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1. Introduction

A medical investigator attempting to compare two different treatments for,
say, prolongation of life among disease victims, often finds himself in the fol-
lowing situation: at time T, when it is necessary to end the experiment, or at
least evaluate the results up to that time, a certain number of the patients in
each treatment group will still be alive. His data will then be represented by
two sets of numbers which might look like Xl, X2, X3+, X4, X5+, X6, ... , Xm and
yl, Y2+, Y3+, Y4, * - *, y.. Here xi and x2 would represent actual lifetimes,
while X3+, a "censored" observation, represents a lifetime known only to
exceed x3. If all the patients in both treatment groups were treated at time 0,
then every + value would be equal to T, a situation that has been investigated
by Halperin [1]. Frequently, however, patients enter the investigation at dif-
ferent times after it has begun, and the x+ and y+ values may range from 0
to T. Such a situation, of course, complicates the comparison of the two treat-
ments, particularly if the mechanism censoring the x values is different from
that censoring the y values. This may happen, for instance, if the x sequence
was run some time ago, so that nearly all the patients have been observed to
their death times, while the y sequence is begun later, and contains many
censored observations.
Gehan [2] and Gilbert [3] have independently proposed the same extension

of the Wilcoxon statistic as a solution to the two sample problem with censored
data. In this paper the problem is discussed further, and a different test statis-
tic is proposed, which is shown to be, in some ways, superior to the Gehan-
Gilbert statistic.

2. A statement of the problem and some notation

Suppose xl, x°, * *, are independent, identically distributed random var-
iables, having FO(s) = P{x° > s} as their common right sided cumulative
distribution function (c. d. f.). (Because of the censorship from the right, this
is a more convenient function to deal with than the usual left c. d. f. Note that
FO(s) is a left continuous, nonincreasing function of s, and that FO(-oo) = 1,
F(oo) = 0.) Likewise, let y°, y°, * * , y° be independent, identically distributed
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random variables with common right c. d. f., GO(s) = P{y° s} . Both F°and GO
will be assumed continuous. Our null hypothesis, which we wish to test, is
(2.1) Ho: FO = GO,
that is, the x° and y° random variables have the same distribution. What we are
considering as alternatives to Ho will become apparent as we discuss the various
test statistics.

Unfortunately, we are not allowed to observe the x° and y° values directly.
Rather, we are given two additional sequences of numbers, ul, U2, ... , Ur,
and vI, v2, * * *, v., and our observations consist of the minima,

xI = min(x°, ul), x2 = min(x2), ..*, Xm = min(xm, ur),
(2.2) yi = min(yl, v,), Y2 = min(y°, v2), * , y. = min(y°, v.).
In addition, we know which of the xi are actually x°, that is, uncensored ob-
servations, and which are the ui, and likewise for the yj. This information will
be denoted by the two (random) sequences, 61, 62, S.* m and e-, fE2, * *
where r.=lifx=x

= ixi = x0l
(2.3) t Ot0if xi < x°, (so xi = ui);

1( if yj = y°3
1.0 if yj < yi, (so yj = vj).

For the purposes of computing means, variances, efficiencies, and so forth,
it is convenient to assume that the ui and vj are independent random variables
themselves, with continuous right c. d. f.'s

(2.4) H(s) = P{ui _ s}, i = 1, 2, in* ,

I(s) = P{vj > s}, j = 1, 2, *n,

respectively. (However, the reader should keep in mind that such assumptioiis
are not essential for the application of the various tests. This point is discussed
further in section 5.) Under these assumptions, the xi and the yj are mutually
independent random variables with right c. d. f.'s
(2.5) F(s) = FO(s)H(s) = P{xi _ s}, i = 1, 2, , n,

G(s) = GO(s)I(s) = P{yj _ S}f j = 1, 2, n..,
respectively. The bi and fj are mutually independeint Bernoulli random var-
iables, with

P{S = 1} = P{H _ FO} = f H(s)dF"(s),
(2.6)

(2.= 16 = P{I > Gol = -| I(s)dG°(s).

The minus sign compensates for F° and GO being decreasing functions of s.
Throughout this paper, such notation as P{F _ G} will mean "the probability
that a random variable with right c. d. f. F(s) is greater than an independeint
random variable with right c. d. f. G(s)," that is, P{F _ G} = -|fo F(s)dG(s).



TWO SAMPLE, PROBLEM WITH CENSORED DATA 833

In general, the randomii variable xi will tot be independent of 5i, aiid likewvise
for yj and ej. The example in section 9 is especially simlple because indepelndelnce
does hold in that special case.

3. The test statistic of Gehan and Gilbert

Let us define a "scorinig function"

if xi _ yj, Ej = 1,
(3.1) QG(Xil 1Jj, 6, 'ej) =0 ifxi < iij, &j = l,

tl/2 otherwise,
and a statistic

1m n

(3.2) [l',; =-E E QG(Xi, Yi, &i, ej).
Because of the continulity of F, G, H, and I, the condition xi _ yj could be
replaced with xi > yj. However, throughout this paper, the definitioins have
been choseii to be consisteint even when the c. d. f.'s are not continuous.
The statistic WG has beeii proposed indepenidenitly by Gehan [2] and Gilbert

[3] (whose names, fortunately, both begin wvith G) as a reasonable extension
of Wilcoxon's statistic to the case of censored data. It is easily seen that rnnWG
equals the number of (xi, ijj) pairs where x°i is knowin definitely to be larger
(or as large as) Yj?, plus one half the number of pairs where, on the basis of the
given data, x° may be larger or mnay be smaller thian ,y. It is instructive to
follow Gilbert and rewrite QG as

1 if y" < mini(.x'' i, 1,j)
0 if X'I < rin(y'3, ?j, uli)

(3.3) Q (x~, ~,56~, E3) 1/2 if ui < min(x¶(l, yQ.1 Vi)
1/2 if v, < min(x, YJ, a,i)

which a simple enumeration of cases shows is equivalent to (3.1). This yields
the expectation of WG, namely

(3.4) EWG = EQG(Xi, YlJj,iej)
= ){"I°'OHI > Go +

I [I'-{F"((I > HI- + P>{F"G"H > I,],

where FOHI is the riglht c. d. f. of min(x°, ui, vj), and so forth. Under the null
hypothesis, Ho: F = GO, we have 1l"{F"HI > GO'- = 1' ,G°HI _ FO}, and

(3.5) EWG = 2 [P-1PHI > G, +±'-,G"HI _ FP-

+ 1'-(F"G°I > H} + '-(F°G"H > I-] =

independent of the distributions H and I. (This fact was first brought to my
attention by Dr. 'Nathan Alantel, who was kiind enough to send me a preprint
of his paper [4].)
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Gilbert gives the following formula for the variance of WG under 1O

(3.6) VarH,(WG) = 12rn [3P{HI > (F0)2}

+ (n - 1)P{HI2> (F0)3} + (m - 1)P{H2I > (FO)3}].

In what follows, some advantages and disadvantages of the WG test statistic
will be discussed, particularly in comparison with the WV test introduced in
section 8.

4. Asymptotically nonparametric tests

The statistic WG is not nonparametric, since even under Ho, its distribution
will depend on the relationship between H, I, and FO = GO (this can be seen
in (3.6), for instance). However, it is "asymptotically nonparametric" in the
following sense: if both m and n go to X in such a way that lim[m/(m + n)] =
with 0 < X < 1, then, under HO,

(4.1) (m + n) (WG-).1\ [° 11-2a_1+ I 2)2law 12j X
( ~1 i-~ y

where
a2 = P{H12 > (FO)3}

(4.2) 2 = P{H21> (FO)3}.
Here N(,U, q2) represents the normal law with mean u and variance a-2. (This is
a weaker than necessary consequence of the two sample U statistic theorem
[5].) Moreover, oi and 2 have consistent estimators as m and n go to infinity.
Letting, 1?, 7, and F be the usual (right sided) sample c. d. f.'s calculated from
the ui, vj and xi values, respectively, then

(4.3) = df f(s)() ()

will estimate oI consistently, where £ = max {x: HI(x) > O}, and likewise for a2.
Any asymptotically nonparametric statistic can be used to construct an

asymptotically level a test of Ho. The only statistics considered in this paper
will be those having the asymptotically nonparametric property. It must be
remembered that in actual practice, the consistent estimator of the variance
necessary to carry out the level a significance test may be more or less difficult
to obtain, and this is a definite factor in comparing different test statistics.
The following well known result from parametric theory offers some insight

into the asymptotically nonparametric property, and will be useful in its own
right in section 9. Suppose fe(x) is a density function depending on a k + 1
dimensional parameter 0 = (00, 0', 02, * *, Ok), and having information matrix
le = {lij|O _ , j < k},
(4.4) Iij = Eo a logfe(x) a log fe(x)t3oi aGio
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It is desired to test Ho: 0 = 00' on the basis of repeated independent observations
xl, X2, ... , x, *... from fe(x). Let C be the class of all test statistics tn(x1, x2,
. .. , x.), such that under Ho we have

(4.5) n1/2(t.- A) j- N(O, .2(Oo))

for some constant u not depending on Oo c Ho. Then, under suitable regularity
conditions, the efficacy of any member of C is bounded above by 1/1°0, where
10 is the upper left entry of I60 l. That is,

( Et
2

(4.6) lim <~e,_ 1=0(n.en Varoe(tn) 100

for all tn C C. Moreover, the maximum likelihood estimate @0 attains the upper
bound.
The bound above can be obtained formally from the multivariate Cram6r-Rao

inequality. A discussion of this type of theorem, with the suitable conditions,
can be found in [6]. The class C, which corresponds to our asymptotically
nonparametric tests, is essential to the theorem. Usually there will exist statistics
outside of C that do not satisfy (4.6).
A genuinely nonparametric test for Ho is mentioned in section 5, but is shown

to be very inefficient. Both Gehan and Gilbert propose the same nonparametric
test for Ho, under the additional assumption that H = I, that is, identical
censoring distributions (namely, the permutation test based on WG). However,
this test is not even asymptotically nonparametric when H $ I. It seems
doubtful that a reasonably efficient nonparametric test for HO could be con-
structed in the general case, but the question remains open.

5. A test of Ho based on cross censorship

It is not difficult to generate whole families of asymptotically nonparametric
tests of the hypothesis HO: FO = GO as an extension of Gehan and Gilbert's
method. For example, let t(x, y) be any bounded real valued function, and
define the scoring function Qt(xi, yj, 6i, fj) as

f t(xi, yj) if xi _ y, and ej = 1,
(5.1) Qt(xi, yj, Si, ej) = -t(yj, xi) if xi < yj and Si = 1,

0 otherwise.
Then under Ho the statistic

1m n

(5.2) WT= _E _ Q,(xi, Y1, Si, ej)

will have expectation zero, since

(5.3) EWt = EQ,(xi, ys, Si, e,)
= E[t(x°, y)lyf < min(x°, ui, vj)] - E[t(y'j, x°)|x° < min(y;, ui, VA)]
=0
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under HO by symmetry. (If we let t(x, y) -1, then 2Wt - 1 = WG.) Asymp-
totic normality and the existence of a consistent estimator of the large sample
variance follows again from the two sample U statistic theorem.

In this section, a somewhat different type of asymptotically nonparametric
test statistic will be discussed briefly. Though the specific statistic derived will
be shown to be inefficient relative to both WG and the W statistic introduced
in section 8, the method of its construction is simple, and applicable in a wide
variety of situations. In the sequel, it will also provide several points of com-
parison with the W statistic.

Suppose, for a moment, that in addition to the data xi, bi, yj, -j, i = 1, 2,
... , m, j = 1, 2, * - *, n, we are also given the c. d. f.'s of the two censoring
distributions, H and I. This is sometimes a realistic assumption. For instance,
if the entry of patients into the experiment is random in time, then H and I
may be assumed to be uniform over the period of observation. Using a table of
random numbers, draw two new sets of mutually independent random var-
iables, say
(5.4) 1 2 1

(5 4) ~~~~~v*,V*2, ,V*m I,
and define the "cross censored" observations

xl = min(x1, vi), x2 = min(x2, V2), x*, x* = min(xm, v*),
yl = min(y1, ut), yI2 = min(Y2,2), *, = min(y,, u*).

The A and y0 are mutually independent random variables, having right c. d. f.'s
FOHI and GOHI, respectively, since xi = min(x°, ui, v*) and y; = min(y°, vj,u).
Under the null hypothesis HO, FOHI = GOHI, and the usual Wilcoxon test is
applicable. That is, define

_ iif X* >
(5.6) ~ ~~~~Q(,txY) t0 if X*t < y*

(5.6)1m -m n

W EB, E1 Q(x*i, 0j) -mn j=1 .=i

Under Ho: FO = GO, this W will have the usual Wilcoxon distribution with

1 -
_ m +±n+(5.7) EW = -,X arH10W = 12 mn

2 12 mn

When FO #4 GO, the expectation is given by

(5.8) EJ4T= P1{F°1 > G0HJI
Since we have used a table of random numbers in the construction of W, we

know that it is inefficient. Using the usual Rao-Blackwell method, we can get
an improved statistic by considering
(5.9) WC = E(Wlinformation),
the conditional expectation being taken with respect to all of our available
information: the xi, yi, As, Ej, and the fuinctions H and I. We will then have



TWVO SAMPLE PROBLEM WVITH CENSORED DATA 837

LFWC = E TV IP'FOHI _ GOIII,
(5.10) Var Wc < Var W,

for all choices of FO, (I, H, and I.
It is not difficult to express W, in an easily computable form. Let F and G

be the usual (right) sample c. d. f.'s of the xi and yj observations respectively;
that is, define

N,(s) = (number of xi _ s), N,(s) = (number of Ij > s),
(5.11) Nx(s) - v"sF(s) = ______ G(s) = N.s)
(Note that P represents a distribution with mass 1/m at the points xi, X2, * Xm
and is an estimate of F, not F°. Likewise, G puts mass 1/n at yl, Y2, y* ,, and
estimates G, not GI.)

Let x, l, u*, and v* be independent random variables with right c. d. f.'s
F?, G, H, and I, respectively, and define * = min(x, v*), y* = min(y, u*).
Then

(5.12) Pf.f* > y*}
m n

= E E P{* _ .oi ==X - I x; ?i = L/j}

m n

- 1 E pxP{ZI
_ .2

Ix i,yj}
f2m n-1 E E[Q(x*, y 7)Ixi, yj]
mn i=1 =1=

= E(Wlinformation) = Wc.

Since by definition P{f.* _ y*} = P{FI > OH', we have

(5.13) W, = P{FI > GH)

- -f 1i (s)I (s) d[G(s)H(s)],
in close analogy with the integral expression for the usual Wilcoxon statistic n
the uncensored situation, which is, in our type of notation, - f^ P(s) dG(s).

It is easy to show (by the methods used in section 8, or by the theorem on
U statistics) that as we let mn and n go to infiniity so that lim[m/(m + n)] =
where 0 < X < 1, then W, is asymptotically normal, and under Ho,

(5.14) (m + n)12(Wcl-) j NI(OX + 2

where, if we define F°HI = G°HI = L,

2 f101 = I(L-1(z))z2 dz-
2 1

(2 H(z))Z2 d 4a'2 = H(L-()z dz--
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Since L(s) < H(s) and L(s) _ I(s) for all values of s, we have

(5.16) z3 dzZ-- < 2 a |z2dZ _1

or

(5.17) 0 < -2, a2 < 1!
=12

The upper bound is attained when there is no censoring, and coincides, of course,
with the usual asymptotic variance of the Wilcoxon statistic.

If the censoring distributions H and I are not known to us, it is natural to
replace them by their sample estimates, Ht and i. Substituting into (5.13)
yields the statistic

(5.18) We= - P(s)I(s) d[G(s)H7(S)].
This statistic can also be derived from permutation considerations: define

(5.19) Q(Xi, Yi, Uk, v{)= 1 if min(xi, vy) > min(yj, Uk),
,0 if min(xi, vt) < min(yj, Uk).

Then
1 m n m n

(5.20) - n,12 Z_ Z Q(Xi, yj, Uk, Vt).nlfli=lj=lk=l =

I17, is asymptotically normal, by the multisample U statistic theorem, and
has expectation 1/2 under HO. In some ways, it might be tempting to use (5.18)
instead of (5.13) even if H and I were completely known, since given any sample,
the randomness of the censoring variables is really of no interest to us. On the
other hand, to compute W-, we must know all the ui and vj values, as opposed
to WG, WC, and, as it will turn out, TV, where only the ui and vj corresponding
to censored xi and yj are needed. Even if all the ui and vj are available, which is
often not the case, this is philosophically unsatisfying, particularly from a Bayes-
ian point of view.
As commented before, the Wc test will be shown to have low efficiency on

the case considered in section 9. This is mainly because it ignores the difference
between censored and uncensored xi and yj, as can be seen in (5.13). It is
easy to construct cross censorship tests which do not ignore the differences,
but the author has not computed efficiencies for any such test.

6. Alternatives to the null hypothesis

A desirable property of any test statistic for the two sample problem is that
when the null hypothesis is not true, that is when FO #4 GO, the statistic es-
timates some reasonable measure of the difference between the two distribu-
tions. Usually, we are not interested in a simple acceptance or rejection of the
null hypothesis, but would like to make a quantitative assessment of the treat-
ment differences. One of the virtues of the usual Wilcoxon statistic, as applied
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to uncensored data, is that it estimates P {FO > GO}, a parameter that is usually
very relevant to the investigator. The asymptotic and approximate nature of
the tests we are investigating intensifies the need for a test statistic that is also
a reasonable estimator. And also, of course, for an asymptotically normal statis-
tic the nature of the expectation when FO #6 GO determines what type of alter-
natives to the null hypothesis the tests will tend to have the most power against.
The statistics we have discussed so far, WG, W, and Wa have the unfortunate

property that when FO s GO, their expectations depend on the censoring dis-
tributions H and I, which play the role of nuisance parameters in our non-
parametric situation. Concentrating our attention on WG, let us write xo»>> y°
if we can infer from the available data that xo > y°, which will be the case if
and only if xi _ yj and Ej = 1. Likewise, write y° >> xo if yj > xi and bi = 1.
Equation (3.4) can then be rewritten as

1 1
(6.1) EWG = -[P{F°HI > G°} -P{G°HI > F°}] + 2

= 2 [P{x° >>»y°>} -P{yf >> t}2]+ 1

We see that the WG test will always be consistent when FO is stochastically
larger (or smaller) than GO, for then FO(s) > GO(s) for all s, and

(6.2) P{F°HI > G°} - P{GOHI > F°}

= -|_ FO(s)H(s)I(s) dG°(s) + J G°(s)H(s)I(s) dF°(s)

= -| FOHI d(G°-FO) + f (G°-F°)HI dF°

= |2 (GO - FO) d(F°HI) + f (GO - FO)HI dF° > 0,

which implies from (6.1) that EWG > 1/2.
In cases where FO and GO are not stochastically comparable, the parameter

EWG can be positive, negative, or zero, depending on the censoring distribu-
tions, and even in simple situations can yield misleading information. Consider
for example, the case where the x°t and the ui have independent uniform dis-
tributions over the interval (-1, 1), while the y°; and vj are uniformly distributed
over (- 1/2, 1/2). A simple calculation shows that P{x >> yo;} = 17/96, while
P{zo >> x°f} = 31/96; that is, among the expected 50 per cent of the (xi, yj)
pairs where we know the ordering of (x4, y°>), nearly twice as many will favor
Y° as favor x°f. The expectation of WG is 0.426 in this case, indicating a strong
advantage for the y° distribution. Such a conclusion would obviously be inap-
propriate in many situations.
One of the major advantages of the W statistic introduced in section 8 is

that it estimates the usual Wilcoxon parameter P{FO _ GO}, independently of
the censoring distributions H and I.
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7. Nonparametric estimates of FO and GO

An obvious weakness in the definition of WG can be seen in formula (3.3)
in those cases where we are not certain of the ordering between x° and y' we
ascribe a probability of 1/2 to both possible cases x° _ y;, x° < yo, irrespective
of the relative magnitudes of xi and yj. We will now discuss nonparametric
estimates of FO and GO with an eye toward remedying this weakness. Our discus-
sion will be from a point of view particularly suitable to the two sample problem.

Given xl, x2, *.. , x. and 81, 82, ...* Bm, we have already introduced F(s),
the sample estimate for F(s), as the usual right sided empirical c. d. f. of the
xi. That is, letting

(7.1) Ni(s) = number of xi _ s,

we define

(7.2) F(s) = NZ(S)

a left continuous, nonincreasing function of s satisfying F(-oo) = 1, P(oo) = 0,
and representing a discrete probability distribution with mass 1/m at x1, x2,

xm.

Similarly, we would like to define F°(s) = Nxo(s)/m, when Ne(s) equals the
number of x° > s, but because of the censorship, the function Nzo(s) is not
available to us. Since x° > xi for every i, we do know that xi _ s implies x° > s
so Nxo(s) _ Ni(s) for every s. For an xi < s that is uncensored, x° = xi < s,
and xi cannot contribute to Nxo(s). The ambiguous situation is xi < s, xi censored
(Si = 0), in which case x° will be equal to or greater than s with conditional
probability FO(s)/FO(xi). Of course we do not know FO(s), but given any initial
estimate of it, say F°(s), it seems natural to estimate the conditional probability
P{x° > slxi < s, Si = 0} by PF(s)/P°(xi), and define an improved estimate of
FO(s) by

'po(s)(7.3) mF2(s) = Nx(s) + F_ )'

= Nx(s) + E (1I - )
xi< 8 Fl(xi)

Iterating, we could then use F° in place of Al above to get another improved
estimate F°3, and so forth, and the question arises whether the sequence PF, P2,
'o, ... would converge to a function PO which could then not be further im-
proved by application of (7.3). Such a function would have to satisfy

(7.4) mF°(s) = Ne(s) + E (1 - Si)
xi<8 P0(x2)

for all s. We shall call a function satisfying (7.4) a "self-consistent" estimate
of FO(s), and prove the following theorem.
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TqEOREM 7.1. Given xl, X2, ...* Xm and 61, a2, - * , Sm, there is a uniquze
function FO(x) satisfying (7.4) for all values of s. Assume without loss of generality,
that x1 < X2 < X3 < ... < Xm. Then PF(s) has all the usual properties of a right
c. d. f., and represents a discrete distribution with mass

(7.5) [m -EF- 'z)

at Xk if Xk is uncensored, and mass

(7.6) [ l=Y i(z)

at xm uincensored or not. Here F°(s) is defined iteratively by

ril S XI,

(7.7) F [(s)= NFmk i(1) Xk-i < S < Xk, 2 < k < m,

0sS > Xmn.
COROLLARY 7.1. The self-consistent estimate F°(s) coincides with Kaplan and

Meier's [7] product limit estimate

(7.8) P(s) =I (m + 1) s e (Xk-1, Xk],

if we define P(s) = 0 for s > xm. They have shown [7] that P(s) is the non-
parametric maximum likelihood estimate of FO(s).
PROOF. Consider the function F°(s) defined by (7.7). For s _ xi, F0(s) = 1

and satisfies (7.4). If 61 = 1, we see that PO(xi) - FO(xl+) = 1/m. If a1 = 0,
m - (1 -a1)/PO(x1) = m - 1, and PO(xi+) = PO(xi) = 1.
Suppose now that for some k, with 2 < k < m -1

k-i1-a
i=1 F°(x>) F(Xk- +) > °

Then from (7.7)

(7.10) [m - = ] O(s) = N..(s), xk-1 < s5 Xk,

and FO(s) satisfies (7.4) for s in the half open interval (Xk-1, Xk]. Since Nz(s) is
constant in this interval, so is FO(s), and PO(xk) = Po(xk_l+). If ak = 1,

-ak _ k-1 1 .
i=1 FO(x,) i=1 FO(x,)

(7.12) Po(xk+) = [N.(xk) - 1 [m kE1 >| ,

with

(7.13) P0(Xk) + fr(Xk+) = [m E
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If 3k = 0,

(7.14) [ I - i1
OF°(xi) = [7n _ -^ F(X)

FO(xi) i-ij~ FO(x,)] 0r

= N(xk) -I = Nx(k+),
which implies that (7.11) > 0 in this case. Siice by (7.7)

(7.15) [I(Xk) =Fx(z

we have P0(xk+) = P0(xk) > 0.
In either case, the argument proceeds by induction until we have verified (7.4)

fors G (-oo,xml], and shownthatP°(xmi_+) > 0, m - Zl=i1(1 - 50)/1f(xi) =
0. From (7.7), this verifies (7.4) for s E (xmi-, xm], while FO(s) = 0 trivially
satisfies (7.4) for s > xm. Since PO(xm) = F0(xm-i+), the jump at xm equals (7.5).
Note that if 3,m = 1,

m m-11
(7.16) m=r- E > 0,

i=1 FO(x1) i=1 Xi

while if 3b = 0,

(7.17) [m Z- I-^ FuFo(xi) = Nx(xQrt) - 1 = 0,I 1 P(qxi)]
implying mn- Z'(1 - 3)/F0(xi) = 0.

The argument verifying the uniqueness of ti (s) proceeds by induction in a
manner almost identical with the above.
To prove the corollary, note that PF(s) = P(s) = 1, for s _ xi. Suppose that

F0(xk) = P(xk) for some value of k, with 1 _ k _ m - 1. If 3k = 0, then by
the proof above and by definitions (7.7) and (7.8) PF(Xk+) = Ft(Xk) = P(Xk) =
P(Xk+), implying that F°(s) = P(s) for s E (Xk, Xk±1].

If 3k = 1, then
(7.18) t(x1±) - Nx(Xk+) _Nx(Xk+) N.,(Xk)

(7.18) P(Xk( k+ =, N.,(Xk) k-i 1 - 3.

1 F0(x,) 1 F0(x,)

m= k P(Xk) = P(Xk+),
mr- k+1I

implying again that F°0(s) = P(s) for s G (Xk, Xk+1]. The proof of the corollary
is completed by induction.
The self-consistent (product limit) estimate is also given by the following

simple construction; place probability mass 1/m at each of the points xl < x2 <
X3 < ... < Xm, (that is, construct the distribution with F(s) as c. d. f.); if x,
is the smallest xi that is censored, remove the mass at xi, and redistribute it
equally among the m - i1 points to the right of it, xi,+l, Xi,+2, * * , xm. If Xi2 1s
the smallest censored value among xi,+,, Xi,+2, * * *, xm, redistribute its mass,
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which will be 1/m + 1/(m - ii), among the m -mn2 points to its right, xi2+1,
Xi+21 **.. , xm; continue in this way until you reach xm. The resulting distribution
has mass

(7.19) 1 kil m + I
Mn Inm-i)

at Xk uncensored, and at xm censored or not, which is easily computed to agree
with PO(s) from equation (7.8). This construction sheds some light on the special
nature of the largest observation, which the self-consistent estimator always
treats as uncensored, irrespective of Sm.
In addition to the maximum likelihood property of PO, Kaplan and Meier

derive several other results which will be of use to us in the next section.
(a) F°(s) is a nearly unbiased estimator of FO(s). Specifically,

(7.20) 1 2 E >a(s) 1- e-EN(8)

or equivalently,
(7.21) 0 < FO(s) - EPO(s) C FO(s)eEN(8)
Since ENS(s) = mF(s), the bias of PO(s) declines exponentially with sample size
whenever F(s) = FO(s)H(s) > 0 (that is, whenever it is possible and necessary
to estimate FO(s) nonparametrically). In the sequel, we will treat PO(s) as if it
were unbiased, since the exponential decline of the bias term easily overwhelms
the ml/2 magnification needed for the large sample theory.
Harking back, briefly, to the point raised in section 2, equation (7.20) also

holds when the ui are a fixed set of constants, say u1 < U2 < U3 < ... < U.,
in which case it is simple to show that the relative bias EPO(s)/FO(s) is a constant
within any interval (uk-1, Uk].

(b) P0(s) is a consistent estimator of FO(s), as m goes to infinity.
(c) Ml12[PO(s)- F0(s)], considered as a stochastic process in s, approaches

in the limit for large m, a normal process with mean 0 and covariance kernel

(7.22) r(S, t) = FO(s)FO(t) | -dF°(z), s < t.J- F(z)FO(z)'
(The limiting normality is not discussed by Kaplan and Meier, but can be
derived easily from (7.7) by standard methods.)
The covariance kernel (7.9) represents a distorted Wiener process of the type

discussed by Doob in his famous paper on the Kolmogorov-Smirnov statistic
[8]. Suppose, for convenience, that FO(s) = 1, so that we are dealing with
positive random variables. Define

(7.23) a(s) = f F(z)FF°(Z)

an increasing function of s for s less than M, any value such that FO(M) > 0,
and let a-1(s) denote its inverse function. Then for 0 < s < M, the process
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(7.24) Y(S) = ml'2 PO[a1(s)] - FO[a'(s)]FO[a-1(8)]
approaches a standard Wiener process as m goes to infinity. That is, Y ap-
proaches a normal process with mean zero and covariance kernel r(s, t) =
min(s, t) for 0 < s, t < M.

8. The statistic W

We now use F0(S) and c0(s), the self-consistent estimates of FO and G°, respec-
tively, to modify the statistic WG along the lines suggested at the beginning of
section 7. As mentioned previously, the self-consistent estimates treat the largest
observation of each group as if it were uncensored, and we will assume that
this is actually the situation, to avoid a host of annoying special cases. That is,
we will assume the bi and ej corresponding to the largest xi and largest yj respec-
tively are both equal to 1.

Define the scoring function Q(xi, y, bi, ej) to be

(8.1) Q(Xi( y, bi, ej) = (xi_y=4xi, yj, &j, 'e, fo', G",,
where the conditional expectation is interpreted as if x° and yo were actually
drawn from F° and G0, respectively. Thus, if xi _ yj and Ej = 1, then 0(xi, yj,
6i, Ej) = 1 as before. However, if xi _ y, and Ej = 0, bi = 1, we no longer score
1/2 to indicate equal probability for x° _ y° and x° < y°; rather Q(xi, yi, 3i,
Ej) = 1- 0(xi)/60(yj) in this case, the conditional probability under G0 that
A _ yj is less than x° = xi. Table I lists the value of Q(xi, yj, &i, Ej) in all eight
possible different cases.

TABLE I

VALUES OF Q(xi, wj, bi, Eo)

(bi, fj) Xi _ yj xi <y

(1, 1) 1 0

(0, 1) 1 P(xi)

G0(y2)~ ~ ~ ~~~0(j
(1, O)1_G(x))

LG(xi) FO(s) dG°(s) PX(s) aGo(s)
(0,O) 1-G°( i)- F0(xi)G1(yj) P1s(Xi)d°(yj)

The statistic TW is now defined in the usual way in terms of Q(xi, yj, 3i, ej)

(8.2) W = mnE _(ji, Yjy As, Ej)
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THEOREM 8.1. W = -f-. PF(s) dGO(s) = P{PF > G°}, and is the maximum
likelihood estimate of P{F° _ G0}.

PROOF. To simplify notation, let P{x° > y°} be the conditional expectation
defined at (8.1) and below, and listed in table I. We shall also need #0(yj) =
Q0(y3) - G0(yj+), the probability mass function corresponding to the discrete
distribution G0(s). From theorem 7.1

(8.3) 9O(yj) = j -
c

n
- E i I tle

for j = 1, 2, 3, * , n, which can be written as

(8.4) n#0(y3) = 1 + E Ee0O(j) ej= 1.

If Ej = 1, then reading from the table,

(8.5) Z P{fx > y°} = Nz(yj) + E (i -i) FO(j)
__ F0~~~~~iYiP(xi)

= mpo(yj)
by the self-consistency property (7.4) of F°.

If ej = 0, then

(8.6) P{X _> y>} -= Y,P,x(Y>S_ M
Yt?,Zh G0(yj)

so

(8.7) E > = E q0()A {xf _ y }
i = 1 ~~~i=1 Yt >-vi GO(yj)

_lYi GO(yj) =1

Remembering that 00(y') is nonzero only for uncensored values of ye, equation
(8.5) reduces this last sum to

(8.8) PP{x' > yo} = m E 60(Yt) P(ye).j==1 veY>vi 0yj)
Combining (8.5) and (8.8) yields

(8-9) 1=m E P{x? _ y°}
mnj=i i=i

I [tE PO(Yj) + o 2 °0(ye) PO(y)1
n L~1 ei=otvevi G(-Yj) j'
n ,E F (yi) + E 1 't

= PP0(yj)j0(yj)
ej=l
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by equation (8.4). Thus,

(8.10) W = -| F°(s) dG°(s) = P{FPO>_G},

as was to be proved, and the second statement of the theorem follows from the
corollary to theorem 7.1, and the usual invariance property of maximum likeli-
hood estimates.

It should be mentioned that other consistent estimates of FO and GO exist [7],
which conceivably could be used in place of P and G to define the scoring func-
tion, as was done in (8.1). However, the uniqueness of the self-consistent estimate
insures that the resulting statistic will not be expressible in the form given in
theorem 8.1.
THEOREM 8.2. Let m and n go to infinity in such a way that lim m/(m + n) =

X, with 0 < X < 1. Then

(8.11) (m + n)12[JV - P{F0 > GO}] -* N (0 12 1
law k~0 1-X2)

where under Ho,

2 1 z2 dz 1 z3 dz
(8.12) 1 4 Jo H[FO-(z)] 4 JoF[FO-0(z)]'

2 1 fZ2dZ 1 z3dz
i24 Jo I[GO-'(z)] 4 JoG[GO-'(z)]

Here FO` and GO` are the inverse functions of FO and GO, respectively, and are
identical under Ho.

PROOF. Only a heuristic argument will be presented here. This argument is
somewhat similar to the proof of the Chernoff-Savage theorem [9], and a
rigorous proof can be developed along the lines suggested in that paper.
Write

(8.13) -W = f PO(s) dG°(s)

=f FOdG° + f (PO-FO) dG° + f FOd(G°-G)
+ f ,X (F-FO) d(G°-G),

and integrate the third term by parts, yielding

(8.14) -W= | FOdG° + f (PO-FO) dG°-|f (G0-GO) dF

+ f| (PO - FO) d(G°- GO)

Of these four terms, the first is a constant, while the fourth is asymptotically
negligible;
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(8.15) J (F,°- FO) d(G- GO)

= ()1t2 ml/2(F0- FO) dnl/2(G0 - GO)

P L(m + n)1/21
by property c of section 7. (The equation Xm,,n = op[]/(m + n)1/2] means
(m + n&)1/2Xmfn b ° as m, n go to infinity.)

Consider the second term in (8.14). By property c of section 7 and equation
(7.18), fr ml/2[PO(s)- FO(s)] dG°(s) approaches a normal variate with mean
zero and variance

(8.16) f Jf r(s, t) dG°(s) dG°(t)

- 2 1 -iF ( dF°(z) dG°(t) dG°(s).

Now under the null hypothesis, GO = FO, this last expression becomes

(8.17) -2 f f F0(s)F0(t) dF0(z) dF°(t) dF0(s),

and a change of variables to FO(z), FO(t) and FO(s) yields

(8-18) 2 f f f FLo-tI] dz dt ds

2 ldt ds dz
Jo zF[FO01(z)]

1 ( z3 dz 1f z2 dz 2

4 Jo F[FO-'(z)] 4 H[FO-'(z)] '

The last equality follows from (2.5)

(8.19) F[FO-'(z)] = H[FO-'(z)]FO[FO-'(z)] = zH[FO-'(z)].

A similar argument gives

(8.20) 4fo I[GO(z)]
as the limiting variance of the third term in (8.13) under Ho. Since the second
and third terms of that expression are independent random variables, this
completes the heuristic argument.
The expression (8.11) for al fails to converge if H(z) = O{[F0(z)]3}, as z

approaches 0, and likewise A2 will not converge if I(z) = 0{[G0(z)]3}. In these
cases, the variance of Wk does not diminish at rate 1/(m + n). This situation
is illustrated in the next section, and a possible remedy suggested in section 10.
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In these cases where u2 and A2 are finite, they have obvious consistent es-
timators in terms of equation (8.11). The second form given for each integral
will often be the most convenient to compute with, since PO(z) _ P(z) for all z,
and the function P(z) can be computed directly from the observed xi. (To com-
pute f, for instance, requires knowing all the ui values, not just those where xi =
ui. As mentioned before, these may not be available, and in any case are not
required to compute W.)

9. Asymptotic relation efficiencies of the various tests
in the exponential case

In this section we will compute the Pitman efficiency (A. R. E.) of W'v, WG,
and W, relative to the best parametric test, in the special case where all the
random variables involved are exponentially distributed. That is, we assume

FO(s) = {e Ss-° GO(s) = {e 8 0

~1' 8< 0, ~ 1' s< 0,

H(s) = { s-s I(s) =e-{ a s >O
s<0, ~ 1' s <O0,

where, for the purposes of the parametric test, a is a known positive parameter,
while 0 and 0 are unknown. This example with a = 1 was investigated by
Gilbert. Gehan evaluates the more realistic case where H(s) = I(s) = a uniform
distribution over [0, T]. Our null hypothesis is Ho: 0 = 1. The observed random
variables xi and yj will have right c. d. f.'s,

(9.2) F(s) = e(+l)s s G()s s 0,

respectively. The Si and ej are Bernoulli random variables, with

(9.3) P{-i= 1} = o+ 1 P{e= l} = + a

In this case, xi and Si are independent, as are yj and ej. (I am grateful to Dr. J.
Sethuraman, for first bringing this useful fact of the independence of xi and bi
to my attention.) To simplify matters further, we will let m = n, so the sample
sizes remain equal as n goes to infinity.
The efficacy Eff(T.) of any test statistic T. for Ho is defined to be

OdETRl 0
(9.4) Eff (7') ~ 0 =1)2

(9.4) Eff(7) = 2n Vare= i,ol'

From the discussion in section 4, we know that the maximum likelihood estimate
of 0, say M, achieves the greatest efficacy among all computable test statistics,
the class we called C. That efficacy is 1/I00. In our case, assuming 0, (p unknown,
but a known,
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(9.5) Eff(M) = 1 0+a

atO = 1.
From (4.2) and (8.12), the efficacies of WG and IT' at 0 = 1 are

3) (±+ 2a + 1)(4 + a + 2)

and
3 4 1 ) (4) )

(9.7) Eff(W) = a )

Formula (9.7) holds only for 4 > max(1/3, a/3). For 4 < max(1/3, a/3), the
situation described at the end of section 8 prevails, and IV has efficacy 0.
The Pitman efficiency of WG relative to M, the best parametric test, is by

definition

(9.8) PIVGI
ff( WM)

_ 3(4)+ 3 )( +3)
(4)±a~1)24 ( a + )

Wheni a = I, that is, when H(s) = I(s) = e- for s >- 0, tlieii PWG/,1j = 3/4 for
all values of 4, agreeing with Gilbert's result. For all other values of a and 4),

(9.9) 8 (3) < PwGA/1 <
3

with the lower bound achieved at the extreme points 4 = 0, a = 0 aiid 4 = (9,
a = 00

lF'or the W statistic we have Pitman efficieney

(9.10) PTT/Al = Eff(M)

3(4O - 1) (4) a) (4O + 2 /I) for 4 > nlax(I/3, a/3)

0 for 4) < max(1/3, a/3).

Let us consider, the convenience, the case where a _ 1. Then for 4 _ 1/2,
we have PWl/M > 3/4. Another way of saying this is that for exponential
observations and exponential censoring variables, the Tf' test is more efficient
thani the WG test as long as not more than 2/3 of either sample consists of
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censored observations (for when 4 = 1/2, an expected 1/(0 + 1) = 2/3 per-
centage of the xi and a/(d) + a) < 2/3 percentage of the yi will be censored
under Ho: 0 = 1). That the increase in efficiency can be quite substantial is
shown in table II.

TABLE II

PW,/M IN THE EXPONENTIAL CASE

a 1 0.5 0.25 0

X0 0.750 0.750 0.750 0.750
10 0.798 0.786 0.780 0.774
5 0.840 0.819 0.808 0.797
3 0.889 0.858 0.841 0.823
2 0.938 0.900 0.877 0.852
1 1.000 0.972 0.941 0.900

3X 0.995 0.977 0.945 0.901
, 0.972 0.972 0.940 0.893
V3 0.937 0.956 0.925 0.875
12 0.750 0.833 0.803 0.750
M3 0.000 0.000 0.000 0.000

The case of very large 4 corresponds to a very low rate of censoring 1/(1 + 4),
in which case both WG and W become equivalent to the ordinary Wilcoxon
test, while the F test based on El x/,'l yj corresponds to M. This accounts
for the constant top row of the table. The same remark applies to the statistic
Wf' discussed in section 5, which by (5.14) has Pitman efficiency

(9.11) Pw./m 4 (4 +4 (4 + 2)2

when a = 1. This is quite low for reasonable values of 4, not attaining even 1/2
until 4 is greater than 4.7.
The last column of the table is for a = 0, that is, the case where the yj values

are uncensored.

10. Truncating the W statistic

The rapid loss of asymptotic efficiency of the WC test when 4 drops below 1/2
in the example treated in section 9 can be alleviated somewhat by considering
truncated modifications of the W statistic. We will consider here, briefly, such
modifications, first in general, and then as applied to the exponential case as
given by (9.1).
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Let D(s) be any continuous right c. d. f., and define
i= min(x°, zi),
(1= min(y;, Zm+j).

Here the z are mutually independent random variables, identically distributed
according to D(s). Following our previous notation, (2.2), (2.3), let

i= min(10f, ui), j = min(gf, vV),
(10.2) {1 if xi = °, I{ if yj = yj,

i l if xi < .4, 'i lo~if gj < yo}-
These quantities can all be calculated from the data available to the statistician:
namely xi, Si and yj, e,for i = 1, 2, - * *, m, j = 1, 2, * * *, n, and the values of
zi taken from a random number table. For instance, bi = 1 implies i =

min(xi, zi) and Si = 1, while bi = 0 implies ti = min(xi, zi) and Si equals 1 or 0
as zi is less than or greater than xi. The same considerations apply to fj and fj.
The statistician is free to choose any convenient truncation distribution D(s),

and apply the W test to the modified data (10.2) instead of the original data
(2.2), (2.3). The null hypothesis now becomes the equality of the distributions of
Xt and go, which are F° = DFO and 00 = DGO, respectively. Applied to the
tilde data, the W statistic is the maximum likelihood estimate of P{DFO 2 DGO},
having that quantity as asymptotic expectation, and variance

1 /12' 1 2\
(10.3) m+n l\ I 2

where X = lim m/(m + n), and

2 1 z2dz

(10.4) al 4J0 H[(DF0)-1(z)]
2 1 f' z2dza2=4 J0I[(DF0)-1(z)]

under Ho.
Suppose now we choose a D(s) which is very nearly equal to

{T()=1 ifs.3:9T
(10.5) DT(s) {O if s > T,

and denote the corresponding statistic by WT. Then we have as approximations,
T ~~~~~1

(10.6) E WT = FO(s) d GO(s) + - FO(T)GO(T)

and, under HO,
2 [F0(T)]' 1(1 z2dZ(10.7) al 12H(T) + 4 JFO(T) H[FO-'(z)] dz'

2 [F0(T)]3 1if z2dZ
a2 121(T) 4 (T) I[F°-'(z)] dz
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By choosing T sufficiently small, we can now avoid infinite values of o-a and 0'.
Applying these results to the exponential case of section 9, with a = 1,

that is F0(s) = e->, G°(s) = e-9', H(s) = I(s) e-, yields

(10.8) EWT = ~1++ (2 1 + e +

a- Io1_ t-'@+I)'
I +80 2 1 + 0

where we have defined T = +-l log t. Under Ho: 0 = 1,
27 = 02 t=-3- Fi2)](10.9) 12 1

3

(Here we are excluding the case 4 = 1/3.)
The efficacy of WT is calculated to be

1
34)3

(10.10) Eff(WT) = - ,Tt
where
(10.11) r(t) = (1 t-2)2

I- t- (3-1/0)
34)

The Pitman efficiency of the WT test relative to the best parametric test is then

(10.12) Prj/m = )2 r(t).

Comparing this with

3(4)- 3) ( + 1)
(10.13) PW/M =

3 312
for 4 > 1/3 (calculated from (9.8) with a = 1), shows that truncation can
only lower the efficiency when 4) _ 1, for in this case r(t) < 1 for all t. For 4 < l,
an improvement in efficiency is possible by truncation at the correct poinit.
The calculations for 4 = 1/2 and 4 = 1/4 are summarized in table III.

TABLE III

OPTIMUM TRUNCATION POINT AND RELATIVE PITMAN EFFICIENCY
CALCULATED FOR 4 = 1/2 AND 1/4

0 = 1/2 =1/4

Optimum truncation point Y' 3.38 2.43
Relative truncation point T 1.69 0.61
Pfjr/M 0.798 0.427
PWv/M 0.750 0.000
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It should be noted that for 0 = 1/4, the greatest power is achieved at the
expense of a really drastic truncation, at 61 per cent of the expectation 1/0.
A more reasonable procedure, which has not been investigated by the author,
is to combine the W and WG tests in those cases where censorship is so severe,
say greater thain 2/3 of the observations, that the ii7 test alone may be unstable.
This could be done by using the Q(x1, yj, i3, :j) scoring function in table II for
those cases where either xi or yj is smaller than a tlhreshold T, and the scoring
function Qg, given by (3.3), in all other cases.

I am very grateful to Liincoln Moses, who has been both generous and ac-
curate with his advice during the course of this work.
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