ments. It takes the form

(1.5) X(O0 t] = X [exp {iAt} - I dZ,(A),
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with Zx(), -o < i < oo, a vector valued process. The process Zx(2) relates
to the cumulant spectrum (1.4) through the expression

(1.6) cum {dZai(Ai), ,dZ.. (A,)

= ij)fai, ,ak('1' vk) d **, dAk

with b(A) denoting the Dirac delta function.
In Section 3 of the paper we indicate how the theory developed applies to

integrated continuous time series, to point processes, and to processes that are
hybrids of these last two. In the case of point processes we relate the cumulant
spectra to important parameters that have been introduced by Bahba [1] and by
Kuznetsov and Stratonovich [18].

Section 4 of the paper discusses various asymptotic properties of the statistic

(1.7) d(T)[(A) = exp { -it} dX(t)

based on an observed stretch of an X(A) process. It will be seen to behave in a
similar manner to the finite Fourier transform of a stretch of a continuous
stationary series. It follows that the estimates of the various cumulant spectra
of X(A) may be formed in the manner of Brillinger and Rosenblatt [9] and that
the properties developed in that paper, such as asymptotic normality, will con-
tinue to hold. A selection of results that therefore become available is provided.
In particular results relating to the linear time invariant regression of one
stationary interval function on another are given. Because point processes are
particular cases of the processes under consideration it follows that an asymptotic
theory for the spectral estimates of order two of point processes has now been
provided.

In Section 5 we apply the previously mentioned asymptotic results to develop
estimates of the parameters suggested by Bahba and by Kuznetsov and Stratono-
vich for point processes. In Section 6 we consider the problem of the estimation
of the second order spectra of a continuous time series when its values are avail-
able only for random times that are the occasions of events of an independent
point process.

Section 7 discusses briefly some practical implications and extensions of the
results of the paper. The proofs of the various lemmas and theorems of the paper
are given in Section 8.

I would like to thank P. A. W. Lewis for a variety of helpful comments on the
point process sections of the paper.

2. Random interval functions

Let A denote the collection of finite intervals of the form A = (a, /3]. We
consider r vector valued stochastic processes X(A), A E A with the additivity
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property

(2.1) X(A) = X(AI) + X(A2),

for A. A1, A2 E A with A = AI uA2. A1 r A2 = 0. Such a process will be called
an r vector valued additive stochastic intervalfunction. As one example we mention

(2.2) X(A&) = fY(t) dt.

where Y(t), - o < t < cr, is a continuous r vector valued time series. As a
second example we consider X(A) = N(A) where N(A) is an r vector valued point
process with NA'(A) giving the number of events of the ath component of the
process that occur in the interval A. As a final example we mention

(2.3) X(A) =f" Y(t) dN(t).

where Y(t), -oo < t < oc, is an r vector valued continuous time series and
N(A). A Ec A, is a point process. If r,, -.-,T., denote the times of events of the
process N(A) in the interval A. then X(A) equals

(2.4) Y(Tz) + * + Y(Tz).
in this case.

In connection with the process X(A), A E A, we set down
ASSuTMPTION 2.1. The process X(A), A E A, is an r rector valued stochastic

interval function possessing moments of all orders such, that for Al Ak E A;
a,, ,ak = 1. ,r; k = 1, 2,

(2.5) E{Xa,(Aj) Xak(Ak)} = J1f dMai...ak(tl tk)

for some function Mai,... ak(tl, tk), -00 < ti < oc. of bounded variation in
finite intervals.

In the case that X(A) satisfies this assumption and Ma(t) is bounded and con-
tinuous for t in some interval of A and 0 outside the interval, we may define
stochastic integrals of the form

(2.6) fw Oa(t) dXaMt

as the limit in mean (of any order v > 0) of approximating Riemanni sums

n
(2.7) Y la(tj) Xa(Aj),

j=1

where tje AjandA, U ... uAnisapartitionofthesupportof Oa(t),a = 1, r.
(See Cram6r and Leadbetter [12], p. 86 for the case v = 2.) These integrals have
the property
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(2.8) E f O.,(tl) dX.l(tl) ... f O., (tk) dX., (tk);

=wf f 0 (tl) ...O.,(tk) dMa1, ,ak(t l tk),
for a,, .a = 1, ,r.
For A = (a, ,B] in A we denote the translated interval (ca + t, / + t] by A + t

for -oo < t < xo. We will now say that an r vector valued additive stochastic
interval function is stationary if the joint distributions of all finite collections of
variates

(2.9) X(A1 + t), * , X(Ak + t),

Al, ,* * Ake A, - < t < oc, and k = 1, 2, ,do not depend on t. In this
connection we have
LEMMA 2.1. If X(A), A E A, is a stationary r vector valued additive interval

functionsatisfyingAssumption2.1, thenfora1, ,ak = 1 , r;k = 1, 2,

(2.10) E{Xa (Al) Xak(Ak)}

= f1Q * *F*Ak d1J1l..-ak (tl - tk tk -1 tk) dik,

forsome function Ml, ... ak(u, uk_l),- c < uj < oc,of bounded variation
infinite intervals.

In the case k = 1, the lemma indicates that

(2.11) EXa(A) = CaIAI,
for some constant C', a = 1, , r with A denoting the length of the interval A.

It follows from this lemma that one can write

(2.12) cum {Xa (Al). , Xak(Ak)}

= JiQ, .Fu d0.*ak(t - tk, k, -1 - tk) dtk,

for a function C . ak(U1 * Uk -1), of bounded variation in finite intervals.
In differential notation we may write this last as

(2.13) cum {dXai(UI + t), , dXak 1(Uk-I + t), dXak(t)}
= dCal, ,ak(Ul, Uk-1) dt.

Taking note of Lemma 2.1 and (2.12) we set down the key assumption of our
work. It is

ASSuMPTION 2.2. The process X(A), A e A, is a stationary r vector valued addi-
tive intervalfunction satisfying Assumption 2.1 and such that Ca Uak(u,** uk - 1)
of (2.12) satisfies

(2.14) J j Iujl dlCaI ak(Ul, uk)1,l < %t ~~ ^ 1 BA .1.f
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This assumption has the nature of a mixing condition on the increments of
X(t), that is, increments that are well separated in time are only weakly dependent.

In view of condition (2.13) we can define the Fourier transforms

(2.15) fat, ..k(.i.. ,Ak)

= (2) -k+l .r . J exp{- i AjuJ}dC'l,...,ak(ul, ,Uk
for -XC < A1, ,Ak <c0, where we understand Al+ + Ak=O in the
definition. For completeness we set

(2.16) fa(') =Ca,
where C' was defined in (2.11), a = 1, r. The transform fa,. ,ak(AI'* Ak)
is called a cumulant spectrum Of order k of the process X(A), A E A. We will
sometimes find it convenient to adopt the unsymmetric notation

(2.17) fal..ak.l. v v ik-1) = fal, ,ak('li Ak)-

The second order cumulant spectra, fa b('), - O < A. < oo, are of particular
importance. It is convenient to collect them together into the r x r spectral
density rnatrix

(2.18) fG,x(A) = [fa,b(')]
We also collect the first order spectra together into the r vector

(2.19) fx = [fa]-
There is an intimate connection between stationary interval functions and

stationary series. Suppose that, X(A), A E A, satisfies Assumption 2.2. and has
cumulant spectra

(2.20) fal,' ,ak('l' v Ak)-
Suppose the real valued, Oka(t), -X < t < oo, satisfies

(2.21) f |t Oa(t) dt < oo,
for a = 1, ,r. Then the r vector valued times series, Y(t), -o < t < oc, with
components

(2.22) Ya(t) = { 4a(t - u) dXa(U),

a = 1, r may be seen to be stationary and such that

(2.23) cum {Yai(t + t1), . Yak -(t + tk-1), Yak(t)}

=f f (Pa,(tl U1) ..

ak (tk- I Uk -1) Oak(Uk)
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Taking a Fourier transform, we see that the cumulant spectra of Y(t), in the
sense of Brillinger and Rosenblatt [9], are given by

(2.24) Da,i(l) ... )ak(2k)fal, ,ak(A ,k),
where

(2.25) 4a (A) = exp {-iAt} 'Oa(t) dt,

fora= , ,r.
A variety of authors (including Kolmogorov [17], Doob [14] p. 551, Ito

[16], Yaglom [24], [25] p. 86, Bochner [5] p. 159) have given spectral repre-
sentations for stationary interval functions (or processes with stationary incre-
ments). In this connection we mention
THEOREM 2.1. Let the process X(A), A E A, satisfy Assumption 2.2. Let

(2.26) Z(T)() = (2it)-1 I - exp {-iAt) dX(t)x ~ ~ JTL -it

for -coo < A < oo. Then there exists, Zx(A), -oo < A < oo, sUCh that Zx¶)(2)
tends to Zx(A) in mean order v, for any v > 0. Zx(A) satisfies

(2.27) cum {Zai.), ,Za.(k)

fo 6 LXb( fal,,- ak(aL >a)dl d

for a1, , ak = 1, * , r; k = 1, 2, *-- Also

(2.28) X(A) = J [J exp {iAt} dt dZx(i),

with probability one.
In differential notation particular cases of (2.27) include:

(2.29) E dZx(A) = b()fx dA;
(2.30) Cov {dZx(A), dZx(u)} = 5S(A - )fx,x(A) dA du;

(2.31) cum {dZaD(2i), * * , dZak(Ak)}
= 3(2A + + ik)fa , ,ak(Al. 2ik-1) dAl .. dAik

Also if we set X(t) = X(O, t], then (2.28) takes the form

(2.32) X(t) {[exp {i;t} dZ (A),

for -oc < t < oo.
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The representation (2.28) is useful for displaying the effect of linear time in-
variant operations on the process, X(A), A E A. Suppose a(A), A E A, is an s x r
matrix valued interval function of bounded variation satisfying

(2.33) Jf It|dja(t)l < oo.

Set

(2.34) A(i) = Jfexp {-i)t} da(t),

for -x < A < x. The s vector valued interval function

(2.35) Y( ) = a* x(A)

=f a(A - u) dX(u),

A E A, may be seen to satisfy Assumption 2.2. Also the process Zy(A), -oc <

A < oo, of its spectral representation may be seen to satisfy,

(2.36) dZy(i) = A(i) dZx(i).

We may infer from this last that the spectral density matrices of X(A) and Y(A)
are related by

(2.37) fy,(X) =

This last relation has the identical form with that giving the effect of linear time
invariant operations on the spectral density matrices of time series.
We conclude this section by remarking that the functionMl .., a(u1,* Uk-1)

of (2.10) may be determined as

(2.38) Ma'i...,ak(Ul, I, Ukl)

= E{T- 1 Jf Xai(I, t + Ul] ... Xak ,(t, t + Uk -] dXak(t)}.

3. Some examples

EXAMPLE 3.1. Suppose that Y(t), -oo < t < x, is an r vector valued
stationary time series possessing moments of all orders. If

(3.1) Cal,...,ak(U1, Uk-1) = cum {YaM(t + u1), Yak M(t + uk-1), Yak(t)})

satisfies

(3.2) J'... I JIICa ...ak(Ul, ,Uk-1)|du, duk1 < °°.
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the cumulant spectra of the series, Y(t), -oo < t < oo, are given by

(3.3) fak .ak(21, i)

(2rf)-k+1r exp{-i iju Cal ...,ak(Ul,..Uk1)

du1 ... dUk - 1,

understanding 2A + * + Ak = 0 (see Brillinger and Rosenblatt [9]). Also the
Cramer representation of Y(t) is given by

(3.4) Y(t) f exp {i2t} dZ,(2),

where

(3.5) Zy(A) = L.i.m. (2,t'fT[xp{i)tl-1 Y(t) dt.
()Y)Tox Jf-T L -it (

Suppose we construct the interval process

(3.6) X(^) = f Y(t) dt,

then we quickly see that this process satisfies Assumption 2.2 with

(3.7) Cal,** ,ak(U1 , Uk-1 = .. fCaJak(U Uk1
du, ... dUk-l.

The cumulant spectra of the interval process, X(A), A E A, are therefore the same
as the cumulant spectra of the time series Y(t), -oo < t < oo.
A comparison of expressions (3.5) and (2.26) indicates that Zx(A) of the

spectral representation of X(A) is equivalent with Zy(A) of the Cramer represent-
ation of Y(t).

In a later section we will see that our proposed empirical analysis ofthe process,
X(A), a E A, reduces to the usual empirical analysis of the continuous series
Y(t), -oo < t < oo.
EXAMPLE 3.2. Consider an r vector valued point process, N(A), A E A. Here

Na(A) represents the number of events of the ath sort that occur in the interval A.
If we let la denote a vector with 1 as its ath component and 0 elsewhere, then
we may set down
ASSUMPTION 3.1. The point process, N(A), A E A, possesses moments of all

orders and is such that if A1, * **, Ak are disjoint intervals with A11,I, **AkI _
5 < 00,

(3.8) P{N(A1) = n,, N(Ak) = nk} < KIA|lAIn1I ... IAkIIlkl
for some finite K, and for nl, * * , nk having nonnegative integral coordinates.
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Alsoif t eAj,forsuchA1, , Ak, thereisafunctionpal,...,ak(tl , tk),bounded
in finite intervals, such that

(3.9) lim 11& *1&** 1|P{N(A1) = 1, , N(&k) =I.J
= Pai, ,ak(tl tk),

uniformly in t1, * , tk-
The functions Paj,* -,ak@ *- . tk) have been called product density functions,

see Srinivasan [21]. The function Pa(t), -oo < t < oo, is called the density of
events of the ath sort at time t, a = 1, , r.
We note that the process satisfies

rr

(3.10) P Y N(A) > 1} = O(|A|2),

and is therefore orderly (events tend not to happen simultaneously). Also we
have

(3.11) P{Na(A) = 1} = pa(t)lA| + o(jAj),

and

(3.12) P{Na(A) = 0} = 1 - Pa(t)IAI + o(IAD).
In the theorem below we let 6{x} denote the Kronecker delta 6{x} = 1 if

x = 0 and b{x} = 0 otherwise. We let XA(T) denote the indicator function
XA(T) = 1 if T e A, XA,(T) = 0 otherwise. We have
THEOREM 3.1. Let the r vector valued point process N(A), A E A, satisfy

Assumption 3.1. Then

(3.13)
k r

E{Na(JAI) * Nak(Ak)} = k r [f5{oelaj}] ...*f*[ cx{ -aj}]
z=1a,, ,ag= 1 jev, jc-vt

f... f [H (Xi)] [H Xj(T)] P.,,. ,Oe (T1, T.*, Tt) dT1 ... dTf

with the sum extending over all partitions (v1, * * , v) of the set (1, * *, k).
We see that the moments of N(A), A e A, have the integral representation

required in Assumption 2.1. Particular cases of this theorem include

(3.14) ENa(A) = SApa(T) dT,

(3.15) E{Na(Ai)Na(A2)} = f& fAJ Pa,a(Tl, T2) dT, dT2 + IA2 Pa(T)dT

(3.16) E{Na(Al)Nb(A2)} = fA f Pa,b(TI, T2) dTj dT2 if a * b,
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and
k

(3.17) E{Na(A)k} = Z j( * Pa. .a(Tl , T) dT. dTe,

where 59(') denotes a Stirling number of the second kind. Expression (3.17)
was set down by Ramakrishnan [20] and Kuznetsov and Stratonovich [18].
Kuznetsov and Stratonovich [18] remarked that it might prove more useful

to consider the cumulant functions

(3.18) qai, ,ak(tl, . tk)
k

= Z (-1)s-1({ - l)!paj;jevi(tj; jE v1) * *Paj;jevv(tj;iE Vt),
e=1

where the summation extends over all partitions (v1, * , ve) of (1, * * *, k). These
functions have the property of tending to 0 as ti -tj oo in the case that the
increments of N(t) are tending to become independent as they separate in time.
Particular cases of the functions include

(3.19) qa (t) = Pa (t),

(3.20) qa,b(tl, t2) = Pa,b(tl, t2) - Pa(tl)Pb(t2).

The inverse relation to (3.18) is

k

(3.21) Pal,. ,ak(tl *, tk) = L qaj;jevi(tj;j e v1) qaj; jev(tj;j E vt).
t=1

We have
THEOREM 3.2. Let the r vector valued point process N(A), A E A, satisfy

Assumption 3.1. Then

(3.22)

cum {Nai(Aj), * *,N*N(Ak)} = _ Z [ x1 - aj)] ... [H b{x - aj)]
=1I,", e=1 ljEvi jevve

..fLF XAjCrA .. [f X%&j(re) X * i(1, ***TeT) dT1I ... dTe
where the summation extends over all partitions (v1, * * ve) of the set (1, * , k).
The relation (3.22) has the same form as the relation (3.13). As particular

cases we mention

(3.23) ENa(A) = fA qa(T) dT = fAPa(T) dT,

(3.24) Cov {Na(,A), Na(A2)} = {f qa,a(rl, T2) dT1 dT2 + J' qa(r) dr,

(3.25) Cov {Na(Al), Nb(A2)} = { { qa,b(Tl, T2) dT, dT2:
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and
k

(3.26) cumk {Na(A)} = 9(fk) J J' qa,,a(1 ,ZT) dT1 dTj.
,=I1 A

..

f

This last expression was given by Kuznetsov and Stratonovich [18]. We remark
that in differential notation, (3.22) has the form

(3.27) cum {dNaI(ti), *, dNak(tk)} = qa1,. ,ak(tl, tk) dt. dtk,

if the tj are distinct. As a further implication of the theorem we have
COROLLARY 3.1. Under the conditions of the theorem and if 'a (t) is continuous

with finite support, a = 1, *, k, then

(3.28) cum {f 'k1(t) dNai(t)0, f Ok(t) dNak(t)}

k r
= E1 Z _ [H6{ i-aj}]... [H {c-aj}]f.. [fI'j(z)]{ x. ,x=1 jcHv( jEVe j.-v I

* - - [Xjlf)] gxl,,xt(l , Te) dT, dTe

where the summation is over all partitions (v,. v,) of (1 k).
If the point process N(A), A E A, is stationary. then

(3.29) Pa
.....

,ak(t + t1,, t + tk) =Pa, Jk(tI. * tk),
and

(3.30) qa... ..ak(t + tl, t + tk) = qa, .ak(tl , tk).

for all real t, t1, . tk. In this case we set

(3.31) ral,,..,ak(Ul , uk-1) = qa,... ,ak(u1, Uk- 0).

The parameter ra is called the mean intensity of the process Na (A), A e A: ra, a (u)
is called the covariance density of the process Na(A), A e A: and ra, b(U) for a ¢ b,
is called the cross covariance density of the component Na(A) with the component
Nb(A).

We now set down
ASSUMPTION 3.2. N(A), A e A, is an r vector valued stationary point process

satisfying Assumption 3.1 and such that

(3.32) f .. fj ujllr.,,..'',k(Ul' ,Uk-j)j du, . dUk < °°

for a, ,ak = 1, * - , r; k = 2, 3,
If the process N(A), A e A, satisfies this assumption, then we may define the
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Fourier transforms

(3-33) Aa,,k(l ,ik)

fexp {-ik 2juj} ral ak((U, UkU-1) du, ... dUk-,1

understanding Al + + Ak = 0. For completeness we set

(3.34) ga(A) = ra = qa(t) = Pa(t),
in the case k = 1. We now have
THEOREM 3.3. Let the point process N(A), A e A, satisfy Assumption 3.2. Then

the process satisfies Assumption 2.2. Its cumulant spectra are given by

(3.35) faj, ak(1 . Ak)
k r

(2)-k+lI _ [H 6{cxl - aj}]
O 1- JG,Vle=ljeJ

f*[lb{it aj}] g.,,.. j[y Aj, * *AEij]
jeV' je-v I je-V'

with the summation extending over all partitions (v1, , ve) of (1, , k).
As particular cases of the cumulant spectra we mention

(3.36) f a = ra,

(3.37) fza,a(A) = (2c)1[g9a,a(A) + ga]
= (2lr)V[-f exp {-iAt} ra, a (t) dt + r,],

in agreement with Bartlett [4], p. 183. Also

(3.38) fa'b(A) = (2r) 1 f exp {-iAt) ra,b(t) dt if a b,
and

(3.39) fa,a,a(il, 22) = (2ir)2 [9a,a,a(21, 22) + 9a,a(21) + 9a,a(22)
+ ga,a(-21 - 2) + 9a],

We have the following relation, inverse to (3.35),

(3.40) ga1,.. ,ak(A1l . . Ak)
k r

k r (-1)t1(t - 1)! (27r)k?[H 6{x1 - aj}]
{=1 ,,''',1e>=1 ~~~~~~~~~~jevI

* [H 6{a - aj2] ,,j, * * EAA,
je-ve je-v ieve

where the summation is again over all partitions (vl, * * , ve) of the integers
(1, - * , k).

In Section 2 we discussed a class linear time invariant operations on stationary
interval processes. It may be of interest to indicate a subclass of these operations
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which carry point processes over into point processes. Let aj, j = 0, + 1, ...

be a sequence of real numbers. Let

(3.41) a(A) = the number of aj E a,

then.

(3.42) Y(A) = a* N(A)

fra(A - u) dN(u)

will be a real valued point process in the case that N(A), A E A, is one. If Tj,
j = 0, + 1, , denote the times of events of a realization of N(A), then events
of this Y(A) occur at the times Tj + ak,j, k = 0. + 1, *

Daley [13] discusses the second order spectral theory of point processes, con-
siders operations on point processes, and presents a variety of examples.
EXAMPLE 3.3. Suppose that Y(t). -oo < t < x, is an r vector valued

stationary time series satisfying the conditions of Example 3.1 and having
Cram6r representation

(3.43) Y(t) = f exp {iAt} dZy(A).

Suppose N(A), A E lA, is an independent stationary point process satisfying
Assumption 3.2 and having spectral representation

(3.44) N(A) = { [T exp {i2t} dtl dZN(i).

In Section 6 of the paper we will consider the process

(3.45) X(A) = fA Y(t) dN(t)

= Y(T1) + + Y(Tr),
if T, * , T,, are the events of N(A) in the interval A. One can check that this
process satisfies Assumption 2.2. If its spectral representation is

(3.46) X(A) = f [f exp {iAt} dt] dZX(X),

then we see directly that

(3.47) dZx(i) = J [dZy(A - x)] dZN(Ca),

for -oo < A < oo. Expression (3.47) may be used to determine the cumulant
spectra of X(A) in terms Qf those of Y(t) and N(A).
We mention that Walker suggested the consideration of real valued processes

of the form (3.45) in the discussion of Bartlett [3].
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4. Stochastic properties of finite Fourier transforms

We now turn to an investigation of certain statistics useful in the estimation of
the cumulant spectra of a stationary interval function X(A). A E A. We will sup-
pose that the values of X(A) are available for A contained in the support of a
function h(t/T), T = 1, 2, . We set down.
ASSUMPTION 4.1. The function h(t), - oc < t < ct. is measurable in t,

bounded, zero for It| > 1 and there exists a finite K such that

(4.1) f lh(t + u) - h(t)I dt < Klul
for all real u.
The inequality (4.1) will be satisfied if h(t) is of bounded variation, for example.
For given T. the function h(t/T) has been called a taper by Tukey [22]. It has
also been called a data window.
The principal statistics of our analysis of interval processes are the finite

Fourier transforms,

(4.2) d(T(i) - ha(t/T) exp { -it} dXa(t),

a = 1, , -occ < A < co. In the case of Example 3.1, the statistic (4.2) takes
the form

(4.3) d(T)(A) {ha(tlT) exp {-iAt} Ya(t) dt,

that is, it is the Fourier transform of the tapered values that was considered in
Brillinger and Rosenblatt [9]. In the case of Example 3.2, ifwe let ra(l),. , Ta(na)
denote the times of events of the ath sort that occur in the support of ha(t/T),
then the statistic (4.2) has the form

n,,
(4.4) E ha(Za(j)/T) exp { -iTa(j)}-

j=l

This statistic, excluding the taper, was considered in Bartlett [3] for the case
r = 1 and suggested for the case of general r by Jenkins in the discussion of that
paper. In the case of Example 3.3, the statistic has the form

n
(4.5) E ha (Tj/T) exp { A-iTj} Ya (Tj),

if T1, Tn, denote the times of events of the process N(A) in the support of
ha (t/T).
We next present a basic theorem indicating the asymptotic joint cumulants of

the Fourier transform (4.2). In the theorem we let

(4.6) Hal, *, ak(i) = f ha, (t) .. ha(t) exp {-iAt} dt.
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THEOREM 4.1. Let the process X(A), A E A, satisfy Assumption 2.2. Let ha(t),
a = 1, *, r, -- < t < oo, satisfy Assumption 4.1. Then as T -+oo

(4.7) cum {dIT(21 ), dda (A,)}

= THa.l... ak(T A2i) (27C)k faI, -,ak(Al, Ak- 1) + 0(1)

for a1, -, ak = 1, r; k = 1, 2, The 0(1) term is uniformly bounded
in 2,. Ak
We see that the joint cumulants are of reduced order unless yk A is near

zero. We see from (4.6) and (4.7) that the joint cumulants based on disjoint
stretches of data are of reduced order as well.

If ha(t) = 1 for 0 . t . 1 and ha(t) = 0 otherwise, then this theorem has
identical nature with the key theorem used in Brillinger and Rosenblatt [9],
Brillinger [6], Brillinger [7] to develop properties of spectral estimates. The
results ofthese papers therefore become directly available. We indicate a selection
of results that now hold.
We begin by considering the asymptotic distribution of the finite Fourier

transform. Let NA(u, E) denote the complex r variate normal distribution with
mean u and covariance matrix L. We have
THEOREM 4.2. Let X(A), A E A, be an r vector valued intervalprocess satisfying

Assumption 2.2. Let sj(T) be an integer with Aj(T) = 27rsj(T)/T -+ 2j as T -oo
for j = 1, , J. Suppose Aj(T) Ak(T) ¢ Ofor j, k = 1, J. Let

(4.8) dIT)() = exp {-iAt} dX(t)

for -GcO < A < cc. Then d(T)(Aj(T)), j = 1, , J are asymptotically indepen-
dent Nc(O, 27tTff.x(i)) variates, respectively. Also d T)(0) = X(0, T] is asymp-
totically Nr(TfX, 27cTf x(0)) independently of the previous variates.

This theorem has the nature of a central limit theorem. Let W,c(n, E) denote
the complex Wishart distribution of dimensions r x r, degrees of freedom n
and covariance matrix E. Define the matrix of periodograms

(4.9) 1(T)_ () = (27rT)1 d(T)(A) d(T)(2A)j
We have the following corollary.
COROLLARY 4.1. Under the conditions of Theorem 4.2. if 21 = =. = A

and if
J

(4.10) fxT)(A) = J I(TX(2j(T)),
j= 1

fxVT) (2) is asymptotically J- 'Wc(J, fx, x (2)) as T -- oo.
This corollary makes precise the chi square approximation for the distribution

of second order spectral densities of point processes suggested by Bartlett [3].
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We next construct consistent asymptotically normal estimates of the cumulant
spectra of different orders of an interval process X(A&), A e A. We begin by letting
W(Ul, *- , Uk) be a weight function satisfying
ASSUMPTION 4.2. The function W(ul, * *, Uk), - XC < uj < oc, is symmetric

in u1, Uk, is concentrated on the plane Xk uj = 0, and is such that

(4.11) ... W(Ul.* U ( uj) du ... duk = 1

and
k-i k-

(4.12) W(U,U - u) /W3'(ui Uk-1 - k U)

k-1 1/2 -k-E+l1

_ A 1 + L41 u]2 )

for some A, > 0, =1, ,k.
Given the sequence of nonnegative numbers B(k), T = 2, 3, . We set

(4.13) WT(Ul, Uk) T(B(T) W(B(T BT U

We suppose B(T) < B( - * Next we set T(ul. Uk) = 1 if 1Uj = 0
but no proper subset of the uj has sum 0. and set it = 0 otherwise. Let

(4.14) d(T)(A) =j exp {-iAt dX(t).

Finally set

(4.15) Ia(,,ak . kk) = (2t) T H da (j).

As an estimate of fa.. ak(Al1' * 2k) we now take

(4.16) fa(T. .,ak(l*'. Ak)

(27rk1 TT 2ir81 27[A- _k
= ( \TJ) ;. Z -TA I T , k T)

MJ(sl * **nk)Ia.T)
2

( 271Sk)

In connection with this estimate we have the theorem,
THEOREM 4.3. Let X(A), A e A, satisfy Assumption 2.2. Let W(Ul, Uk),Uk)

satisfy Assumption 4.2. Let faT.-,ak(l,,, Ak) be given by (4.16). Let B T 0,

(B(Tk))k-1 T x as T , oo, then

(4.17) Efa )- ,ak(A1. ' 4k)
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= .. f WT(il - **, (k)fa,,ak(a * k)

*(cx +± + k) dl** da, + 0(B¶(k)T)

fal, ,ak (Al' ,)Lk) + O(BT)) + T

(4.18) lim (B(k))k T Cov {fa2T. ak(2A1, ,Ak).fa, auI(it I klk)}
= 27Z6L - kP,0I} -Ik P,k}falap, I (A1) fakap, k (Ak)

P

J.. fJwW(u.1 uk) 6( uj du1 duk,

where the summation is over allpermutations P of the integers 1, , k. Collections
of spectral estimates are asymptotically jointly normally distributed as T -+ oo

with estimates of different orders asymptotically independent and estimates of the
same order having covariance structure given by (4.18).
We next turn to the development of an empirical analysis of the linear time

invariant model,

(4.19) Y(A) = a*X(A) + &(A)

= {a(A - u) dX(u) + 8(A),

with X(A), 8(A), A e A., independent stationary interval processes and

(4.20) f Jul dla(u)l < oo.

In differential notation we may write (4.19) as

(4.21) dY(t) = f [da(t - u)] dX(u) + d8(t).

Denote the cross spectral density matrix of the process

(4.22) LX(A) 1Y(A)j
A e A. by

(4.23) L xtA)fY A)

and that of E(A), A E A. by f, Set

(4.24) A(A) = f exp {-iAt} da(t).
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Then (4.19) gives

(4.25) f' x(i) =

(4.26) f'yy(i,) = A(A)f~,x(x)A(A) + fE(i).

These last suggest that we may base estimates of A(i) and fE E(A) on an estimate
of the spectral density matrix (4.23). We could construct an estimate of this
last in the manner of (4.16); however, in order to display an alternate form of
spectral estimate of order two we proceed slightly differently.

In constructing this alternate estimate we let h(t), - x < t < x . be a tapering
function satisfying Assumption 4.1. We then set

(4.27) Hk(A) = f h(t)k exp {-i2t} dt.

for -o < A < oc. We next set

d(T)(A) = f h(t/T) exp {-iAt} dX(t).
(4.28)

d(T) (A) = J'h(t/T) exp {-i)J} dY(t):

and we let W(o) be a weight function satisfying
ASSUMPTION 4.3. W(a), -a: < a < ox, is real valued, even, absolutely inte-

grable. has an absolutely integrable first derivative, and

(4.29) J'W(a)da = 1.

The variate (4.22) has mean

(4.30) [ r]

Estimates of f,, f' based on tapered values are provided by

f(T) = {h(t/T) dX(t)/ h(t/T) dt = d(T)(O)/[TH1(o)].
(4.31)

f(T) = h(t/T) dY(t)/ h(t/T) dt =d-(T)(O)I[TH,(0)]
respectively. The Fourier transform of the process (4.22) corrected for its sample
mean is then given by

(4.32) exT)(A) = f exp {-iAt}h(t/T) [dX(t) - f¶T) dt]
= d(T)(A) -d(&T)(O)H1(TA)/H1(0),
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e(/T)() = fexp {-iAtt}h(t/T)[dY(t) - f(T) dt]

= d(T)(A) -d(yT) (0)Hi(TA)/HI(0).
Let BT be a sequence of nonnegative numbers tending to 0 as T -+ oo. Set

(4.33) W(T) (a) = B 'W(B -c).

As an estimate of the cross spectral density matrix (4.23) we now propose

(4.34) [ i) fX J=( W(T)(A - da)(27T.[ (T)( (T] do.

As estimates of A(A), fe£(A), we then take

(4.35) A(T)(A) - f(T)_ ())f(-T) 1

(4.36) g(Te)(A) f(T)_ (A) _f(-T) ()f(T) (A) fX (A)

We can now state the following theorem.
THEOREM 4.4. Let the process X(A), A e A, satisfy Assumption 2.2. Suppose

fk,x (A) is nonsingular. Let the process 8(A), A e A, satisfy Assumption 2.2., have
mean 0 and be statistically independent of the process X(A), A e A. Let a(A) satisfy
(4.20). Let Y(A) be given by (4.19). Let W(a) satisfy Assumption 4.3 and h(t)
satisfy Assumption 4.1. Then if BT - 0, BTT -+ oo as T -oo,

(4.37) lim ave A(T)(A) = A(A),
T-00

(4.38) lim BTT Cov* {vec A(T) (A), vec A(T) ( 1u)
T-0o

= 2rH4(0)H2(0f26{Z - }fe() ®.fj9,() J' W(a) dc,

(4.39) lim ave g, (A) f£,£(A)

= 2itH4(0)H2 (0) -b{ 14 [f£, e(a)]j,m[f2£( - ))]k pn

+ 6{il + /4} [f,(i] [fLe( L~)]k,in) f( W(aL) da,

(4.41) lim BTT CTT {vec A( )(g), gJ(gUT)} = 0,
T-oo

for j, k, m, n = 1, * , s. Also the variates A(T)((A), g(T£)(y) are asymptotically
jointly normal with the above covariance structure.
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(In this theorem ave, Co6v have technical definitions allowing the use of Taylor
series expansions in determining asymptotic moments. See Brillinger and Tukey
[10].)

In the case r = s = 1, we may define the coherency of X(A) with Y(A) at
frequency 2 by

(4.42) RyX()=[fX(A,1f2(f]2
As an estimate of the coherency we consider the statistic

(4.43) IR¶T (2) 12 [ if'{(i)]Y,X [ff (2)fy(T (2)]
We then have from the theorem
COROLLARY 4.2. Under the conditions of the theorem? and iffk X (i).fy Y (2) 00.
Y/(2)i2 is asymptotically normal with

(4.44) lim a~~e~R(T) (A)12 = IRY,X(A)12(4.44) lm av"e |BYT)(i=XR XiI
and

(4.45) lim B,T Co+v {IY X() IY,X()}
= 4irH4(0)H2 (0)-2 [b{ - Ju}

+ 3{2 + lI}]IRy,X(A)j2[1 - IRY X(A)12]2 f 1,X(a)2 dat.

A comparison of the results of this theorem and its corollary. with the corre-
sponding results for the regression of one vector valued stationary time series
on another, shows that they are identical. This will also be the case for the
interval process extension of many of the asymptotic results of the analysis of
stationary time series.

5. Estimation of product densities

Let N(A), A E A, be a stationary point process satisfying Assumption 3.2. We
have defined various characteristics of such a process. These may be summarized
as follows:

(5.1) Pal,ak(tl tk)
= lim p{dNai(tj) = 1, dNak(tk) = 1}/(dt. dtk)

dtj-0

for t1.. . tk distinct;

(5.2) qal ak (t, , tk)
k

=E (-1(0' - l)!paj;jevi(tjje vI) Paj;jev (tj; je v6);
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(5-3) a,-,(l tk)
k

Y- qaj;jEv1(tj;j e V1) ... qaj; jEv (tj;j e VI);

(5.4) ral,...,ak(U1, Uk-1) = qa .....aa(Ul* Uk-. 1 0);

(5-5) 9a'i, s-ak(AI-J Ak-1)

f ... exp {-i - 2juj} ral...*ak(Ul,' Uk-1)dul dUk-

and if ga. ak(Zl(AI * Ak -1) is integrable

(5.6)

ral,.,ak(Ul ,Uk-1)

=(27r) r exexp{iZ jUj}UgIa...ak(/ll ,ik-)dAl. dk-l-
Also

(5-7) 9aj,, sak(A11 Ak) = ga'l, -,ak(Al Ak-1)
understanding _'Ij = 0. Continuing

(5.8) gfa,.. ,ak(2L, , Ak)
k r

- 2 )-k+I (- 1_ [fl {[ - aj -a}...[f [H- aj{]
{= 1 al, ,a= 1jEVI jevv

(5t9)intges (1,ak(1 Ak) . J

k r

= -, _ fl(-6c-1( {o - aj} ] [H 6lof- aj} ]
{=1 al,---,at=l ~~~~j-vI jEV',

*(2r)k xt * * -*, A[l.' j
jEVI jE-V,

The summations in (5.2), (5.3), (5.8), (5.9) are over all partitions (v1, ,v") of
the integers (1, *-, k).

In the previous section we developed an estimate offal. ak(ALIe Ak). Let
us now put this work to use in developing estimates of the various functions
listed above. As an estimate of ga1,... ,ak(A1, Ak). in the light of (5.9), we
may consider

(5.10) gT) ...ak(u1 ...

k r

= Z (-1('({-1)![H| 5{c - aj}]. [Hl 6{c,- aj}]

jEV IjEV,
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where the f([)... ,,(pt,~ .). f' = 1l.,. , k, are formed in the manner of
Theorem 4.3. From that theorem we see that

(5.11) Ea,, ,k(l Ak)
= gal, .,akG. *'ilk) + O(k)T) + °(B(k) T );

and because estimates of order less than k have asymptotic variance of smaller
order than that of estimates of order k, the covariance of gai... ,ak('1t Ak)
with g ... b(lit' , p.) will be asymptotically equivalent to that offj¶)...
(Al A **k) withfbT).. ., be (p1, p) as given in Theorem 4.3. Also the estimates
will be asymptotically normal and estimates of different orders will be asymp-
totically independent.

Suppose next that gal *.-ak(A*` Ak-1) vanishes for IAjl > A. As an esti-
mate of ral....ak (u1e , u 1) we can then consider

(5.12) ral, .. ak(ul, ,Uk-1)
(2 7t) -k+ t exp k{-1ju3gQ..j~.

(T)
kt- l

Aj
tt aJ'''Ak1l/If,A A' f p{E jig) (l*** i Ljui Al

dAl ..* d k - 1-

From (5.11) this estimate will be asymptotically unbiased.
By analogy with Theorem 5.2 of Brillinger [6], we would expect, for example,

that

(5.13) lim T Cov{r(')b,(u,), ra2 b2(U2)}

= frAex{ip(i1 -U2)}fala2(0)fb,b2(-x) da

+ exp {i0(u1 + U2 )1a' ,b2 (7)fb' a,(-a) da

+ 2 f-fA exp {i(1lUl + a2U2)}faj,bi,a2,b2(O1,-a1 a2) doi1dC2,

in the case k = 2 and aj 7 bj.
Next one can take

(5.14) qa , ak(tl, tk) = ral, . ..ak(tt - tk, tk-1 - tk)

as an estimate of qal, ,ak(tl, tk) and

k

(5.15) Pal, ak(tl, tk) = E , v1)q a;...qa)(tj;j E v)
t{'= 1

as an estimate Of Pal .,-ak(t1, , tk).
In the case k = 1, we would estimate ra by Na(O, T]/T. In Theorem 4.2 we

saw that this statistic was asymptotically normal with mean ra and variance
27rT -fa a(°)-
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6. Estimation of second order spectra from sampled values

Let Y(t), -oo < t < oc, be a real valued time series satisfying the conditions
of Example 3.1, having mean c'y and autocovariance function c',y (u), -oo
< u < oc. Let N(A), A E A, be an independent real valued point process satis-
fying Assumption 3.2, having mean intensity rN and autocovariance density
rN, N(u), - c < u < oo. Suppose that events of a realization of the process N(A)
occur at the times T1, , T,, in the interval (0, T]. Consider the problem of esti-
mating the autocovariance c', y(U), - oo < u < oo, and power spectrumf' y(A),
-oo < A < oc, of the series Y(t) from the values

(6.1) Tl, ,

and

(6.2) Y(T1), ,Y(T.)
We can construct a stationary interval process X(A), A E A, in the manner of

Example 3.3 by setting

(6.3) X(A) = { Y(t) dN(t),

or, in differential notation, by setting

(6.4) dX(t) = Y(t) dN(t).

The first and second order measures of this process satisfy
(6.5) C' dt = cYrN dt,

and

(6.6) dC'xX(u) dt = (cy,y(u)rN,N(U) + cyy(u)rN(U) + cy,y(u)r2
+ (Cy)rN,N(U) + (Cy)2rN(u)) du dt.

The measure C'x x(u) is seen to have absolutely continuous part and an atom

of mass c Cy(O)rN ± (c'l)2rN at u = 0. If we let rx,x(u) denote the derivative of
the absolutely continuous part of Cx x(u) then, from (6.6),

(6.7) rx,x(u) = c',y(u)rN,N(u) + c',y(u)r2 + (c)2rN, N(u)
for -oc < u < cc. For convenience set

(6.8) h(u) = rx,x(u) - (Cy)2rN, N(U)

If

(6.9) rN + rN,N(U) * 0,

then, from (6.7),

h(u)
(6.10) C'Yy(U) 2h ]LrN,N(U) ± rNj
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We see, from (6.8) and (6.10), that an estimate of c',y(u) may be constructed
from estimates of rx x(u), c' , rN N(u), rN. One can then proceed to form an esti-
mate offl,(y.(.).

Alternatively we could proceed directly to the frequency domain and note
that the power spectrum of the process X(A) is given by

(6.11) fx,x(i~) = (27X) L rx.x(u) exp {-i,u} du + c'Y,y(O)rN + (C'y)2rN1

Jfy, Y a)NN,N(o) da + f,yr()rN + (cr)2fNN(i)
± (27r)-1c'yY(0)rN,

for - xJ < i < X. If we rewrite this in the form

(6.12) f y(,)rN + {f, Y(I)gNN' N -) da

= fk,x(i) - (c~)2fN,N(2) - (27r) cy,y (0)rN
HH(i),

then we have an integral equation forf,y1(A). This equation may be solved for
f~y({) under the condition (6.9), as follows: set

(6.13) P(.) = (27') exp -iuIu}rN, N(U)/[r + rN N(u)] du,

then

(6.14) fy (A) = rK2H(2 ) _ 2 r -2 fPQ - ct)H(e) da.

Once estimates of rN, rN,N(u), c'. c'Y Y(0), fN N(W fx x(A). are available an esti-
mate offy y(A) may be constructed from (6.14). The estimates may be determined
as follows:

(6.15) r(T) = n/T:

(6.16) c(T) = [Y(T1) + + Y(zn)]/n:

(6.17) m(_T) (0) = [Y(T1)2 + * * + Y(Tz)2]/n;

(6.18) c( T)y(0) = m(T) (0) - c(T);.
and finally estimates f(T) (i),f(T) (A) may be constructed in the manner of (4.16)
or (4.34).
A problem related to the one just considered is that of obtaining as estimate

of the cross spectrumfy, Y2(A) of a series Y1 (t) with a series Y2 (t) from the values

(6.19) Tl, , Tn,

(6.20) Y1(z1), Y, (T.),
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and

(6.21) Y2(T1), Y2(T.).
In this case the expression (6.11) is replaced by

(6.22) fx,,x2(A) fff,,Y2( - a)9,N(a) da + fy, 2(yA)rN
+ (C'y)(Cy2)fN, N() + (2Xr) -c,y2(0)rN-

A second related problem would be to construct an estimate offl 9.) from
the values

(6.23) f , . ,

(6.24) T *, Tn,

(6.25) Y1(a1), ..., (CM)
(6.26) Y2(T1), , Y2(T.)

where a, * * *, am are the times of events in (0, T] of a point process N1(A) and
T1, * * *, T. are the times of events in (0, T] of a related point process N2 (A) with
the bivariate point process satisfying Assumption 3.2. In this case expression,
(6.11) is replaced by the simpler expression

(6.27) fx9,x29.) Jfi,,y2(2 - )gN, N2(a) dot +fy1,y2(2)rN rN2

+ Cy1Cy2fA1,N2(4)

7. Further considerations

We next discuss briefly some practical implications and extensions of the
previous results. We saw, in Section 2, that if X(A), A E A, was a stationary
interval process with cumulant spectra

(7.1) ,

then

(7.2) Ya(t) f 0ka(t -U) dXa(u),

a = 1, * * *, r, -x < t < oo, was a stationary time series with cumulant spectra

(7.3) fYai, .. ,Yak.('1 . .

)Ik= Da(iI) . ak(V)fXa., ,Xa&(A'l XI k)-

This suggests that one might estimate the spectrum (7.1) by a statistic of the
form

(7-4) PYTnI -Ya, (-Z I I A&P/[Al() ... (D., (A
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having formed

( ) f~~~~~YT. ** Ya (A I, X k)

in the manner of Brillinger and Rosenblatt [9]. (In the case k = 2 this sug-
gestion was made by Priestly in the discussion of Bartlett [3].) This procedure
is seen to be analogous with the technique of prewhitening a time series prior
to estimating its spectrum. This analogy suggests that we should choose the
0,()A) so that the spectrum (7.3) is near constant for Ai in some finite region.
The estimate (7.4) is seen to have the important advantage of allowing the use
of existing spectral programs and also of allowing a simultaneous prewhitening
of the data.
The proposed analysis may be related to the analysis of a continuous time

series in another way. The basic statistic of our analysis is

(7.6) f{ exp {i-iAt}h(t/T) dX(t).

If we approximate (7.6) by a Stieltjes sum, then we obtain
T-1

(7.7) E exp {-iAt}h(t/T)[X(t + 1) - X(t)].
1=0

An examination of expression (7.7) shows that it corresponds to carrying out an
empirical spectral analysis on the time series of first differences. This procedure
is common in the analysis of economic time series.

Computations involved in forming (7.6) may be prohibitive. Therefore there
is much to be said for a procedure involving splitting the data into N segments
of length S, forming an estimate

(7.8) f(S) ak1.. 2,jn
for the nth segment, n = 1, N. and taking

N

(7.9) N- E fal,IS)..Ilk i
n= 1

as a final estimate. Authors recommending such a procedure include: Bartlett
[2], Welch [23]. Lewis [19], and Huber et al [15]. The asymptoties of such
estimates are directly determinable from the results of Theorem 4.3 because.
following the remark after Theorem 4.1, Fourier transforms based on disjoint
stretches of data are asymptotically independent. A variety of further remarks
concerning practical aspects of the calculations in the case of a point process are
made in Lewis [19].
We remark that the calculations proposed in this paper reduce. in the case that

the interval process X(A). A E A. is an integral of a continuous time series, to
the usual calculations of the frequency analysis of time series.

Extensions of the definitions and theorems of this paper to a case in which t
is vector valued. t E RP, appear fairly immediate if one takes the approach of
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Brillinger [7]. A different sort of extension would result from a consideration of
processes whose differences of higher order than the first are stationary (see
Yaglom [24]).

8. Proofs

PROOF OF LEMMA 2.1. If Mat ... ak(t1l* tk) corresponds to the measure
determined by the coordinates t1, * tk, let Na,-.. ,ak(Ul, ,Uk-1, tk) corre-
spond to the measure determined by the coordinates u1 = 1 tk, ,U - 1 =
tk1 - tk, tk. The initial measure is invariant under the transformation
ti, , tk+ tl + t, **, tk + t. The second measure is therefore invariant
under the transformation tk tk + t. We see therefore that

(8.1) Nal. .,ak(UlI , Uk-1, tk) - Nal ... ak(U 1, , Uk-I, 0)
= Nal, ,ak(Ul l Uk-1, tk + t) - Nalj,...ak(U1' Uk t)-

Suppressing a 1, , Uu1, Uk , this last may be written

(8.2) N(tk + t) = N(tk) + N(t) - N(O).

Under the given conditions, all solutions of this functional equation have the
form

(8.3) N(tk) = M'tk + N(O),

giving the indicated result.
PROOF OF THEOREM 2.1. Assume the results of Theorem 4.1 hold. It will be

proved later. Set

(8.4) dx )() = exp {-iAt} dX(t),

using the notation of Section 4 with h(t) = 1 for It| _ 1 and h(t) = 0 otherwise.
One has therefore

(8.5) Z(T)(A) = (27r) 1 X d(T)() da.

One now uses expression (4.7) to see that

(8.6) ElZa)(i) -zas)()a2k 0

as S,T - oo for k = 1, 2, ..; a = 1, * , r. It follows that there exists Zx(i)
such that Z([T()) Zx (i) in mean of order v for any v > 0.
One next checks that

(8.7) cum {Zal (21), * . ak (Ak)}

s T -. ( an uj fal ak ( ai r ( , ks).a dgk

as T -+oo, again using expression (4.7). This gives (2.27).
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Finally one checks that

(8.8) EIXa(A) - { [exp {iAt} dt dZaT(i) 2 0

as T -x c. This gives (2.28).
PROOF OF THEOREM 3.1. We first state and prove a lemma.
LEMMA 8.1. With the condition.s and notation of Assumption 3.1,

(8.9) lim A1.. lAkl E{NAa(A) ... N,_ (AI)]

... [N._ , (Ak ) .

mk- (Ak )] I

r Fm

IJI 6aj -mk}-

1

..{j - c'k} P21 2k(tl * tk)
Lj=mk- + I

uniformly in t,, * , tk for integers 1 _ ml < r12 < ... < nlk-1 < nIk
PROOF. Suppose first that

a . am, = ac
(8.10)

amklI+,. (jm =

Now

(8.11) E{N21(A,)ml N'k(Ak)Mk-k-}
- Z nm' kmk..n P[Na,(Al) = n,. .. lk( k) = nk]

nj_ 1

= P[N1(A,) = 1,* **, N2-k(1k) = 1] + Z nl I nkk - 'L(n,. nk),
with the second summation extending over some nj _ 2 and with L(nl.. . nk) _
K6lA'In, * IlkInk from (3.8), and so

(8.12) lim |Al' . A. E{NA(AkIl- .lA(Ak(Ak)'Ik mk-}
lAu - 0

= P-l, .,k(t1, tk),

uniformly in tl, . , tk from (3.9). Continuing if (8.10) is not satisfied for some
., * k, then one can see from (3.8) that the limit in (8.9) is 0 uniformly in

tl, ***tk. This completes the proof of the lemma.
Turning to the proof of the theorem: let 4j(t) be continuous is some interval

of A and 0 elsewhere for j = 1, k. We have

(8.13) { 4j(t) dNaj(t) = lim Y j(ie)Naj(iB, iE + El.
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By bounded convergence,

(8.14) E{J'f (t) dNai(t) J.f* k(t) dNak(t)}

=limur * * * 1(ie) ...
* (iks)E{Nal(ils, ils + E] ... Nak(ikg, ikg + £]}

£-O i ik k
k r

-rlim Z [flH {aj-al}] * [Hf {aj-e}]
£-0 {= 1 al, ,a =1 jevl jev,

*E ...EM[ o-ile)] ... [f ofjit£]p., -.. (il,* * i,,)Ie,
ii ite jev Jevt.

where the summation extends over partitions (v1, * *, v) of (1, * , k) if we
separate out terms in (8.14) with the same argument and use Lemma 8.1. We
now see that expression (8.14) equals

k r

(8.15) z Z [f {aj-oi}] *-- I" 6{aj-a}]
{=1al, ,a=l jevl jeve

fIb[l OPA ... I l 0j(Te)lP.,,*e* (Tl1 , Te) dTl *
... dTe

JEVi JEVve

Expression (3.13) now follows from (8.15) taking the Oj(t) to be indicator
functions.
PROOF OF THEOREM 3.2. One proves (3.28) from (8.15) and then obtains

(3.22) by taking the Oj(t) to be indicator functions.
PROOF OF THEOREM 3.3. This follows directly from (3.28).
PROOF OF THEbREM 4.1. Let h(T)(t) = h.(t/T). The cumulant at issue is

given by

(8.16) ***J h(T)(tj) .. h* Thk(tk)

exp {i ijt;} dCa,, ,ak(t1 tk ttk- tk) dtk

f ... f f h(T) + t) ... h_(T) (Uk 1 + t)hak)(t)

-exp {-i jt dt exp -i XdC'.................. (8. ,u_)

The indicated result now follows as

(8.17) | {h ')(u + t) ... h(T) ,(ukk- + t)hak)(t)
k-i

- hal(t) ... hak (t) exp {-i).t} dt _ C E |ujl,
for some finite C following Assumption 4.1.
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PROOF OF THEOREM 4.2. This follows directly from Theorem 4.1 in the
manner of corresponding results in Brillinger [7] and Brillinger [8].
PROOF OF THEOREM 4.3. This follows directly from Theorem 4.1 in the

manner of the principal theorems in Brillinger and Rosenblatt [9].
PROOF OF THEOREM 4.4. This follows directly from Theorem 4.1 in the

manner of corresponding results in Brillinger [7] and Brillinger [8].

REFERENCES

[1] H. J. BAHBA, "On the stochastic theory of continuous parametric systems and its application
to electron cascades," Proc. Roy. Soc. Ser. A, Vol. 202 (1950), pp. 301-322.

[2] M. S. BARTLETT, "Smoothing periodograms from time-series with continuous spectra,"
Nature, Vol. 161 (1948), pp. 686-687.

[3] , "The spectral analysis or point processes," J. Roy. Statist. Soc. Ser. B, Vol. 25 (1963),
pp. 264-296.

[4] Stochastic Processes, Cambridge, Cambridge University Press, 1966.
[5] S. BOcHNER, Harmonic Analysis and the Theory of Probability, Berkeley and Los Angeles.

University of California Press, 1960.
[6] D. R. BRILLINGER, "Asymptotic properties of spectral estimates of second order," Bio-

metrika, Vol. 56 (1969), pp. 375-390.
[7] "The frequency analysis of relations between stationary spatial series." Proceedings

Twelfth Biennial Seminar. Montreal, Canadian Mathematical Congress. 1970, pp. 39-81.
[8] , The Frequency Analysis of Vector-Valued Time Series. New York, Holt, Rinehart,

and Winston, to appear 1971.
[9] D. R. BRILLINGER and M. ROSENBLATT, "Asymptotic theory of estimates of kth order

spectra," Spectral Analysis of Time Series (edited by B. Harris), New York, Wiley, 1967,
pp. 153-188.

[10] D. R. BRILLINGER and J. W. TI-KEY. Asymptotic Variances. Mom0ents. (Cumulants. and Other
Averaged Values, 1964, unpublished.

[11] D. R. Cox and P. A. W. LEWIS, The StatisticalAnalysis of Series of Events, London, Methuen,
1966.

[12] H. CRAMEFR and M. R. LEADBETTER. Stationary and Related Stochastic Processes, New York.
Wiley, 1967.

[13] D. J. DALEY. "Spectral properties of weakly stationary point processes," J. Roy. Statist.
Soc. Ser. B. Vol. 33 (1971).

[14] J. L. DOOB, Stochastic Processes, New York, Wiley, 1953.
[15] P. J. HUBER, B. KLEINER, TH. GASSER, G. DUMERMUTH, "S;tatistical methods for investi-

gating phase relations in stationary stochastic processes," International Seminar on Digital
Processing of Analog Signals, Zurich, 1970.

[16] K. ITO. "Stationary random distributions," Menm. Coll. Sci. Univ. Kyoto Ser. A Math., Vol.
28 (1954), pp. 209-224.

[17] A. N. KOLMOGOROV, "Curves in Hilbert space invariant with regard to a one parameter group
of motions," Dokl. Akad. Nauk SSSR, Vol. 26 (1940), pp. 6-9.

[18] P. I. KuZNETSov and R. L. STRATONOVICH, "A note on the mathematical theory of correlated
random points," Non-Linear Transformations of Stochastic Processes (edited by P. 1.
Kuznetsov, R. L. Stratonovich, and V. I. Tikhonov), Oxford, Pergamen, 1965, pp. 101-115.

[19] P. A. W. LEWIS, "Remarks on the theory, computation and application of the spectral analysis
of series of events," J. Sound Vib., Vol. 12 (1970), pp. 353-375.

[20] A. RAMAKRISHNAN, "Stochastic processes relating to particles distributed in a continuous
infinity of states," Proc. Cambridge Philos. Soc., Vol. 46 (1950), pp. 595-602.



INTERVAL FUNCTIONS 513

[21] S. K. SRINIVASAN, Stochastic Theory and Cascade Processes, New York, Elsevier, 1969.
[22] J. W. TUKEY, "An introduction to the calculations of numerical spectrum analysis," Spectral

Analysis of Time Series (edited by B. Harris), New York, Wiley, 1967, pp. 25-46.
[23] P. D. WELCH, "A direct digital method of power spectrum estimation," IBM J. Res. Develop.,

Vol. 5 (1961), pp. 141-156.
[24] A. M. YAGLOM, "Correlation theory of processes with stationary n-th order increments,"

Amer. Math. Soc. Transl., Vol. 8 (1958), pp. 87-142.
[25] An Introduction to the Theory of Stationary Random Functions, Englewood Cliffs,

Prentice-Hall, 1962.


