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1. Sowing

Graduate students sometimes ask. or fail to ask: "How does one do research
in mathematical statistics? It is a reasonable question because the fruits of
research, lectures and published papers bear little witness to the ways and means
of their germination and ripening. How did that author ever come to state this
theorem so aptly, to snatch this neat proof from the thin air: surely it never
sprang fully armed like Pallas Athene from the brow of Zeus? No, indeed not.
rest reassured. But still the question is a hard one. The answer depends much
upon the field of statistics. and even more upon the tastes and skills anld pre-
judices of the researcher. The only means of appraisal is case study. and no
author has the data for any case study but his own. Without more ado or apology.
I shall speak of some of my own work and how it came about: and it will have
to be a personal story. with all natural drawbacks, and of course to get a proper
view of things at large, you will, nay must, look elsewhere for other accounts by
other men of their own work.
The Committee on Support of Research in the Mathematical Sciences, in

the introduction to a volume of essays [21]. wrote:

"Our task was to assess the present status and the projected future n.eeds,
especially fiscal needs, of the mathematical sciences. . . . We realize that even
scientific readers of our report, let alone nonscientists. may feel that they are not
adequately informed about what mathematical research. especially modern
mathematical research, consists of. Similarly. even professional mathematicians
... may be unaware of the applications.... To provide additional background of
factual information concerning the mathematical sciences, we are supplementing
our report with the present collection of essays.... We believe that the mathe-
matical community has no obligations more important than those concerned
with education. ..."

The essays in this collection provide an excellent account of the substance and
applications of mathematical research: it deals. as the Committee intended,
with the what. It does not try to deal with the how. Yet anyone agreeing with the
last sentence in the above quotation, as I heartily do, must feel that the how also
deserves educational coverage. So I have conceived the present paper as if it
were one chapter for a companion volume., yet to be compiled, on the how of
mathematical research.
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The reader whom I have in mind, mainly though not exclusively, is a graduate
student just about to embark on research in mathematical statistics. He will have
had a thorough undergraduate education in mathematics, so he will have a good
technical grasp of the subject; but probably he will also be limited by some of the
unavoidable drawbacks inherent in any undergraduate course. In particular, he
will suffer from a surfeit of knowledge and from overexposure to thefait accompli
and to rigor. In the secondary school he will have done some nonrigorous mathe-
matics (at least I hope so) if he has not squelched too deeply into the "New Math"
mire; but he will not yet know how to argue nonrigorously at a more advanced
level. So I have deliberately written a good deal of this paper in a nonrigorous
style; for nonrigorous thought is an essential first stage in almost any piece of
research. The rigor comes at the end of the process: undergraduate training
serves the end, not the start.
Most of this paper deals with one particular problem: the problem itself,

namely the what, is less important than its how. It would be impossibly tedious
to give the how in full detail; and there is no need for me to say much about the
false avenues explored or the mistakes made. Everybody commits these, and no
one finds them hard to imagine. What I have done instead, and what I hope will
suffice, is to leave the investigation of the problem in an unfinished state. This
may show in snapshot form what research looks like while still in progress, not
as it usually appears in the literature as a packaged end-product. The material
in the later parts of the paper is at a more rudimentary stage ofdevelopment than
in the earlier parts, where I have ventured to formulate some of the results as
theorems. This makes a virtue of necessity; for I have had to write for a pub-
lication deadline. The whole investigation has occupied eleven weeks-about
three weeks to do the mathematics, interspersed throughout eight weeks of
writing it up. It will be no bad thing for realism if this haste shows in the text.

There are two other things. First, I have emphasized, especially at the end of
the paper, conjectures and unsolved problems. These, into which the graduate
student may feel inclined to stick his teeth, serve the same purpose as exercises
in a textbook. Second, I have posed a problem (on the interfusion of aluminium
and copper) more or less in the raw state in which it comes from the scientist to
the mathematician. This can serve as an exercise in constructing a suitable mathe-
matical model (the one sketched in the text may not be suitable).
Some people would say that recent years have been a golden age for mathe-

matical research, with funds and graduate students on an unprecedented scale.
I thought so too once; but, having seen the age unfold, my views have changed.
The plenitude has enlarged the quantity of mediocre research without enhancing
quality. I regret the way a doctorate has become virtually a union ticket for
university employment. Admittedly, my own experience colors these views: I
was lucky enough never to have to write a dissertation. Having started before the
time when doctorates were fashionable, I was able to jump in at the deep end
straight away; and, instead of being restrained by the single theme of a dis-
sertation, I could pick and choose from a wide range of scientific enquiries, of a
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richness which today's graduate students rarely meet or even visualize, and in
the three years it would have taken me to write one doctoral thesis I published
a dozen papers on all sorts of different topics.
Who sows the seed? Whence the subject matter? By inclination I am not a

theorist. but a problem solver. When I first acquired my bachelor's degree in
mathematics some twenty years ago, I had the good fortune to be appointed as a
junior assistant in a small department at Oxford whose purpose and name was
the Design and Analysis of Scientific Experiment. This meant it had to do the
sums and headscratching and minister to the general statistical needs of bio-
logists. foresters, and farmers in the university. There could have been no better
place for source material. Scientists of all breeds would bring in a cornucopia of
subjects, susceptible of mathematical treatment. This is not to claim that I regu-
larly answered their questions: far from it, a mathematician in these circum-
stances will more likely convert the questions to his own purposes. For example,
quite early on I managed to conjure a paper on nonharmonic Fourier series
[10] out of the apparently unpromising raw material of carrot roots soaked in
acetic acid, much to the consternation of the botanist concerned. (This may be
the only occasion when the august pages of Acta Mathematica have talked of
carrots and vinegar.) Later I moved towards theoretical physics, which is a
chastening experience because theoretical physicists tend to be much better at
mathematics than professional mathematicians themselves. (Sykes and Essam's
work. to be mentioned in Section 20, is a good example of the mathematical
virtuosity of physicists.) After some years, I got known for having solved a few
of the problems put to me. This, let me explain with all due lack of modesty, is
an unusual reputation for any mathematician to earn. Accredited mathematical
statisticians never-what never? well, hardly ever- solve any problems at all:
for, no sooner do they really acquire that knack, than they become known as
theoretical physicists, or molecular biologists, or engineers, or the like; but I
cannot claim to have been so successful as that. Nevertheless, over the years I
have accumulated a stock of unsolved or partly solved mathematical problems.

So I could rummage in this stock for something to talk about when invited to
speak at the Sixth Berkeley Symposium; and presently I came across the problem
of what will (or might) happen if you clamp a flat sheet of copper closely against
an aluminum one. As a simplified mathematical model. we can think of the
copper sheet as occupying one half of space, and the aluminum the other half.
with a plane boundary in between. Each metal consists of atoms positioned on a
lattice: say, for simplicity, the lattice is the set of points with integer coordinates
(x, y. z). Initially the copper atoms occupy the lattice points with x _ 0 while
the aluminum occupies the lattice points with x < 0. However, a small percent-
age of the lattice points have no atom: these are called vacancies. The situation
is a three-dimensional analogue of the child's toy with fifteen small numbered
squares which can slide in a square box large enough for sixteen. Any of the
six atoms next to a vacancy may by chance fall into it; and if some of these six
atoms are copper and the rest aluminum, one kind may enjoy a preferential
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probability of jumping into the vacancy. Naturally, when an atom jumps into a
vacancy, it leaves a new vacancy whence it came: or in other words, the vacancy
jumps to a neighboring lattice point in exchange for an atom. Thus the vacancies
describe random walks over the lattice. Yet this motion of the vacancies is only
of intermediate concern: the ultimate interest is the motion they impart to the
atoms. How will a marked atom move with the passage of time? Or better, what
are the equations of the general atomic commotion caused by the randomly
walking vacancies, and how fast will the copper plate diffuse into the aluminum
plate and vice versa? How will this depend upon the percentage concentration of
vacancies and any preferential probabilities postulated?
And now, dear graduate student, I pass this problem on to you as a possible

topic for research, because with only two weeks to go before the Berkeley Sym-
posium my own analysis of it was suddenly interrupted by that indefatigable
beaver, Professor Gian-Carlo Rota of M.I.T. Might he jog my memory (he
wrote firmly) of the collected works of Ulam under his editorship, and of its
imminent dispatch to the printers, and of my promise to write some comments
on certain papers he had sent me? And so I turned to these papers by Ulam, and
at once a problem in one of them [25] intrigued and fascinated me.
That is how the seeds of research may be sown. Chance sows, and curiosity

nurtures.

2. Ulam's problem

Ulam asks what is the distribution of the length (that is, number of terms) of a
longest monotone subsequence of (not necessarily consecutive) terms in a random
permutation of the first n2 + 1 natural numbers. For example, if n = 2 and
n2 + 1 = 5, the permutation 51423 contains no monotone subsequence of length
4. but at least one (actually three) of length 3 (.1.23, 5.42.. and 5.4.3), so any
longest monotone subsequence of this particular permutation has length
3 = n + 1. There are 120 possible permutations of 12345; and the longest length
is 3 for 86 of them, 4 for 32 of them, and 5 for the remaining 2.
Ulam remarks that the longest length must always be at least n + 1 for any n.

by virtue of what he calls "a well-known theorem." He then refers to a Monte
Carlo study of the cases n = 4 to n = 10 by E. Neighbor: he cites no reference,
and indeed Neighbor's work may be unpublished. For three of these values of n,
he quotes the average longest lengths in the Monte Carlo samples, namely,

8.46 = 1.69n for n = 5
(2.1) 14.02 = 1.75n for n = 8

17.85 = 1.78n for n = 10.

All the averages, he says, were about 1.7n. while the distribution "turned out to
have a Gaussian form starting at the guaranteed minimum [that is, n + 1],
having its maximum at the average, and becoming vanishingly small at about
2.2 times the minimum." A careless, or perhaps a fancifully numerological
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reading of this quotation might suggest that the distribution was spread between
n/l and nfl/5 with mean n1/3, thus giving a standard deviation also proportional
to n. We shall discover that all these suggestions are wrong.
Now, a highly finished paper. with all its theorems carefully proved. all avenues

explored. and all loose ends carefully snipped, may arouse one's admiration: but
its very perfection drains it of vitality. and there is little one can do with it except
file it. Papers are more entertaining if they are still rich in conjectures, with
results unproved or even wrong: Ulam's paper is like this: and I shall do what I
can to write here in a similar vein. incidenitally saving spaee by avoiding rigor.
As a high exemplar. we may recall that the most enigmatically stimulating com-
munication in the whole history of mathematics was written under extreme
restrictions on space-margin too small.

3. How well known is a well-known theorem!

L'1ams "well-known theorem'" Iuns as follows:
THEOREM 1. (l1am? or A.N. Other??) Any real sequence of n2 + I terms

contains a monotone subsequence of n + 1 terms.
Enterprising readers will doubtless wish to prove this theorem for themselves:

so I defer the proof while they get to work. I regret to say this theorem was not
well-known to me. indeed not known at all; and it took me a couple of days to
invent my own proof. based on negative induction (if the theorem is false for n,
it is also false for n - 1). Having found a proof., I cast around for colleagues
who might know the theorem and be able to cite a reference (Ulam gives neither
proof nor reference. thereby arousing his reader's curiosity). It was a long time
before I met anyone able to answer: eventually, however, I turned up trumps in
Professor Lincoln Moses. He believed there was a proof, based on the pigeonhole
principle, in a collection of essays [21] prepared for the Committee on Support
of Research in the Mathematical Sciences (COSRIMS); and he thought that
Ulam himself had written the essay in question. Together Moses and I went to
the Berkeley Library to verify this reference: but fortunately we found it was
out on loan and so temporarily unavailable. I say "fortunately" because I now
had the chance of reconstructing on my own a second proof, using the pigeon-
hole principle: and the reader has too.
A few days later I delivered the lecture on this paper at a session of the Sixth

Berkeley Symposium; and I took the opportunity of doing a little operational
research on the familiarity of well-known theorems. I asked the audience how
many of them knew tUlam's "well-known theorem." Out of an audience of 59
accomplished mathematicians, just 3 knew it. Adding 1 to 59 to include my own
ignorance. we conclude that 95 percent of mathematicians will be ignorant of a
well-known theorem. But one theorem is a small sample of theorems.

Professor Milton Sobel was one of the three wise men in the audience at the
Berkeley Symposium; and he told me that the theorem plus a proof-indeed a
a third way of proving it-had appeared in Martin Gardner's column [7] in
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Scientific American. It is astonishing that the theorem should be so little known
after appearance in such justly famous and widely read columns.

Lastly, the COSRIMS essays [21] came back to the library, and I was able to
consult them. And it came to pass as Moses had prophesied. that 1lam had
indeed contributed an essay to this collection: but his essay made no mention of
the theorem. Yet the collection contained another essay, which did mention it:
and-curious coincidence ?-the author ofthis essay was Gian-Carlo Rota, who.
as we have already seen, is guilty of this whole diversion away from copper and
aluminum.
The purpose of this chit-chat on the background to Theorem 1 has been to

interpose a long enough piece of prose to discourage the reader's eye from stray-
ing from the statement of the theorem to its proof. But it also serves to introduce
a more serious maxim, which every properly ambitious graduate student should
know. For Rota's use of the pigeonhole principle, when I eventually read it., did
not seem to me quite as satisfactory as the one I had reconstructed for myself:
his argument is somewhat longer and proceeds by reductio ad absurdun., whereas
my more direct line is a constructive proof. Moral: never read the literature
before you absolutely have to (and not always, even then), for thus it will not
cloud your imagination and sometimes you may be able to do better on your own.
Added in in proof. Theorems 1 and 2 are both due to Erd6s and Szekeres

Compositio Math.. Vol. 2 (1935). pp. 463-470 (in particular. page 468).
Theorem 1 is the particular case a = d = n of the slightly more general

Theorem 2 (which could be new, though I doubt it).
THEOREM 2. Any real sequence of at least ad + 1 terms contains either an

ascending subsequence of a + 1 terms or a descending subsequence ofd + 1 terms.
Here and later I interpret "ascending" to mean "nondecreasing.," and "des-

cending" to mean "strictly decreasing. " (Theorem 2 is also true for "ascending" =
"strictly increasing," and "descending" = "nonincreasing," the changes in the
proof being trivial.)
Suppose we have a set of pigeonholes P1I P2, * and a given real sequence

XN = {X1, X2, * , XN} with N _ ad + 1. Place the terms of XN successively in

the pigeonholes: first put xl in P1; then generally, with x1, X2, * * m Xi-1 already
placed, place xi in the pigeonhole Pi with the least value ofj such that Pj already
contains no term larger than xi. Thus, at any stage of the procedure the contents
of each pigeonhole comprises an ascending subsequence of XN. Moreover (since
j is least), when xi goes into Pj, then Pj_ must already contain an earlier and
greater term (that is, some Xh such that h < i and Xh > xi); and similarly Pit 2
must contain an earlier and greater term than this Xh, and so on as far as P1.
Hence, there is a descending sequence with one term in each occupied pigeonhole
(and it is explicitly recoverable by working backwards from any term in the last
occupied pigeonhole). The required subsequence will have been constructed as
soon as either some pigeonhole contains a + 1 terms or d + 1 pigeonholes be-
come occupied. This event will occur because of the pigeonhole principle and
because N _ ad + 1.
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4. Notation

The following notation will be useful. If r is any real number, define x(r) to be
the least integer such that x(r) . r. We write

(4.1) X = {x1, x2,

for an infinite real sequence; and

(4.2) XN = {XI, X2, ,XN}

for the first N terms of X. We write

(4.3) =N (XN)
for the length of a longest ascending subsequence of XN, and

(4.4) fN = {'(XN)

for the length of a longest descending subsequence of XN. Thus

(4.5) f*N = *(XN) = max (N, fN)

denotes the length of a longest monotone subsequence of XN.
With this notation we can now state Theorem 3.
THEOREM 3. For any real sequence X,

(4.6) {*(XN) >- X(,N),
and this inequality is best possible.

Since f*(XN) is a nondecreasing function of N, the inequality (4.6) follows at
once from the particular case N = n2 + 1 covered by Theorem 1. To see that
(4.6) is best possible, we arrange the positive integers into successive parts of
one, two, three, terms; and we reverse each part to obtain (1) (3 2) (6 5 4)
(10 9 8 7) . Then we interlace this sequence with its negative to yield the
particular sequence X = {x1, X2. } exhibited in (4.7).

N: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 -

XN: 1 -1 3 2 -3 -2 6 5 4 -6 -5 -4 10 9 8 7 -10.

(NI 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4...

TN:1 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5

We can now verify for this particular sequence X that

(4.8) fN = X[(N ± 41)1/2I )] _ T = fN = X(/,N).

5. Random sequences

From now on we shall suppose, unless the context specifically denies it, that
X is a sequence of identically distributed independent random variables, whose
common distribution is continuous. This assumption ofa continuous distribution



352 SIXTH BERKELEY SYMPOSIUM: HAMMERSLEY

conveniently ensures that, apart from a set of measure zero. no two terms of X
are equal. Sets of measure zero will be ignored without further comment: so
we can presume that xi :E xj for all i 7 j. Instead of supposing that the xi were
independent, we might have supposed them symmetrically dependent in Spalre
Andersen's sense. or exchangeable (see [4]. p. 225 for definitions of this): but
the extra generality would be more apparent than real in the present context.
and we shall not entertain it.

Clearly f(XN), ('(XN), and {*(XN) are distribution-free random variables (that
is to say, their distributions do not depend upon the common distribution of the
terms of X); and, by symmetry, f(XN) and f (XN) have the same distribution.
What can we say about the distributions of f(XN) and f(*(XN). as Ulam asks, and
what practical applications are there for the results? Ulam and Neighbor's results
suggest that N-l12tf*(XN) converges to some random variable: what is it? We
shall discover that a stronger asymptotic result holds.
THEOREM 4. If X is a randomi sequence of the type described above. then
112t(XN) and 1N/2 *(XN) both converge in probability to an absolute constant

c as N -X ,. They also converge in pth absolute mtean for any p satisfying
O <p < X.

It seems very likely that these two random variables also converge with prob-
ability 1, but I cannot yet prove this conjecture.
To prove Theorem 4, we first assemble some remarks on subadditive stochastic

processes and stochastic summation.

6. Subadditive and superadditive stochastic processes

Subadditive stochastic processes were first invented [15] to deal with time-
dependent percolation processes: but they have other applications, one of which
is to Ulam's problem. They also afford a generalization of renewal processes.
Much remains to be done on the theory of these processes, and the original
paper [15] lists a number of conjectures (the authors of a paper which does not
furnish ample conjectures may be suspected, rightly or wrongly, of not working
to the limits oftheir capabilities). With one exception, all these conjectures remain
open: the exception is due to Kingman [18]. who proved the ergodic theorem
for subadditive processes.
A subadditive stochastic process is a family of real random variables {wrw(O)}

defined on a probability space (Q. B. P) and indexed by a pair of nonnegative
integers r, s such that r _ s. The process satisfies three postulates.
POSTULATE (i). The process is stationary in the sense that itsfinite-dimensional

distributions are the same as those of the shifted process

(6.1) Ur, s = Wr, (() = W"r + 1, s + 1 (wi) -

POSTULATE (ii). Each random variable of the process has finite expectation.
The stationarity then ensures that this expectation depends only upon the difference
of the indices r and s:

(6.2) E(Wrs,) = gs-r say.
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POSTULATE (iii). For any wo E Q and any three indices r, s, t such that r . s . t,
we have the subadditive property

(6.3) Wr t(0) _ Wr,S()) + Ws,(w)).
From (6.2) and (6.3), we deduce

(6.4) g"+ _ gu+±gU u. v =O, 1, 2 ..;
and hence. by a standard result on subadditive functions.

(6.5) lim g,/t = inf g,/t = c.

where c satisfies -o _ c < oo. If g,/t is bounded below then c is finite and is
called the time constant of the process. In what follows, we always assume that
the time constant exists.
A process wr is called superadditive if -w,r is subadditive; that is, if the

inequalities in (6.3) and (6.4) are reversed. Theorems for subadditive processes
remain true for superadditive processes with obvious trivial modifications. If
equality holds in (6.3) and (6.4), the theory reduces to the ordinary theory of
additive processes. The postulates given above are those due to Kingman [18];
and are slightly more stringent than those in the original paper [15]. where one-
dimensional distributions were used in place of finite-dimensional ones in Postu-
late (i). The stricter requirement (i) is needed for the ergodic theorem, which
runs as follows:
THEOREM 5. (Kingman) Let M? = {Wr 5 be a subadditive stochastic process

with a time constant c; and let I be the a-field of events defined in terms of w and
invariant under the shift w -+ w'. Then as t -. o, t -wo, (Co) converges almost
surely to a random variable W(w)), which can be expressed as a conditional
expectation

(6.6) W(wo) = lim t-1E(wo ,jI).
t oo

Moreover W = c almoost surely when I consists only of events ofprobability 0 or 1.

7. Stochastic summation

Many of the common procedures in the classical theory of summation [16]
can be thought of in terms of discrete frequency distributions, though admittedly
this is not the most usual way of looking at them. The purpose of summation is
to assign a meaning to the statement

n o
(7.1) s, = I ui - s = E u; as n a:.

i=O i=O

Consider a family ofdiscrete probability distributions defined on the nonnegative
integers, members of the family being indexed by some numerical parameter ,u:

(7.2) PM~= {po,'p-i,,1 . 1, Pn, u > 0, Z Pn,5 1
n00
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Quite commonly. p is the mean of the distribution P. Suppose the series

(7.3) Y=E nPn,u
n=O

converges in the ordinary sense: so a.. the expectation of the partial sums Sn in
(7.1). exists with respect to the distribution p,. If further a, converges to a
number s as p -+ oc. then we say (as the meaning to be assigned to (7.1)) that
E ui is summable to s in the sense of pu; and we write (7.1) as

(7.4) s = Ui (P,)'
i=O

or as

(7.5) ,Sn s S (p,).
For example. consider three famous particular cases of this procedure. First,

if pM, is the discrete uniform distribution

(7.6) O 1i, i.o. . p= (N- 1).

we sav that .s is summable in the sense of Cesaro. written .s, s (C. 1). Second.
if PM is the geometric distribution

(7.7) Pf,,, = p,(, - p), P = p/(l - p),
we say that s is summable in the sense of Abel, written sn -* s (A). Third, if PM
is the Poisson distribution

(7.8) P.,, = e-Mp'/n!.
we say that s is summable in the sense of Borel, written s,, -+ s (B).

Besides being summable (pM), the series (7.4) or the sequence (7.5) may or
may not be convergent in the ordinary sense. Two important classes of theorems
deal with this situation. First, the so-called Abelian theorems assert (roughly
speaking) that ordinarily convergent series (or sequences) are summable (ps).
Second. the so-called Tauberian theorems assert the converse, provided that the
terms ui satisfy an additional condition (called a Tauberian condition) whose
effect is to exclude the possibility of anomalous individual terms. For example,
the Tauberian condition u,n = O(n-') suffices in order that Abel-summability
should imply convergence.
Now the classical theory of summation deals with real variables ui or S.; but

there is no reason why it should not be extended to random variables. I do not
know whether the literature contains a systematic extension along these lines,
though certainly there are isolated cases dealing mainly with Cesaro-summation
of random variables: if no such systematic extension exists, it could perhaps
provide a straightforward topic for a doctoral dissertation. Here I have raised the
subject because in the next section I shall use a Tauberian argument on Borel-
summation of random variables.
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8. Asymptotic behavior in Ulam's problem
Consider all possible subsequences of length n contained in XN, and let mn N

denote the expected number of these which are monotone.
THEOREM 6. If n = X(eVN) + t and t _ 0, then

(8.1) P(VN > n) . mnf,N = 2( ) <eSN

If Pk is the probability that exactly k of these subsequences are monotone,
then

(8.2) P({ n) = kk- n! n

for there are (N) such subsequences and 2/n! is the probability that any specified
one of them will be monotone. Also, since n _ X(eVN),
(8.3) ~~~Mn+1,N -N - n N -2.

mn, N (n + 1)2 = (e,N)2
and hence

(8.4) inn N < e 2tni(e,N)N

Hence, to complete the proof of Theorem 6, we need only establish that

(8.5) mf,,N <- 1/7tN

holds in the special case

(8.6) n = X(eV/N).

Now if N < 8, we find n > N and therefore mn N = 0 and (8.5) is trivially
true. For the cases 8 < N < 16, calculation yields

N: 8 9 10 11 12 13 14 15

(8.7) n: 8 9 9 10 10 10 11 11

ll!mnfN: 990 110 1100 121 726 3146 364 1365.

Thus in any of these eight cases, we have

(8.8) mn, N _ 3146/11 ! _ 1/47r < 1/7tJN, 8 . N < 16.

So it remains to prove (8.5) for N _ 16. Using Stirling's formula in the form

(8.9) log a! = (a + 2) log a - a + 2 log (27) + ,v < 0 < 1,2 2 l~~~~~~~12a'
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we deduce

(8.10) log nin N log 2 + (N + )log N - N + 2log (27) + (12N)

- (2n + 1) log n + 2V - log (27t)
- (N - n + log (N - n) + (N -)-2log (27r)

N ( n\1
.n + nlog- -((-n-n + log I - - --log(7tn) +

n x~~~~A 1 2N'

But N/n2 e -2: and also

(8.11) - (N-n) log < (N n ) n.

Hence

(8.12) 1ogmn,N _ 12lg(1 - - log (7rn) + (12N)1.

With N _ 16. we have

(8.13) -< e + <N)e<l(e

and therefore

(8.14) log mn,N < -log (7zn) - 2 log 15 - + 1_2

16 192

<- log (7ceV/N) - 2 log 4 +
I

< - log (7t/IN).2 4 192

This proves (8.5). as required.
Theorem 6 shows that the upper tail of the distribution of I(//N. that is to

say from e upwards. has probability O(NI-1/2 ) as N x-+ c: and likewise, because
1'% tPe - 2t converges. the contribution from this tail to anypth absolute moment
of f N/IN is O(N -(P+ 1)/2) Thus in proving Theorem 4. there is no essential loss
of generality in treating IV/VN as though it were a bounded random variable,
restricted to the closed interval [0, e]. Accordingly, convergence in pth absolute
mean will follow if we can prove convergence in probability. The same remarks
apply to t(N/IN because tN _ f . Lastly, fN and f have the same distribution;
so t*I/IN = max (NN/N, t /IVN) will converge in probability to c if (N/IN
does.
Thus it remains to prove that

(8.15) fN - C/N

in probability as N -- oc. There are. I suppose, three stages in solving a problem.
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The first stage is to get a clear idea of the essence of the problem. and to clear
away the minor irrelevancies. I have just done this for Theorem 4: equation (8.15)
contains the essence of Theorem 4, and the statements about convergence in pth
absolute mean are minor irrelevancies. This concentration upon the main issue
may easily, and here does, simplify things: the distinction between {* and fN is
comparatively unimportant. but tN is an easier quantity to handle. The second
stage is to conceive the basic ideas, on which the proof will rest: and the third
stage is to work out the details of the proof. This third stage is normally quite
easy, just a matter of craftsmanship. The second stage is by far the most difficult.
since it requires a certain power of imagination coupled with a mathematical
alertness. My own approach. for what it is worth. is to run quickly through a
catalogue of available mathematical tools: such a catalogue is liable to be quite
short. Here (8.15) is a fairly hard result to get at: and most of the familiar tools
(for example, law of large numbers. Markov processes. renewal theory. and so
forth) can be eliminated as insufficiently powerful tools for the job. The only
two tools. which seemed to me to be strong enough for the task, were sub-
additive processes and submartingales. Being more familiar with the former, I
started with them. and since they worked, I did not pursue the other alternative.
However, devotees of submartingales will doubtless wish to explore the latter
possibility. In considering each tool in the catalogue. one has to envisage various
different ways of using it. One needs to think of the problem upside down and
inside out, as it were. and to entertain unusual ways of handling the tool. This is
where the alertness comes in; for otherwise one may miss the elusive idea that
does the trick. The situation is rather like playing a game of chess: one follows
certain strategies, but one always has to be alert for the position that conceals a
winning combination. In the present case, the main difficulty to surmount is that
subadditive processes are essentially linear, namely

(8.16) W0 t ct,

whereas (8.15) is nonlinear. How does one introduce the square root? There is
a clue in the fact that it is a square root: why not make use of the geometrical
properties of a square? Readers, who would like to evaluate their sense of
mathematical alertness, may care to pause at this point and ask themselves
what is going to happen next, given that subadditive processes, Borel-summation.
andl the geometry of a square are the combination of ideas that will prove (8.15).

To return to the chess analogy. you may imagine that you are faced with a
chess eolumnist s game position. for which you are told that a winning combina-
tion exists and. moreover, can be achieved by a queen sacrifiee followed by a

discovered check and a pawn promotion. Of course. all that sort of information
makes things much easier than it would have been if you had actually been
playing the game itself and had had to make yourself aware of the existence and
nature of the combination. If you wish to think out for yourself how (8.15) may
be proved. do not turn over the page yet-for to do so would give the game away
too soon.
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Consider a Poisson process of unit density in the Euclidean plane with a co-
ordinate system ( ).). For nonnegative integers r. s (r _ s) let Sr, be the square

(8.17) r _ 4 < s., r . q < s,

with the convention that this square is the empty set if r = s. We say that a set
of points (4j, tnj). i = 1, 2, , k. in the plane form a chain if they can be con-
nected together by a path that proceeds in a northeasterly direction, where
",northeast" means any direction between north and east inclusive: that is to
say. if and only if

(8.18) I1-2 < .. <_k and 11_ 12 < ... <_. 1k

The length of a chain is defined to be the number of points in the chain. Now
consider the points of the Poisson process, which fall in the square Sr, s and
let w,,5 be the length of a longest chain which can be formed from some subset
of these points. Here Wr, = 0 if Sr s is empty or contains no points of the
Poisson process.

Since the squares S, sand S, are contained in Sr,t, and any point in S, t is to
the northeast of any point in Sr, 5, we have

(8.19) Wr, t _ Wr, s + Ws, t r _ S _ t.

The finite-dimensional distributions of the process {wr, are invariant under
the shift wr`s7r',s = ?Wr+l,s+l by the spatial homogeneity of the Poisson
proeess.

Let T be the number of points of the Poisson process in S0,t; and suppose
that these points have coordinates (., it) where i = 1, 2, TT. Let us also
order these points so that

(8.20) 1 < 42 < <.. r

Here we may ignore the possibility that any two 4 or any two q are equal, for this
event has zero probability. The corresponding sequence {?1, n2, * * * iq1} will
be a sequence of identically distributed independent random variables; and
wo,t will be the length of the longest ascending subsequence in {t11, p12' -* * rNT
8So wo, has the same distribution as {r. The random variable T has a Poisson
distribution with parameter t2, the area of S0, t and hence, using Theorem 6, we
have

r t2N
(8.21) Ewo = E e-t E(fN)

N=O N !

N 0 =fO 2N
= N e-t2 tN = 0(t) as t ( oo.

N=0 N! 3

So t- 'Ewo,t is bounded. We have now verified all three postulates in Section 6,
and we can conclude that {w,, ,} is a superadditive stochastic process. By
Theorem 5, there exists a random variable W such that
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(8.22) t -+ W almost surely as t -x c,.

The points of the Poisson process which lie in the unit square r _ 4 < r + 1,
s . q < s + 1 can be generated from a random variable v (having a Poisson
distribution with parameter 1) and an infinite collection of independent observa-
tions from a uniform distribution on [0. 1) from which we utilize the first 2v
observations to yield the coordinates of v points in the square. We write Cr,, for
the collection of all random variables associated in this way with this square.
The family {4Irs r, s = 0. 1, } is a family of mutually independent collections;
and wr,

,
can be written as a fixed function

(8.23) w, = F{4r,s. Cr+l,s' Cs+l,r }

In particular, Wr s is independent of those Cp, with p < r and a < s. So the
invariant a-field of the w, 5-events can be embedded in the remote a-field of
the C'r, s; and hence consists only of events of probability 0 or 1. Thus W is almost
surely a constant c; and we conclude that

(8.24) t-1wo0 - c almost surely as t x .

It only remains to find a Tauberian argument for unscrambling the Borel-
summation induced by the Poisson process. To this end we extend the definition
of wo,,: for any real t _ 0. no longer an integer necessarily, we say that wou, is
the length of the longest chain amongst the points of the Poisson process in the
square 0 . 4 < t, 0 _ ?I < t. For each given realization of the Poisson process,
wo0t is a nondecreasing function of t: this fact serves as the required Tauberian
condition. In the first place it ensures that (8.24) remains true for any sequence
of real t tending to infinity, and therefore for any sequence of real random vari-
ables t tending to infinity with probability 1. Next we define t(N) by the require-
ment that it is the smallest value of t such that the square 0 _< < t, 0 _ ,i < t
shall contain exactly N points of the Poisson process. Here N = 1, 2, ..: and
for each given N, the distribution of wO, t(N) is the same as the distribution of tN
in Ulam's problem. Moreover, from the properties of the Poisson process

(8.25) t(N)/V/N --+1 almost surely as N oc.

Putting t = t(N) in (8.24) we deduce that

(8.26) wo,t(N)/JN -- c almost surely as N -+ oo.

Although we have almost sure convergence in (8.26), we have not proved
almost sure convergence in Theorem 4: the reason is that WO t(N) in (8.26) is not
associated with a sequence X in the way in which {N is in the statement of
Theorem 4. It merely has the same distribution as eN for each given N. Therefore
we have only proved convergence in probability in Theorem 4.
THEOREM 7. The constant c in Theorem 4 satisfies

(8.27) Xr < C < e.
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Consider the points of the Poisson process (with unit parameter) and a square
of area N. For any point P in the square, let Q(P) denote the point of the Poisson
process which is northeast of P and as close to P as possible. Let Q0 be the
southwest corner of the square. and from the sequence

(8.28) Qi+1 = Q(Qi). i = 0. 1. 2.

The expected value of the horizontal (or vertical) projection of QiQi+ 1 is

2/4Ul2 2
(8.29) dr| dO(re-r2e4)(r cos 0) = -.

Jo Jo

These projected lengths are independent: and so the strong law of large numbers
shows that (with probability 1 as N -+ o) P7I/N + o(I,,N) terms of (8.28) can
be formed before reaching the opposite boundary of the square. The sequence
(8.28) provides a chain, not longer than a longest chain in the square. This proves
the lower bound in (8.27): and the upper bound follows at once from Theorem 6.
Professor Kingman has remarked to me that. if in the third line of the proof of
Theorem 7 we interpret the word -close" in terms of distance measure(l parallel
to the diagonal of the square, we get a different integral in (8.29) with a value
(7t/8)"12. Thus the lower bound in (8.27) can be raised from 27t = 1.57 ... to
(8/r)1/2= 1.59 . Professor Blackwell has also obtained this result indepen-
dently.

9. Monte Carlo methods

In this section I shall describe how to study the behavior of 1N by a Monte
Carlo method, called dummy truncation. This device, originally introduced
many years ago to deal with percolation processes [12]. is really a very simple
idea. In studying a quantity. such as LN = N` 1'tN. which converges in prob-
ability as N -x c, it may be better to spend a given amount of computing time
on a small number of samples with large N rather than a large number of samples
with small N. Too small a value ofN entails the risk of not reaching the region of
asymptotic behavior; but a small sample size with large N need not, on the
other hand, prejudice the accuracy of the estimation because the sampling vari-
ance of LN becomes small as N increases on account of the convergence. Ulam's
account of Neighbor's Monte Carlo work does not mention the sample size
(though one may guess it was large since a computer was used), but Ulam does
state that the values of N were small (N _ 101): and we shall see presently that
his N are all much too small to represent the true asymptotic behavior. How does
one know when the asymptotic region is reached? There is no panacea, of course;
but a reasonable procedure is to study successive values ofN until LN appears to
settle down to some stable value. Thus we regard the whole vector

(9. 1) {V(X1), f(X2), , f(XN), '''}
as a single observation of the Monte Carlo sample, and the different observations
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of the sample come from taking different sequences X. The sample size will be
small if we only consider a small number of different X. In practice we have to
terminate (9.1) at some value of N, this value being chosen when L(XN) =

N- "1I(XN) reaches stability. Here we have to be cautious: since X is common
to all terms in (9.1), the terms in (9.1) are highly correlated. Therefore the stability
of L(XN) for each individual X is not enough: we must also check that the stable
values for different X agree with each other.
The plan will be impractical unless we have an efficient computing algorithm

for generating the successive coordinates of (9.1). To this end, suppose that

(9.2) X = {x1. X2 - }

consists of independent identically distributed observations xi from a uniform
rectangular distribution on the interval [0, 1]; and introduce a real variable x.
called the dummy truncator, which can take any value in [0, 1]. We define XXN
to be the subsequence of

(9.3) XN = {X1, X2, XN}

obtained by deleting from XN all xi > x. We write, as usual, f(XX) for the length
of the longest ascending subsequence of X'; and we now regard t(Xx) as a
function of x for each N. Of course

(9.4) '{(XN) = (XN)
so we can recover (9.1) if we have

(9.5) {((X-), t(X2), * *,I(XN). }

available in the computer. However, this is more than we need store in the com-

puter. To see this, we note that t(Xx) is an integer step function of x. satisfying
the recurrence relation

(9.6) {(X+NI 1) = N{X + X(XN )} + X_N
imax {((Xx). 1I (~N1} XN+1 . X . 1

This recurrence relation starts from

(9.7) t(X){1 _ . 1.

Moreover, t(Xx) is completely specified by a statement of the positions of its
steps: suppose these occur at x = Yi,N. = 1. 2. I(N). where

(9.8) Y1,N < Y2,N < ... < YI(N) N.

From (9.6). we see that

(9.9) Y1,N+1 < Y2 N+1 < < YI(N+ 1) N+ 1

is obtained from (9.8) by adding XN+ 1 to the end of (9.8) if XN + I > YI(N),N and
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otherwise by substituting XN + in place of the least Yi N > XN+ 1. The recurrence
from (9.8) to (9.9) starts from

(9.10) Yi i = x1i
Thus all we need do is to store (9.8) in the computer and successively update it
to (9.9).

This proeedure looks formidable at first sight: but a numerical example will
show that it is really very simple. Suppose that

(9.11) X = {0.23 0.47. 0.14. 0.22. 0.96. 0.83. }

Then

{Y1, I} = {0.23}
{YI.2 Y2,2} = {0.23. 0.47}
{Y1, 3 Y2,3} = {0.14. 0.47}

(9.12) {Y1,4- Y2,4} = {0.14. 0.22}

{YIs5 Y25s Y3,5} = {0.14. 0.22. 0.96}

{Y1,6. Y2,6 Y3.6} = {0.14. 0.22. 0.83}

For hand computing. this can be achieved by writing the terms of (9.11) in rows
(pigeonholes. rather like those in the proof of Theorem 2 but with ascending and
descending roles reversed): and 6N will be the number of rows used, while the y
are the last entries in each row. Successive appearances of this tableau will look
like:

0.23 -* 0.23 -- 0.23. 0.14 -* 0.23. 0.14 -+ 0.23. 0.14 -- 0.23. 0.14

0.47 0.47 0.47. 0.22 0.47. 0.22 0.47. 0.22
0.96 0.96. 0.83

Since we have

(9.13) {(XN) = 1(N).

we shall generate (9.1) if we generate X from a sequence of pseudorandom
numbers. which we then sort in an overwritten list (9.8). the length of the list at
any instant n yielding t(Xn). From Theorem 4. the length of the final list will be
about c./oIN. Hence to generate (9.1) as far as N. the storage requirement will be
approximately c.,IN and the computing time will be proportional to InN1 cw'n =
3 cN32. This is not excessive even for values ofN as large as a million. (Program-
ming experts will see that the foregoing computing time can be considerably
shortened by appropriate block addressing and address modifiers; but I shall
not go into that here.)
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Dr. D. C. Handscomb and Mrs. L. Hayes were kind enough to program the
foregoing algorithm on the computer at Oxford. The program was written to
accept any value of N _ 106. but due to pressure of time (I was (lue to fly to
Berkeley at the end of that week). we only ran the program up to N = 104. we
only printed out values of t(XN) for N = 100. 400. 1600. 4900. 10000: anid we
only did this for 10 different sequences X. This, of course, is a mere sketch of a
Monte Carlo calculation; and a full-sized calculation ought to be undertaken in
due course of time. However, even these sketchy calculations with a sample size
of 10 provide some interesting results. In Table I, the 10 lines correspond to the
10 different sequences X. the quantities tabulated being f(XN).

TABLE I

MONTE CARLO OBSERVATIONS OF I(XN)

N = 100 N = 400 AN = 1600 N = 4900 N = I000(

20 38 76 133 198
18 40 76 1:32 197
17 40 75 132 197
16 35 74 134 1 98
17 35 74 135 198
1 8 39 76 1:32 197
1 8 37 74 13t6 195
16 35 74 134 198
19 39 76 132 197
1 7 39 75 132 197

The consistency between sequences is impressive: indeed I have an uneasy
feeling that it is fortuitously too good, and that a larger sample would reveal
more scatter. However, for what these data are worth. we get the following

TABLE 11

MONTE CARLO ESTIMATES

N E(fN/IIN)N)al /N

100 1.76 + 0.04 1.6
400 1.88 + 0.03 3.8
1600 1.88 + 0.007 0.8
4900 1.90 + (.0(5 1.5
10(00 1.97 + 0.003 0.8
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FIGURE I
Monte Carlo experiment for ((XN) with N =10000.

estimates. The ± entries in the second column are standard errors: these and the
estimates of variance in the third column are certainly ragged and seem to me to
be suspiciously small. Better estimates must await more extensive Monte Carlo
calculations. The mean length 17.6 + 0.4 for N = 100 agrees with the Ulam-
Neighbor figure of 17.85 for N = 101 (his figures were for the slightly larger
quantity t* in place of 1'); but the second column suggests that (NI"/IN does not
come close to c until N is substantially larger, say N = 10000 or more. The value
of c seems to be near 2. Figures 1 and 2 show the results ofan eleventh observation.
Figure 1 gives a graph of (l(Xx) for N =10000 and 0 . x . 1. Figure 2 shows
the convergence of N- "/2 (XN) for N =1. 2. 10000. This eleventh observa-
tion is markedly smaller than the other 10 observations.
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FIGURE 2
Monte Carlo experiment for N-112te(XN) with N = 1, 2, * , 10000.

10. Attack on c: first method

The arguments in the first eight sections of this paper are rigorous; or rather
(since "rigorous" is a subjective term), people, finding the arguments non-
rigorous, should at least have little difficulty in modifying them to accord with
their own personal standards. However, as usual the price paid for rigor is con-
clusions which are rather insipid and general, which merely assert the existence
of limits or the qualitative behavior of functions. This and the next two sections,
on the other hand, deal with the harder problem of assigning a numerical value
to the constant c, whose mere existence was established by Theorem 4. Here I
jettison rigor without compunction, because a premature attempt to retain it
would quite simply halt the work. Of course, I do not mean that rigor should be
scorned for its own sake, but merely that the initial investigation is best done
without the shackles of rigor and I have not yet got beyond this initial stage. A
research worker needs to be able to think nonrigorously in order to get off the
ground in the first place, and this ability is in fact rather more difficult to achieve
than rigorous thought; for it requires a rather sophisticated sense of judgment
over the adequacy of approximations, the plausibility of the reasoning, and the
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prospects for ultimately making it watertight. One should try to make many
different attacks upon a difficult problem-wave after wave of attack if possible,
from all sorts of angles, to test the weak points of the defenses and reveal the
footholds from which a final assault may be launched. This preliminary recon-
noitering and skirmishing should be highly informal, though not without a per-
ceptive eye for routes able to support the weight of later formality. I shall try,
rather sketchily, to illustrate this by presenting three separate nonrigorous
determinantions of c. The first determination has a superficial attractiveness; but
it is, I believe, thoroughly disreputable. The second and third arguments look
progressively wilder but are, I think, more promising. But these assessments
are matters of taste and experience, and the reader must make up his own mind
about them.

Consider, as in the proof of Theorem 7, a Poisson process with unit parameter
and a square of area N. Let P1, P2, * * *, Pe be the points of a longest chain in
the square drawn from the points of the Poisson process. Here

(10.1) e = eN= c.N,

with (of course) a suitable nonrigorous interpretation upon the equality signs in
(10.1). The average horizontal (or vertical) displacement between two successive
points Pi, Pi+, is I/c since the square has side IN; and hence the area of a
rectangle R, having sides parallel to the square and opposite vertices at Pi and
Pi+2 (not Pi+ 1) is about 4/C2 . However, the rectangle R may be expected to con-

tain just one point (Pi+1) of the Poisson process (if it contained two or more
points there would be at least a 50 per cent chance of two or more points of the
chain in R). The expected number of Poisson points in an area 4/c2 is 4/c2. Hence

(10.2) 4/c2 = 1,

which gives c = 2.
This looks like the right value of c, and at first glance the method has a

pleasant appearance of simplicity. On closer examination, however, it becomes
far less attractive. There is in fact a vicious circularity about the argument; and
this is best exhibited by considering instead the rectangle R' with opposite vertices
at Pi and Pi +1. The area of R' is about I/c2, and R' certainly contains no points of
the Poisson process. But I/c2 is nothing like zero. The trouble arises because R'
depends upon the properties of the chain, and hence upon the Poisson process.
There seems little prospect of mending this first method.

This is a pity, because an extension of this method would have yielded not
merely c, but also the values of

(10.3) 1(N) = E(eN)

for finite N. To pass quickly over this, consider the rectangle R" with opposite
vertices at Pi and pi+k. This has area k2/c2; and so the probability that there are
n Poisson points in R" is
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(10.4) e -k2/C2(k2/C2)nn!
The expected length of longest chain from these n points in R" is A(n) from
(10.3); and R" is known to contain a longest chain of length k - 1. Hence

(10.5) E -k2/c2 (k2/c2)A2(n) =k 1
n=O n.

There are, of course, obvious queries over summing from n = 0 rather than
from n = k, say; but let us ignore them.
The left side of (10.5) is what might be called a Borel transform, by analogy

with Section 7. How does one invert a Borel transform? Putting

(10.6) k2/C2 = 0,

we get
co on

(10.7) LZ e-6 - A(n) = c0112
n=o n1)

and hence taking Laplace transforms with respect to 0, we have

(10.8) 2n i

n=0 (s + 1)' 283/2 s

This is a trifle nonsensical: the right side has a branch point, and it becomes
negative when s -+ 0 while the left side remains obstinately positive. A source
of this discrepancy is that, in taking Laplace transforms, we have treated 0 as a
continuous variable from 0 to oo although (10.6) restricts it to discrete values.
There are infinitely many continuous functions of 0 which agree with the right
side of (10.7) for these discrete values: which of these functions can we choose to
make the right side of (10.8) positive?

However, to continue, we put t = 1/(8 + 1) in (10.8) and expand the right
side in powers of t, obtaining

(10.9) L 2(n)tn = C tn+3/2 Etn
n=0 n=o n! n=l

In this we want to equate coefficients. In ordinary circumstances we could replace
a series like E antn+1 by I an- 1 tn; and we extend this principle of shifting n by
an integer to nonintegral shifts. This yields

(10.10) Al(n) =c(n - )!(n 3

For large n, this gives A(n) - cmn as it should. For small n, we insert c = 2
from (10.2) and calculate the right side of (10.10). Table III compares these
results with the exact values of A(n) obtained later in Section 17.
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TABLE III

VALUES OF' (N)

N Formula (10.10) Exact a(N)

:> 1.27 1.5(
3 2.01 2.00
4 2.61 2.42
5 3.13 2.79
6 3.59 3.14
7 4.00 3.47
8 4.39 3.77
9 4.75 4.06

The agreement is only moderate, perhaps all that could have been expected
from an outlandish calculation like this one. However, some concealed ideas
may possibly lurk in the foregoing, and perhaps they can be discovered by a
little gentle cooking of the mathematics and a proper disregard for the occasional
whiff of burning.

11. Attack on c: second method

It is more or less true (in some sense) that

(11.1) {(XN) = c,/N + o(V/N).
If the error term o(V/N) behaves smoothly enough, then

(11.2) E{{(XN+1) - e(XN)I{(XN)} - cl/(N + 1) - c/IN C

Now consider a square S with N points uniformly distributed in it; and consider
adding one more point to S, this extra point being also uniformly distributed over
S. We look at the conditional situation, given the positions of the original N
points. The extra point can only increase a longest chain of length {(XN) by 1.
Hence the expected conditional increase, namely (11.2), is equal to the prob-
ability that the new point will cause an increase of 1. Thus the area of the region
in S. in which the new point will cause an increase, is c/2.1N.

Consider a longest chain P1. P2,* , Pe from the original N points. Take PO
and P,1, to be the southwest and northeast corners of S. Let Ri. i = 0, 1. , (
be the rectangle with opposite vertices Pi and Pi + 1. The new point will cause an
increase of 1 to this chain if and only if it falls into one of the rectangles Ro,
R1, , Re. If these rectangles were squares, all of equal size, their total area
would be (f + 1)/(f + 1)2 _ ll/cVN. Actually their total area will be larger
than this (actually about twice as large), because they are not of equal size. There
will be a similar chain of rectangles from any other longest chain P', P.. , P;
and the rectangles from one chain will overlap those of another chain. Let us
hope that the overlapping compensates more or less for the underestimation of
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the total area associated with an individual chain. Hence the average number of
points which form an ith point of some longest chain is

(11.3) (c/21N)/(l1/cdlN) = 2C .

This holds for each given value of i; and therefore (ignoring the distinction be-
tween arithmetic and geometric means) the total number of longest chains is
about

(11.4) (4c2)( - (Ic2)cIN.
On the other hand from Theorem 6, the expected number of increasing sub-

sequences of length cdIN is

1 N X e 2cIN

(11.5) (cJN)! (C(N) (c

Equating (11.4) and (11.5) we get

(11.6) 1c2 = (e/c)2

which leads to

(11.7) c = 2 -l4e1/2= 1.961

This method is admittedly very rough and ready: the saving grace is the fourth
root at the end of the calculation, which reduces any relative error by a factor
of 4. It is the only method I have been able to invent which involves a final fourth
root: the other two methods presented here, as well as further methods which I
shall not mention, end by taking a square root. The suggestion accordingly is
that one should try to look for a method which ends by taking an arbitrarily high
root, thus swamping any approximations in the early part of the calculation
(Littlewood's "high indices" principle).

At first sight it seems odd that the number of longest chains is as large as (11.5).
The reason becomes apparent when one considers three successive terms
y < y' < y" in a longest ascending subsequence of X. There is a reasonable
chance that X contains another term z, say, such that y < z < y" while z > y'.
Thus the term y' may be replaced by z. This sort of substitution can take place
along the whole length of the chain; and hence the number of longest chains will
increase exponentially with the length of a longest chain. Actually I can prove
rigorously that the expected number of longest chains is at least

(11.8) (e/c)2cvN+o(VN)

The reason why I have to be content with this as a lower bound is that there is
a small probability of the length of a longest chain being less than cIN; if a
longest chain is shorter than cIN, the number of such chains increases ex-
ponentially over and above (11.8). This very large increase in numbers may
override the small probability.
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12. Attack on c: third method

This method is based on the principle that the only good Monte Carlo method
is a dead one: to wit, having done the appropriate transformation to prepare a
problem for Monte Carlo sampling (as by dummy truncation in Section 9), one
then ought to abandon the proposed Monte Carlo sampling and instead investi-
gate the transformed problem analytically. (If the analysis appears intractable,
the transformation is not an adequate preparation for Monte Carlo sampling!)
The analytical idea adopted here is to calculate the area under the curve

f(XX). defined in (9.6) and regarded as a function of x. Since the number of terms
in the sequence XX will be asymptotically Nx for large N. we have

(12.1) e(X') = cv/x + o(VIN).
The area under this curve is

(12.2) A e(X') dx.

We shall calculate A in two ways. one of which expresses it as a multiple of l/c.
By equating these two results, we then determine c. The second calculation,
leading to a multiple of l/c, might seem to conflict with the dogma that inte-
gration is a linear operation: the moral is that in searching for methods of cal-
culating scale factors one should not be blinded by the dogmas of functional
analysis.
The first calculation of A is straightforward: from (12.1) and (12.2) we have

(12.3) A = 23c1N + o(V/IN).
For the second calculation of A. we note that the curve ((XN) can be built up

stage by stage by the recurrence relation (9.6). Suppose that the recurrence has
gone as far as N = n, and we look for the expected increase in area., say q,. in
going from N = n to N = n + 1. We shall have

N-1
(12.4) A = qn

n=O

The discontinuities of ((Xx) occur at

( 12.5) IYi,n < Y2,n < < Y(),n
in accordance with (9.8): and the recurrence arises from adding a new point
x,+1 uniformly distributed over [0. 1]. The added area will be (yj+l -Xn+1),
where yj+ is the first term in (12.5) which exceeds xn+ 1. Given that x, + i falls in
(yj. yj+ l) the conditional expected additional area is 2(Yj+ 1 - y): and the prob-
ability that x,+ does f:all in (yj. yj+ 1) is (yj+ 1 - yj). Hence

l(n)
(12.6) q= 2(Y+1 -

j=o

where we have written Yi for yi, n~and taken Yo =0, YI(n) + 1 = 1
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Now consider the contribution to q. from an interval (x, x + dx). Here dx is
small; but we suppose that n is large enough to make v large, where v is the
number of yi in (x, x + dx). It is reasonable to assume that the distribution of
the discontinuities yi is locally homogeneous and random: I shall refer to this
as "assumption a," and will return later to discuss it. Thus, in (x, x + dx) the y,
behave as though they were independently and uniformly distributed over this
interval of length dx. However, it is known [19] that when v points are uniformly
and independently distributed over a unit interval, thus dividing it into v + 1
subintervals, the sum of squares of the lengths of these subintervals has an
expected value 2/(v + 2). Multiplying by (dx)2 to allow for the scale factor
between (x, x + dx) and a unit interval, writing 2/v instead of 2/(v + 2) because
v is large, and incorporating the factor 2 in (12.6) we see that the contribution to
qn from (x, x + dx) is

(12.7) (dx)2/v.
However v is the number of (unit height) steps of t(X') in (x, x + dx); so

(12.8) v ae(X= ) dx.
ox

Inserting this into (12.7) and integrating to collect together all possible intervals
(x, x + dx) we get

(12.9) q=n dx1 n

Thus (12.1) and (12.9) yield

P dx 4
(12.10) qn = | (c.,/n)(jx-2) -

By (12.4) we get

(12.11) A N-i 4 8jN + (VN).
n=no 3cv/- 3c

Here the summation has to begin at some large value n = no, because we have
assumed v large. Equating (12.3) and (12.11) we find that

(12.12) c = 2.

The mathematical novice will doubtless be appalled at this argument: he will
complain that in (12.8) 1 have differentiated a step function, and in (12.9) I have
integrated the reciprocal of this derivative; and that, if the reciprocal of the
derivative of a step function has any meaning, it must be infinite everywhere,
except for zero values at the positions of the steps. And he will also point to the
looseness which sometimes envisages random values and sometimes their ex-
pected values and which slips carelessly from one to the other. Experienced
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mathematicians will feel no such qualms. With one exception, all the steps in the
argument can be made rigorous. To sketch very briefly the necessary amend-
ments we first choose an arbitrary 8 > 0 and then find a partition of [0. 1] into
equal intervals of length ( = 6(e) such that the Darboux sum

(12.13) Y (j3)1/2
j= 1

approximates

(12.14) 1 12 dx

to within 8. The intervals (j6, j6 + 3) can then be used in place of (x, x + dx).
The derivative in (12.8) is replaced by a finite difference, which will behave itself
if n > nO (E). And N in (12.11) can be chosen large in comparison with n. Eventu-
ally we shall find that c differs from 2 by a fixed multiple of E: and (12.12) will
result from the arbitrariness of E.
The only gap in the argument which I cannot yet fill in rigorously is a justi-

fication of assumption a. Unfortunately this assumption is crucial to the argu-
ment; for, if we replace the 2 in the numerator of 2/(v + 2) by some other
constant, the ultimate value of c will be altered correspondingly. Of course,
Cauchy's inequality shows that the sum of squares in question eannot be less than
1/(v + 1): this leads to a rigorous proof that c _ 12. a result which is not as
good as c -1. r obtained in Theorem 7. Assumption o is aetually a stronger
assumption than one needs to arrive at 2/(v + 2); and. at one stage in the de-
velopment, I thought that it might be possible to justify an adequate weaker
assumption by entering Laplace transformed space at an appropriate moment
and utilizing the results of Section 13. (This would have involved an appropriate
transformation of the x-axis, and a more complicated integral instead of (12.4);
but that would only call for a few technical adjustments of a fairly simple kind.)
However, the manipulation in Laplace transformed space (see the end of Section
16) has proved more slippery and difficult than I first thought: and so far I
cannot provide a rigorous proof of (12.12). However. I should be very surprised
if (12.12) is false.
There is a rather treacherous variant of this method-treacherous because,

unlike the foregoing, it hides an elusive mixture of conditional expectations that
are not at all easily amenable to rigor. The conditional expectation of f(XN+I1)
given ((XN) is 1 - YI(N) N, since {(XN + 1) - {(XN) can only take the values 0 and
1 and the' latter value occurs if and only if YI(N) N XN +1 . 1. Hence

(12.15) E{(XN+l) - Et(XN) = E(1 - YI(N).N)-
The left side of (12.15) is the result of differencing c.IN + o(/IN) with respect
to N; and ought to be about c/1N if the error term is smooth (this sort of diffi-
culty ought to be surmountable by reversing the argument and summing the
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differences over N as in (12.4)). The right side of (12.15) is the displacement in x
near = I just sufficient to ensure unit increase in ((XN). and should be nearly
equal to the reciprocal of a((X')/ax at x = 1. namely 2/c\/N from (12.1). Thus

(12.16) 4c/,/N = 2/cl\/N

which once again yields (12.12).
This argument can be ma(le a little bit more plausible by considering what

happens at the discontinuity x YiN. By the same argument as leads to (12.15).
we have

(12.17) E4(XN+1) - (X) = Yi,N - Yi-1, N (P = Yi.N)

where the expectation in (12.17) is condlitional on ((Xx) being given. Now {(XN)
regarded as a function of x has a jump of height 1 at x = Yi, N. Hence suimming
(12.17) over i = 1. 2. I. I(N). we have the Stieltjes integral

(12.18) f {E((Xx+1) - ((Xx)} d((Xx) = 1.

Here we have written 1 for the upper limit of integration and for the right side:
strictly it should have been YI(N), N: but this is very nearly equal to 1. If we now
regard ((Xx) as a continuous function of N. for example by making it piecewise
linear between the original integer values of N. we can write (12.18) as

(12.19) E j df(Xx) 1.

Suppose that somehow we can take expected values over Xx (and it is not clear
how to do so) in such a way that f(Xx) may be replaced by its asymptotic value
c/Nx. Then this would give

a a
(12.20) JaN (c N/x) (c )dNd 1;

whereupon an easy computation leads from (12.20) to (12.12).
In Section 1 I said that published proofs differ from the arguments of their

gestation. Sections 10, 11, and 12 may illustrate the kind of preliminary thinking
from which a finished proof might be derived. Each appears in a different stage
of development and none has reached fruition. As a matter of fact I have pre-
sented them in reverse chronology. Section 12. apart from the much younger
final variant, is about six weeks old and comes nearest to being the framework
for a rigorous argument. Section 11 is about two weeks old. and Section 10 is only
two days old. These ages are reflected in the relative coherence or incoherence
of the text. If any one of them had reached the stage of a watertight argument,
the others would have been discarded. Moreover the necessary epsilontics of a
proof would have shrouded the underlying ideas and their origins.
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13. The joint characteristic function

It is always worth trying to solve a problem by brute force. If the problem is a
difficult one, brute force will have slender hopes ofsuccess; but, should it succeed.
it is likely to yield far more detailed results than general theory ever does. Charles
Darwin was fond of saying that scientists should perform damn-fool experiments
from time to time: these usually fail, but are a triumph when they come off. He
illustrated this precept once by playing the trombone at his tulips, with negative
results.
We should be able to deduce almost anything we wanted to know about

Ulam's problem if we could obtain a tractable expression for the joint charac-
teristic function of the discontinuities in the Monte Carlo truncated function
(9.6). The distribution of /N is nonparametric in the sense that it does not depend
upon the common distribution of the xi in X: and the distribution of tN is the
same as that of {N. There are technical simplifications in supposing that the xi
come from the common distribution

(13.1) P(xi _ x) =1e-X. O< x o.

and in considering /f instead of TN. The necessary changes to (9.6) and (9.8) are
as follows. We define XX to be the subsequence ofXN which contains only those
xi _ x. Thus XN = XN in particular. We write t'(X') for the length of a longest
descending subsequence in XXN. Thus (9.6) becomes

(13.2) f(XX1) {ff'(XN) XN+1 < X . Ol
(13.2P(XX, 1) {max {JP(Xx), 1 ± t.'(XXN+ )}. 0 . X < XN+1.

Suppose that the steps of t'(Xx) occur at

(13.3) Y1,N > Y2N >... > YI(N), N

For convenience, we drop the second suffix and extend the range ofthe first suffix:
so (13.3) becomes

(13.4) Y1_ Y2 >_ >_-Yi >_ >°

In (13.4) all yi = 0 when i > I(N); and, with probability 1, strict inequality
holds for yi > yi+1 when i . I(N). The advantage of (13.4) lies in not having to
bother about the value ofI(N) in the calculation, since the notation automatically
takes care of it. Our aim is to find an expression for

(13.5) 4ON(S) = OPN(81, 82, ) = E exp { E siYi}

where the suffix N in (13.5) recalls the suppressed second suffix in the yi. We
note that the extended yi, namely those with i > I(N), being zero do not affect
the value of N(S). In (13.5), we would have a joint characteristic function if the
si were all pure imaginary quantities: it is. however, more convenient to take the
si to be real and nonnegative; and this will not affect the usefulness of N(S).
We now seek a recurrence relation between 4pN and N I 1
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To pass from (13.4), which relates to N, to the corresponding sequence relating
to N + 1, we have to draw XN+ 1 from the distribution (13.1), and then insert
XN+ 1 in place of yj wherej is the smallest integer such that yj > XN+ 1- If no such
j exists. we simply augment the y by XN +1 as it stands. This will provide a new
sequence

(13.6) Y_> _ _ 0

in place of (13.4); from which

(13.7) {N+I(S) =E- }exp

We shall, however, calculate (13.7) in two stages. In the first stage we calculate

(13.8) E* exp {- - sm},

where E* denotes the conditional expectation given the sequence (13.4). The
second stage will complete the process by taking expectations over the sequence
(13.4). For typographical convenience we write x in place of XN+ 1 Thus drawing
x from the distribution (13.1), we have

(13.9) E* exp iYi

= e-xexp -slx - E siyi} dx
Yl ~~~~i=2

X Yj-1 f j-1

+ E | e-x exp - E siyi -sjx- Siyi dx
j=2Jy( i=1 i=j+1 )

I )O
= ±+ exp -(s, + l)yl - EiyiZ

81+ I l [exp {- si=y-(s2 + ) - 1 }

- exp - EsYi - (s8 + l)yi_ - EZ 3 .
i=1 i=j+i

Now we effect the second stage of the calculation. Using the definition (13.5)
with appropriately adjusted values of s, we find

(13.10) 4N+1(S)
I1 N(81 + 1, 82, s3,*)

8i + Ik(8
+ E'N 1[2N(81, 82, ,-1 Sj1±j + 1, j+1, * *

i=2 "i +I

ON(81, 82, , Sj-2, 8j- 1 + sj + 1, 0, 8j+ J. )]
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This recurrence relation can be started by considering the case N = 0, in which
Yl = Y2 = = 0. Thus (13.10) holds for N = 0, 1, 2, * and starts from

(13.11) 00(s) = 1.

The next problem is to solve the functional recurrence relation (13.10), and a
pretty unpleasant relation it looks. Functional equations in one variable can be
troublesome, those in infinitely many variables are worse. The only hope, I felt,
was to work out the first few values +0, 01, 02, - * - from (13.10), to guess the
general result, and then prove it by induction. This is a good example of brute
force mathematics, and it needs plenty of courage and a lot of tedious elementary
algebra. It is clear that ON will be a rational function of S1, 82, * * *, SN. The
difficulty is that a rational function of several variables can be written in an
enormous number of different ways, and one has to hit on just the right way of
writing it before one has much chance of guessing the general result. Ifthe reader
does not believe this, let him try solving (13.10) for himself.

I spent two or three days over this job. The expressions 01 and 02 are quite
easily found; but 03 was a lot messier, and I had to write it down in many different
algebraic forms before I got it into a shape which looked like a reasonable ex-
tension of 01 and 02* I then guessed what ON should be like on the basis of 01,
02, and 0P3, and was able to confirm this guess by induction. This confirmation
is quite easy and runs as follows.

Define

(13.12) S1= s1, S2 = S1 + S2, S3= S1 + S2 + S3,-

and

(13.13) S(a) = + at)!

where a = (ao, al, * ak) is a sequence of integers satisfying

(13.14) 0=aO <al <a2 < ... <ak.

Introduce the functional operators Jl, J2, * * * by the definitions

(13.15) Jlf(s , 82, * *) = (S + 1) If(sI + 1, S2, S3, * * *

(13.16) Jjf(sl, S2, *) = (si + 1)-'[f(sI, ...
I jSl, 8j + 1, Si+ *

...

- f(SI, Si-2,Si-I + sj + 1, 0, sj+1,, ],j_2.
From (13.10), we have

(13.17) ON+1(S) = E JjON(S)-j=1
Now, from (13.13),

(13.18) J1S(ao, al, , ak) = S(ao, a, + 1, a2 + 1, * * *, ak + 1),
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and

(13.19) JjS(ao, a1, *, ak) = 0, j _ k + 2.

To deal with the remaining cases 2 _ j _ k + 1 we adopt the convention that
an empty product, like H1= , is interpreted as 1. We have, for 2 _ j _ k + 1,

(13.20) JjS(ao, a1, * , ak)

- +Aj (Si + ai -1) O|1 k(Si + ai- 1 +

+sj Lli=' (S+ + at)! S ti'2 (Si + ai + 1)! J

SJJ (Si + a1i=)! (Si±+ 2+ 1)! S- (Si+ a +1)11
b'=2 (Si + ai)! f(Sj + aj-2 + 1)!}k=J (Si + ai +1)! jJ

= S+n (Si+ aii)!lIj (Si +aj1 +1)! ia
- 12 (S. + ai)! J Ui=j (Si + ai + 1)! J

1 J(Sj-I + aj 2)! (Sj + aj-2 + 1)!
Si -SJ-1 + 1 (Sj + aj_-1)! (Sj +aj_1 +

fj-2 (Si + ai- 1)!) k (Si + ai- I + 1!

i= (Si + ai)! JU'=j' (Si + ai + 1)! |

aj-I (Sj-1 + aj-2)! (Sj + r)!

r=aj-2+i (Sj-1 + r)! (Sj + aj-1 + 1)!
aj _ I

= Z S(ao,a1, ,aj2,r,aj + l,aj+l + 1,-- ak + 1).
r=aj-2+ 1

Since

(13.21) 01(s) = (sl + 1)'1 = S(0, 1)

we deduce from (13.17), (13.18), (13.9) and (13.20) that
N

(13.22) ON(S) = Y c(a)S(a),

where c (a) is a positive integer depending on the sequence a, and IaN denotes
summation over all integer sequences a satisfying

(13.23) 0 = aO < a, < a2 < ... < ak = N.

Here k may have any integer value provided 1 . k . N. Thus there are 2N- 1
sequences satisfying (13.23); and accordingly ON(S) is a linear combination of
2N-1 functions like (13.13), the coefficients of the linear combination being posi-
tive integers. This exhibits the functional form of ON; and to make further pro-
gress we need to study the coefficients c(a).
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14. Recurrence relations for the coefficients c (a)

The operators JI, J2. are linear operators on the positive integral orthant
of the vector space spanned by the functions (13.13). The vectors a can be taken
as a natural representation of the basis of the orthant. In deriving recurrence
relations for the coefficients c(a), it suffices to study the mapping induced on the
representation by the linear operator

(14.1) J= E J,.
j= 1

Let the set of vectors a which are sequences of integers satisfying

(14.2) 0 = aO< a, < < ak = N

be denoted by AN. Given a vector a c AN and an integer r satisfying 0 _ r . N.,
we define a mapping Tr from AN to AN + 1:

(14.3) Tr a = Tr(aO. aq* ak) = b = (b0. b1. bk)

where the bi are obtained as follows. Determine the smallest integerj such that
r _ aj. Then (ignoring any empty instruction like 0 . i < 0) put

bi = ai 0 _ i <j

(14.4) b = r.

bi = ai + 1. j < i . k.

If this process results in bk = N + 1, the process is complete; if it results in bk <
N + 1. put k' = k + I and bk' = N + 1. A vector a E A N is an inverse image of
b E AN+ 1 if there exists an r. 0 _ t' < N such that Tr a = b. We write T - 1 (b) for
the set of all inverse images of b. Comparison of (14.1). (14.3), and (14.4) with
(13.18) and (13.20) now shows that

(14.5) c(b)= E c(a).
acT- l(b)

This is the desired recurrence relation for the coefficients. The recurrence starts
from

(14.6) c(0. 1) = 1.

in accordance with (13.21).
The rules by which the recurrence (14.5) operates are somewhat complicated

and a numerical example will help to clarify them. We use the rules to construct
02 from 0½, 03 from 02, and so on. Suppose that we have got as far as 04, and
we now wish to calculate 05 from 04. To simplify the notation we shall write
typically

(14.7) 8034 = S(0, 3, 4).

Here the inital zero suffix serves to distinguish S0, = S(0, 1). for example, from
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the variable S,. In this notation 04 is given by

(14.8) 04(S) = 804 + 58014 + 5S024 + 38034 + 380124
+ 3SO134 + 3SO234 + 801234.

The calculation proceeds by means of Table IV. The first column contains the

TABI,E IV

CALCULATION OF 0, FRO-M1 04

a c(a) Toa Tha T2a T3a T,4a

(4 I (5 015 025 035 045
014 5 025 (15 0125 0135 (045
(024 5 (035 015 025 0235 ((245
0:34 3 ((45 015 025 (035 (0345

((124 :3 (235 0 135 0125 (12:35 ((1245
((134 3 ((245 ((1X45 0125 0)1:35 01345
0234 :3 0345 0145 0245 02:35 02345

01234 1 02345 01345 0124.5 0123:5 (12345

suffices a E A4 appearing in <4. and the second column gives the corresponding
coefficients c(a) taken from (14.8). The last five columns tabulate Tr a. for
r = 0. 1. . 4. In general when calculating ON + from ON the table will contain
2N1- rows and N + 3 columns for a. c(a). and T, a(r = 0. 1. . N). To calculate
T2 (034). for example. we note that 3 is the least integer in a = (034) which exceeds
r = 2. The integer 3 is accordingly reduced to 2; all preceding integers are un-
altered: and all succeeding integers are increased by 1. Thus T2(034) = (025).
The exception to this rule arises when it would lead to a vector which did not
end in N + 1 = 5. In that event N + 1 is added to the end of the vector as a final
coordinate. Thus T2(014) = 0125, and not 012 under the unamended rule.
Examination of the various entries in Table IV should make everything clear.
The entries in the body of the table are the vectors b in AN+ 1: and to calculate
c(b) we add together the c(a) entries, in the second column, for each row in
which b occurs. For example. from rows 2, 5. and 6,

(14.9) c(0135) = 5 + 3 + 3 = 11.

This leads to

(14.10) 45(s) = 805 + 148015 + 14So25 + 9SO35 + 4SO45 + 11SO125
+ 1180135 + 11So145 + 1l80235 + 11SO245
± 6SO345 + 4So1235 + 4So1245 + 4801345
± 4SO2345 + S012345.

In this way I calculated . .2. ... -7 and Mr. A. Izenman checked my
calculations and extended them to 'k8 and 04. The size of the calculation doubles
for each new 4; and 09 is about as far as one can go with paper and pencil.
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Things could go further with a computer; but even a large computer would feel
its resources strained round about 020; and the method is clearly impractical for
N _ 30.
What is needed is some algebraic apparatus. say generating functions. to

carry the work to larger values of N. I have not yet succeeded in constructing
such apparatus. However, examination of the first few values of 1N led to the
formulation of the functional form of ¢. namely the functions (13.13): and, in
the same spirit, we can look at the numerical properties of the first few co-
efficients c(a) in the hope of spotting some general pattern. In combinatorial
work especially, but also in other areas of mathematics. I find it very helpful to
study the numerical properties of particular cases. If the numerical data are
extensive, one must summarize in some way that will fruitfully reveal the intrinsic
pattern. Research experience, rather than undergraduate learning. seems to be
the only road to cultivating an instinct for the fruitful choice ofgood summarizing
quantities.

15. Properties of the coefficients c (a)

Even for small values of N, there is an unwieldy amount of data associated
with the coefficients c(a); and some method of summarizing it is advisable. As
an ad hoc device, guided by a mixture of instinct and experience, I decided to
look at the quantities o(N) defined by

(15.1) a, = E c(aO.al, ak) 1 p q N.
a, =q, ak= N

For example, from (14.10).

(15.2) o5=11 +±1 + 6 = 28.

The results are tabulated in Tables V to IX, with row and column totals, for
N = 1, 2. 7

TABLE V

\Al.UE OF 0(0)p.q
q= 1

p)=]1 1 1

TABLE VI

VALU7ES OF (2p.q

q = 1 2
p=1 1 1 2

2 1 1
1 2
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TABLE VII

VALUES OF aPp,q
q = 1 2 3

p= 3 2 1 6
2 1 4 5
3 1 1

3 3 6

TABLE VIII

VALUES OF a(p)

q =1 2 3 4
p= 12 8 3 1 24

2 4 6 13 23
3 1 9 10
4 1 1

12 12 10 24

TABLE IX

VALUES OF ap(q
q= 1 2 :3 4 5

p=l 60 40 15.5 4 1 120
2 20 30 28 41 1 19
3 5 12 (ii 78
4 1 16 17

5 ~~ ~~~~~~~11
60 60 50 45 120

Have you spotted any numerical patterns yet? If you wish to test your skill at
pattern spotting. do not turn over the page until you have first had a very good
look at tables V to IX inclusive and formed your own conjectures about the
corresponding numerical patterns for the next two cases (N = 6 and N = 7).
These next two cases are covered by Tables X and Xl on the next page.

Scrutiny of these tables suggests certain interesting patterns. In the first place
it appears to be true that

(15.3) p,qNq=N(N-) 1 .p _ q _ N - 2.

Ontheotherhand, (15.3) iscertainlynottrueforq = N - 1 orq = N. Secondly,
if we denote the row totals by

N

(15.4) a(N)= E (N)
q=p

then it appears to be true that

(15.5) a(N) = N!
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TABLE X

VAltTES OF I(6)p.q

q= 1 2 3 4 5 6
p =1 360 240 90 24 5 1 720

2 120 180 168 120 131 719
3 30 72 105 381 588
4 6 20 181 207
5 1 2.5 26
6 1 1

360 360 300 270 251 720

TABLE Xl

\Al,UES OF X(p)

q=1 2 3 4 5 6 7
p= 1 252(0 1680 630 168 35 6 1 504(0

2 840 1260 1176 840 495 428 5039
3 210 504 735 830 2332 4611
4 42 140 276 1821 22793
5 7 30 421 458
6 1 36 37
7 1 1

2520 2520 2100 189( 1757 1638 5040

and

(15.6) a(N) = a(N) - a(N) 2 _ p N.p p-i p- 1,N,

We shall prove later that (15.3), (15.5), and (15.6) are indeed true in general.
For the moment we only note that they were originally obtained on the empirical
evidence of Tables V, VI, - XI; and that they have the following important
implication: all the numbers o N) can be reconstructed from a knowledge of the
last columns o(N)N only. For suppose that we are given x'n) for all p, n satisfying
I _ p . n < N, and suppose that we have so far managed from these to recon-
struct o(n) for all p, q, n satisfying 1. p . q . n . N- 1. Then we can re-
construct the first N - 2 columns of the table o< ) by use of (15.3). The Nth
column of the table has been given us; and we can calculate the row totals of the
table by successive use of (15.5) and (15.6). We can then fill in the (N - I)th
column, since it is the only missing column and we know the row totals. The
assertion about reconstruction now follows by induction upon N.
Thus it is enough to study the quantities

(15.7) #(N) = a(N)

which we now tabulate for 1 _ p . N . 9.

I have said that Table XII is sufficient for the reconstruction of the earlier
tables; but it is much more important than this, and actually it contains the
complete solution of Ulam's problem (or rather, we should possess the complete
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TABLE XII

VALuIES O fl')

N = 2 3 4 5 6 7 8 9
p=I I I I 1 1 1 1 1 1

2 I 4 13 41 1:31 428 1429 4861
3 1 9 61 381 2332 14337 89866
4 1 16 181 1821 17557 16708()

1 25 421 6105 83029
6 1 36 841 16465
7 1 49 1513
8 1 64
9 1

1 2 6 24 120 720 5040 4032() 362880_

solution if we knew the complete form of Table XII instead of its first 9 columns
only). At first I did not realize the significance of Table XII: it merely evolved
as a study of certain numerical patterns associated with the coefficient c(a). It
was not until I had calculated Tables V. VI. IX and hence the first 5 columns
of Table XII that I understood what Table XII meant. When its meaning dawned
on me. I decided to calculate Tables X and XI, and Mr. Izenman extended this
to N = 8 an(d N = 9, and at that stage Table XII emerged in its present form.
I shall explain the meaning of Table XII in the next section: for the moment, let
us look at the numerical patterns in Table XII.

Evidently we have for the first row

(15.8) p(N) = 1, N _ 1.

The second row is not so simple: but it turns out that

(15.9) )= (2N)! 1 N > 2,

and this can be proved in general. There is also a fairly clear pattern in diagonals
near the bottom of the table:

(15.10) flN) = 1. N_ 1

(15.11) #IN)Q = ( N - 1)2, N > 2.

Mr. Izenman discovered the formulae for the next two diagonals.

(15.12) lN-2 = 'N(N - 1)(N - 2)(N - 3) + 1. N > 3

and

(15.13) N -)3 = 1 + 'N(N - 1)[-115 + 57N - 10N(N - 1)

+ 7 N(N I-I)(N -2) (N -:3)
4 !

+
I
N(N I))(N -2)(N -3)(N - 4)] N . 4.

0.
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Equations (15.10), (15.11), and (15.12) can be proved in general; but (15.13)
has not been proved in general and may not have been written in the most trans-
parent form. This question of transparency is elusive. For example, when one
knows the reason why (15.12) is true, it is appropriate to write (15.12) in the
form

(15.14) fQN)2 = (N 2 ) + [(N2 ) -][2( 2 1)-], N
_ 3;

and it seems to be more or less an algebraic accident that the right side of (15.14)
happens to simplify to the right side of (15.12). If (15.13) really is as compli-
cated as it looks, then an attempt to find exact general formulae for the quantities
,pN) would seem out of the question, and we might have to be content with
approximations or asymptotic formulae. This issue remains unsettled.

16. Interpretation of the coefficients c (a)

The following interpretation of the coefficients c(a) emerged gradually from
an attempt to prove (15.3), which at that early stage was merely a conjecture
based on the numerical evidence of Tables V, VI, - - *, IX. In deriving the formu-
lae for ON we used descending subsequences of {x1, x2, * - }, where the xi came
from the exponential distribution (13.1). This, however, was merely a device for
easing the analysis and obtaining manageable functions (13.13). However, the
coefficients c(a) are much more deeply implicated in the combinatorial structure
of the problem; and, to interpret them, we return to the original formulation of
the problem, namely ascending subsequences of random permutations of the
integers {1, 2, * * *, N}.
We set up a method of coding these permutations. Suppose that r=

{1r1, IE2, * 7*Nr} is a given permutation of {1, 2,*, N}. Define

(16.1) ai = ajnf), i = 1,2, * *,e

to be the greatest integer j such that {1, 7r2, * **, irj} has a longest ascending
subsequence of length i. In the definition (16.1), i = 1, 2, * , 1' where 6 is the
length of a longest ascending subsequence in Xt = {7r1, 7E2, * **, 7EN}. Also define
aO = 0; and write

(16.2) a(Xr) = (ao, al(X), * * *, a,(7r)).
For example, if N = 9 and

(16.3) t= {8 9 1 4 3 6 5 7 2},

then

(16.4) a(z) = (O 1 5 7 9).

It is evident that the final coordinate in a(z) must always equal N, the number
of elements in i. For a given vector a, let y(a) denote the number of permut-
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ations it such that a(7Z) = a. We are going to prove that

(16.5) 7(a) = c(a).
If N = 1, the only possible permutation is 7r = {1} and a(Xt) = (0, 1). Hence

y(O, 1) = 1 = c(0. 1) and (16.5) is true for N = 1. Now assume that (16.5) is
true for N. Consider a given permutation t = {f1, t2. * ,rN}. This can be
converted to a permutation of {1, 2, . , N + 1} by inserting N + 1 in N + 1
available places. We write these extended permutations as

To7r = IN + 1, 91, 7E2, , UN}
(16.6) T1i = {it1, N + 1, 7t2, , iN}

T2t= {i17, 2, N + 1, 7,N}

TNit = {i1, i2, 7, N, N + 1}.

However, by (14.3) and (14.4), we have

(16.7) a(Tr 7t) = Tr a(t). r = 0. 1 . . N.

This holds for all it: and hence (16.5) is true for N + 1 in place of N. Thus (16.5)
is generally true by induction on N.

But now (15.1) and (15.7), taken together with (16.2), prove that 3(N I is the
number of permutations of {1, 2, - N} which contain a longest ascending
subsequence of length p. Hence

(16.8) P{f(XN) =P = #(N)IN
which provides the distribution of the random variable t(XN). This explains
the importance of Table XII.
With these preliminaries settled, we can now prove (15.3). Consider a given

permutation 7t = {Xt1, it2, . RN}. For r = 1, 2, * *, N + 1 define

(16.9) Unir = {i7t i7r* ... irt r}

where i7Z = 7r; or it* = iti + 1 accordingly as 7i < r or 7i > r. If

(16.10) a(7z) = (a0. a,, a-1 N)

then

( (aO. a,. - , a-1. N + 1), r = 1, 2, . , N

((ao, al*, a,,1 N. N + 1) r = N + 1.

This gives the important identity

(16.12) (N + I)c(ao. al, ae.1. N)
= c(ao,a,. ae.N + 1) + c(ao. a1, ae.-a1_N. N + 1),

because it is an arbitrary permutation of {1, 2, *, N}. Since a, 1 _ N - 1,
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we now see that

(16.13) (N+1) = (N + 1)(N. 1 _ p _ qa N - 1,

which is (15.3) with N + 1 in place of N.
A few of the coefficients c(a) can be determined explicitly. For example. con-

sider the permutations which are coded by the vector

(16.14) a = (0. r, r + 1, r + 2, ,N),

that is to say with ai = i + r/- 1. for i = 1. 2. . N - r + 1; all have

(16.15) 71 > 72 > > lr = 1 <7r+ 1 < 7r+2 < < 7N.

and vice versa. But we can choose any set of r - 1 elements from {2, 3 N}
and arrange them in descending order to give 71. 712 . 7r- 1. Therefore

(16.16) c(0. r. r + 1. r + 2. N) = (N 1)

From (16.12) and (16.16) we deduce

(16.17) c(0 r. r + 1. r + 2. N - 2. N) -{ ( 1) }(N 2)

For example,

/4
(16.18) c(0345) = (2) = 6.

and

(16.19) c(035) = (25 - 20 1 9
2

and these confirm the coefficients of 0345 and 8035 in (14.10).
The identity (16.12) shows that our problem would be solved. at least in

principle. if for each N we knew the values of the 2N-2 coefficients c(a) in which
a,,, 1 = N - 1. at = N. This suggests that we ought to look for furthel identities
like (16.12) which would successively reduce the problem to a determination of
coefficients with

a, = N- 1 a,= N

(16.20) a,2 = N -2.a1 = N - 1. a = N

until we reach known coefficients of the form (16.16). However this attractive
possibility has so far eluded me. Nor have I made any substantial progress
towards an explanation of the spectrum of values assumed by the coefficients
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c(a). Table XIII shows the number of distinct values taken by c(a): and this
number is noticeably smaller than the number of coefficients.

TABLE XIII

I)ATA ON TIIE COEFFICIENT SPECTRUM

Value ofN: 1 2 3 4 5 6 7 8 9
Number of

coefficients c(a) 1 2 4 8 16 32 64 128 256
Number of

distinct coefficients c(a) 1 1 2 3 6 9 16 29 55

For purposes of reference and to spare other investigators the labor of re-
calculating the coefficients c(a) for N < 9, I give in Table XIV a condensed list
of the coefficients for N = 9. Coefficients for N < 8 can be easily recovered
from Table XIV by means of the identity (16.12). To save space the coefficients
are simply listed in natural order beginning with c(01) and ending with
c(0123456789); and an entry such as u" means that the coefficient u occurs n
times consecutively in this position of the list, and semicolons separate co-
efficients for different values of (: thus, in this notation, (14.10) would take the
compact form 1; 142, 9.4:4 11, 6; 44; 1.

TABLE XIV

LIST OF COEFFICIENTS FOR N = 9

1: 14302. 1001. 572. 275, 110. 35. 8: 65293. 6031, 5035, 4168. 2431.
6529 2. 6031. 5035. :3751. 2431. 3820, 3772. 3322. 2536, 1672, 16092. 1321,
913. 5202 40() 1332. 28: 4364'. 4280. 4028. 43643, 4280. 4028. 43642.
4280. 4028. 3812 2. 3644. 2876(2. 1475. 43643, 4280. 4028. 43642. 4280.
4028. 3812 2. 3644. 28762. 1892, 23393. 2255. 23392. 2303. 18712. 1271.
866. 6,50. 245-. 56: 1405 ". 1363, 14059. 1363. 1405g. 1363. 120 1 877.
14059. 1363. 1405'. 1363. 120 13. 877. 7309. 568. 259'4. 70: 31434. 266.
31414. 266. 161'. 56: ,5.527 28: 88: 1.

We now return to a further consideration of assumption a in Section 12,
where we had to calculate the quantity qn in (12.6). Actually we shall change the
ground a little by supposing that, instead of sampling the xi in X from the uniform
distribution on [0, 1], we are sampling from (13.1) and looking at the distribution
of t N. The necessary technical adaptation to pass from one form of the problem
to the other is simple, merely a suitable transformation of the x-axis. Also (13.4)
will hold in place of (12.5) and we write

(16.21) Zi= -Yi Yi+i

We want to calculate

(16.22) qN = 2 i=l
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From (13.5) and (13.12) we have

(16.23) 4N(S) = E exp{- E siYi} = E exp {- Si(Y - Yi+,)}

= Eexp{- iY1 sizi}

Hence, from (13.13) and (13.22),
'ION k (Si ±a. ,)'

(16.24) E exp - E Sizi = E c(a) H
p1 f/ a)i=I (Si ±ai)!

If the right side of (16.24) had just one term in the sum, this would establish the
independence of the zi required under assumption x. As things stand, it is no
more than suggestive.
We can go a little further by differentiating (16.24) twice, and then putting

S1 = S2 = =O. Thus

(16.25) qN=[= E E exp { ssz0

1N
w eN! E c(a)v(a),

where

(16.26) v(aO, a,, ak) E
1 =i<j.k a,aj

Maybe this can be manipulated further.

17. Distributional properties of f((XN) for small N

Table XV exhibits the principal statistics of the distribution of the random
variable eN = e(XN) for N < 9, calculated from Table XII.

TABLE XV

STATISTICS OF 4N FOR N . 9

N E((N) E(N)/VN Vai IN /(N ar 4N)

1 1.00000 1.0(0(( 0.00000 0.00000
2 1 .500)( ) 1.0(6(i6 0.2.5000 Q.5000()
3 2.00000 1.15470 0.33333 0.57735
4 2.41667 1.208:30 0.41005 0.64035
5 2.79167 1.24844 0.49863 0.70614
6 3.14028 1.28201 0.57065 0.75541
7 3.46528 1.30975 0.63218 0.79510
8 3.77034 1.33302 0.69106 0.8:3130
9 4.05833 1.35278 0.74859 0.86521
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I have tried extrapolating E(fVN)/,/N as N -+oo by calculating divided differ-
ences with N- 112 as argument; but this does not work at all well with the values
ofN available in Table XV. and yields to an estimate of c substantially less than 2.

18. Application to nonparametric testing of stationary sequences

As explained earlier, I took up Ulam's problem because it was a challenging
mathematical problem. which aroused my curiosity. But. before long. of course.
I asked myself if the mathematics might. by some happy accidenit. have
applications.
One of the standard methods of testing whether a sequence of indepen(lent

random variables is stationary, against the alternative that it has a trend. is to
count the number of local maxima in the sequence. This test however has the
drawback of being rather easily affected by local aberrations in the sequence: a
test that took a more synoptic view of the whole sequence would be preferable.
This situation is rather like that met in looking for periodicities in a stochastic
process: the old-fashioned periodogram analysis suffers because genuine periodi-
cities can be obscured by a few accidental phase-shifts: an(d the autoeorrelation
coefficient and its Fourier transform provide a better approaeh since they filter
out these local irregularities.
The length of a longest ascending (or descending) subsequence should give

quite a good synoptic nonparametric test statistic of stationarity. A sequence of
length N will have a longest ascending subsequence of length about 2|N if it is
stationary, but one of length proportional to N if it has an increasing trend. If the
original sequence is reasonably long, so that N is much larger than 2AN.1 the test
will be very sensitive. especially because the Monte Carlo experiments suggest
that {N has a small sampling variance (which might even be bounded as N -G cc).
The test statistic TN is also very easily computed by the algorithm in Section 9.
But before the test can be put forward for practical use, we need to know more
about Var eN

19. Distribution of the number of ladder points

When I delivered the lecture on this paper at the Sixth Berkeley Symposium,
Section 18 represented my thoughts on applications. But two days later
Professor A. Dvoretzky, who had been in the audience, suggested to me that I
should look into the corresponding nonparametric test based upon ladder points;
he thought it likely that this would be both an easier mathematical problem and
a more powerful test.
A point xj in the sequence XN = {X1. X2. , XN} is called a ladder point if

xi _ xj for all i _ j. What is the distribution of kN, the number of ladder points
in XN . given that the elements of X are independently and identically distributed
with a probability density function? Let

N

(19.1) fN(t) = E P(kN = n)t'
n= 1
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be the generating function of the distribution. Let us pass from XN to XN+ 1:
then there is probability 1/(N + 1) that XN+ 1 will add an extra ladder point to
kN. and probability N/(N + 1) that it will not. Hence

(19.2) fN+l(t) = fN(t)(N + t)/(N + 1):

whence
N-1

(19.3) fN(t) = (/IN!) H (r + t)
r =O

N
= (1/N!) E (1 )N+nSn tn,

n= 1

where SN are the Stirling numbers of the first kind ([17]. p. 22). Hence

(19.4) P(kN = n) = (_1)N+nSn/IN! = IS I/N!

gives the distribution of the number of ladder points. From (19.3) we can easily
derive the mean and variance of kN:

N

(19.5) E(kN) = I r1 - logN + y,
r= 1

N 7t2
(19.6) Var (kN) = E (r- 1)/r2 - log N+y--6

r=1 6

where y is Euler's constant. For large N, we find that kN has asymptotically a
Poisson distribution with parameter log N. Since N 1 log N is much smaller
than (21N)/N, the test based on ladder points will be more sensitive than the one
proposed in Section 18. It is one of those hard but sad facts of mathematics that
the easier and less diverting mathematical problems are likely to be the more
useful in practice. Now anything both useful and mathematically trivial will have
been published several times over already: and one really ought to check the
literature for references. I found papers by Chandler [2], Foster and Stuart [5],
and Stuart [22], and-ironically enough-a couple of my own early papers
[8], [9], which I had forgotten. (The conjectures in [9] were subsequently solved
by Erd6s [3] and by Moses and Wyman [20].)

20. Cross connections and conjectures

In Section 3 I said that it is better not to be influenced by reading the literature;
and this should include forgetting about one's own work as well as ignoring
other people's. Had I remembered my earlier work on Stirling's numbers, I
would have been deprived of an important motive for thinking about Ulam's
problem. Equally, it is difficult to escape from ideas and techniques that one has
used before. The methods used in proving (8.15). in particular the introduction
of a Poisson process and the associated Tauberian argument, originated from a
paper [1] on the travelling salesman problem. There they sufficed for converg-
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ence with probability 1: but here. for various reasons, they only lead to con-
vergence in probability. I want. of course, to show that (8.15) is also true with
probability 1; and for this I believe that fresh ideas are needed, and I have tried
hard to escape from the shackles of the earlier methods in [1]. but without
success. Preconceptions die hard.

But although the literature can be stultifying if one pays too much attention
to proof. it can be stimulating if one concentrates upon conjectures. So I shall
end by tracing some cross-connections between this paper and sundry problems
and conjectures.

If N towns are distributed at random in a region of area A. and LN is the
length of the shortest journey that the travelling salesman must make to visit
them all, then

(20.1) LN - C/NA as N-x

with probability 1, where C is an absolute constant. The relations (8.15) and
(20.1) are closely alike. In [1] it is shown that C satisfies various inequalities: but
nobody has yet solved the problem of determining C exactly. What is wanted is
theory for C along the lines of Sections 10, 11, and 12. There is also a similar
problem for Steiner's network problem [11]. (Incidentally, I take this opportunity
of correcting an error of calculation: in [1], p. 302, relation (7) should have
read 21/3/31/2 _ a, and consequently the relevant part of (8) should be
0.72742 _ 93.)

I have written elsewhere [13] of the distinctions between "soft" and "hard"
mathematics. One, though naturally not the only, distinction is that hard mathe-
matics is often concerned with calculating the numerical value of a constant.
To this extent Section 8 is soft mathematics dealing with generalities, while
Sections 9 to 12 are hard mathematics aimed at determining the value of c. Of
course, mathematical physicists are concerned with numerical values: and this
is one of the reasons why their mathematical expertise tends to be sharper and
stronger than that of pure mathematicians.

Rota's paper [21] has already featured in this story: and it has other cross
connections which I shall mention briefly. He writes about the place of com-
binatorial analysis in mathematical research and he lists seven challenging prob-
lems: (i) the Ising problem: (ii) percolation theory; (iii) the number of necklaces,
and P6lya's problem; (iv) self-avoiding random walks: (v) the travelling sales-
man problem; (vi) the coloring problem; and (vii) the pigeonhole principle and
Ramsay's theorem. It is interesting to note how many of these topics are centered
upon the determination of constants; and I am also pleased to find a high pro-
portion of my own favourite problems in his list.
The Ising problem is one of the most celebrated problems in theoretieal

physics, nearly fifty years old now and still guarding its secrets about the numeri-
cal values of certain constants as well as more qualitative questions about the
existence of singularities. Percolation theory is my own invention: and it has, as
Rota explains, a close connection with the Ising problem. A general exposition
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together with a bibliography of percolation theory and its relation to the Ising
problem and to various other questions in physics and chemistry appears in [6]:
this also gives references to the self-avoiding walk problem, which is intimately
connected with percolation theory. Another celebrated problem, closely associ-
ated with the Ising problem, is the monomer-dimer problem (see [14] for details
and bibliography). This too asks for the value of a constant; but it also contains
some "soft" mathematical problems, which would contribute greatly to our
understanding of stochastic processes in more than one dimension if only we
could solve them. The following problem is typical; and I am indebted to
Professor David Blackwell for kindly supplying me with a translation of it into
the language of modern mathematics.

"Denote by F the set of all functionsf from the lattice points of the plane to
{e, n, w, s} such that

f(x,y) = w f(x + 1.y) = e

and

f(x,y) = s f(x.y + 1) = n.

For any finite set A of lattice points, denote by FA the set of all restrictions of
functions f E F to A. For any B D A, the uniform distribution on FB induces a
probability distribution p(A, B) on FA. Does p(A, B) converge as B increases to
the set of all lattice points, for every A ?"

Percolation theory gave birth to subadditive stochastic processes, already
discussed in Section 6. Despite considerable work on percolation problems, a
great deal remains to be done. Rota [21] says that the percolation problem "was
brilliantly solved by Michael Fisher, a British physicist now at Cornell Univer-
sity." This, however. is not quite correct, although Professor Fisher has done a
great deal to advance our knowledge of these matters. I too was at one time under
the misapprehension that the percolation problem was solved; in [6], p. 897,
I wrote:

"Sykes and Essam have very recently (verbal communication to one of the
authors) utilized somewhat similar conversions in a proof that the bond process
critical probabilities of the triangular, square, and hexagonal lattices are respec-
tively 2 sin 7r/18, 1/2, and 1 - 2 sin 7t/18. Their brilliant solution of these three
exceptionally difficult problems, all hitherto unsolved, is a most remarkable
achievement."

Alas, these three problems are still unsolved :. when Sykes and Essam published
their work [23, 24]. they wrote [24], p. 1125:

"We shall suppose, without offering a proof, that for real p (O _ p _ 1) the
function K is singular at p = pc, but nowhere else. This is to be expected in the
light of exact results for closely related problems, and in particular, for per-
colation problems on lattices of the Bethe type for which K has been given
exactly."
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I am in no doubt that Sykes and Essam have got the right numerical answers
(which agree, for example, with results obtained from series expansions and by
Monte Carlo methods); and their exploitation of "matching" graphs is a valuable
new tool in the subject; but they do not claim to have found a rigorous proof,
and their argument rests upon plausible assumptions such as the one quoted
above.
The travelling salesman problem we have already noted in (20.1). The most

famous case of the coloring problem is to evaluate a constant, known to be either
4 or 5. Rota's illustration of the pigeonhole principle in [21] was discussed in
Section 3. On self-avoiding walks, where one of the issues is to determine the
numerical value of the so-called connective constant, Rota writes: "it is likely
that this problem will be at least partly solved in the next few years, if interest
in it stays alive." And this is the rub: he qualifies his decent optimism; for today
an increasing number of graduate students, reared on the deficient diet of
modern mathematics, take fright at difficult specific problems which they have
neither the courage nor the intellectual training to tackle, and they turn aside to
a tedious retilling of easier soils.
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