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1. Introduction

The process of DNA mediated bacterial transformation, originally described
by Griffiths in 1928 and later clarified by Avery, Macleod, and McCarty [1]
(for a recent review see [25]), provides the most direct evidence that DNA is
the genetic material. It can be used to study the relation between the physical
and chemical properties of DNA and its biological activity. Of particular
interest are the biological effects of physical and chemical treatments of DNA
and the study of the mechanism of genetic recombination at the molecular
level. Transformation was first described in Pheumococcus and subsequently in
a limited number of other bacterial species notably Hemophilus influenzae and
Bacillus subtilis. In a typical transformation experiment specially prepared
"competent" recipient bacterial cells of the strain x-, requiring, say, a substance
x, are mixed under suitable conditions with a donor DNA purified from a strain
x+ which does not require substance x. Among the DNA treated cells, a small
proportion of "transformed" cells are found which no longer require substance
x. It is now well established that this "transformation" of x- to x+ cells is
mediated solely by the purified x+ DNA.
The total amount of DNA per nucleus in, for example, B. subtilis corresponds

to a molecule containing approximately 2 X 106 nucleotide pairs, or 2000 genes,
assuming an average size of 1000 nucleotide pairs per gene. The DNA prepara-
tions used in transformation experiments generally contain molecules with an
average size of 3 X 104 to 5 X 104 nucleotide pairs which corresponds to be-
tween one and three per cent of the complete bacterial chromosome. The pro-
cedures for preparing DNA break the chromosome, probably at random, iilto
some 30 to 100 fragments. The size distribution of fragments within any giveln
preparation may have quite a large variance. The lesion in the x- cells, which
prevents their growth in the absence of substance x, will generally be a genetic
mutation affecting one (or possibly a few) nucleotide pairs at some definied
point on the chromosome. Thus, only a fraction of the DNA molecules in a
normal preparation will carry those nucleotide pairs involved in the x-x+
genetic difference.
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It is now known that transformation involves the physical insertion of a
piece of donor DNA, corresponding to a region of the donor chromosome con-
taining the x- mutation, in the appropriate position on the recipient chromo-
some [6], [11]. The insertion process is assumed to be somewhat analogous to
genetic recombination as it occurs in higher organisms. Transformation thus
provides a molecular model for genetic recombination. When recipient cells
having a double requirement x-y are mixed with DNA from x+y+ cells, double
(x+y+) transformants occur with a frequency which is, in general, approximately
proportional to the product of the frequencies of the two singly transformed
classes, x-y+ and x+y-. Occasional pairs of requirements are, however, found
where the frequency of doubles is quite comparable to that of the singles. Most
pairs of genes, chosen at random, will be on different donor DNA molecules,
since these only have a size corresponding to a few per cent of that of the whole
chromosome. Thus, the generally low frequency of cotransformation for any
two markers is explained if only one or a few DNA molecules, as isolated, are
incorporated into any given recipient cell. Only pairs of markers sufficiently
close together to be frequently on the same molecule will show cotransformation
frequencies comparable to those for single marker transformation (see, for
example, [18], [23]).

Little is known of the specific requirements for a cell to be competent, that is,
transformable by added donor DNA. The competent cell is in a very special
physiological state and usually only a minority of the cells in the culture to which
DNA is added are competent. It has generally been assumed that the competent
cell has many attachment sites through which any arbitrary DNA molecule can
enter the cell (see, for example, [3]). Some recent evidence suggests, however,
that this may not be the case, but rather that there may be only one or a few
sites which can accept only molecules corresponding to certain restricted portions
of the recipient chromosome [4]. Specifically, there is evidence to suggest that
the attachment site may correspond to a membrane associated region of the
recipient chromosome surrounding a growing point of DNA synthesis.
The whole process of transformation can be formally divided into at least

five stages, as indicated in figure 1, not all of which are necessarily independent.
These stages are:

(1) the initial attachment of donor DNA molecules to the recipient competent
cell which must be followed by

(2) entry of the DNA into the cell and
(3) synapsis between the donor DNA and the recipient chromosome, that is,

some process of alignment of the two molecules to mediate
(4) recombination (or integration) by which donor fragments are inserted

into the recipient genome, and finally,
(5) expression of the transformed state, which is the main usual observation

and which may follow recombination after an appreciable lag.
The growing point model suggests that entry and synapsis may be synon-

ymous. There is also evidence that the initial attachment (and perhaps entry
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and synapsis without recombination) may be a reversible process. Recombination
is presumably irreversible and represents the final outcome of the integration of
donor DNA into the recipient cell. Undoubtedly each of these stages can be
affected by the state of the cell and of the DNA, and may be dependent on the
time of contact between cells and DNA.

donor DNA

competent > 9 -

/ /,-~ X non competent

-~~~~~~~~ n~~~~~~~ecipient DNA

Population of recipient cell (a-) Initial atcachment Entry
and donor DNA molecules (a+) 1 2

donor donor

recipient t

Synapsis (or alignment Pecombinotion Expression (as a
of donor and recipient DNA) 4 transformed a-cell)

3 5
FIGURE 1

The transformation process.

The main aim of this paper is to outline some mathematical models for these
various stages of the transformation process with a view to providing a theoret-
ical basis for the quantitative interpretation of transformation experiments. A
review of earlier work together with some new results will be presented. The
models fall basically into two categories:

(1) models for the initial attachment, entry and synapsis of donor DNA and
(2) models for the recombination process.

2. Simple kinetic theory

2.1. One marker. Most attempts to provide a theoretical model for trans-
formation have been based on the simple kinetic theory for bimolecular reactions.
Thus, Thomas [29] in his original description of such a model assumed a scheme
which may be depicted as shown in figure 2. Here B represents the noncompetent
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Scheme of theoretical model for trailsforimiationl based on
simple kinetic theory for biomolecular reactions.

recipieint bacterial cell, B, the competenit cell, B' a cell which has irreversibly
lost its competent state and [B, * DNA] a complex between competent cells
anid DNA which inevitably leads to the transformed state BTr,. The irreversible
reaction rates B, -- B' and B, -> [B, * DNA] are k1 and k2, respectively. Atteni-
tioni is focused on transformation for some one particular genetic marker. This
scheme leads to the equations

IB,
= -_kB, - k2DBA,

(2.1)
(IT
dt = 1k2DB,,

where B, is the conicentration of competent bacteria, T the concentration of the
complex [B,- DNA] (or equivalently of subsequently transformed cells BTr),
and D the concentration of DNA molecules. These quantities are all functions
of t, the time after the start of the reaction between cells anid DNA. It is assumed
that the process starts with a given number of competent bacteria at a time
when the reaction B -- B, has ceased. We now assume that the conicentrationi
of DNA molecules D is large compared with the initial concentratioli of comii-
petent cells B,(0), so that D may be taken as approximately constant. Then
the equationis (2.1) give the solution

(2.2) T = k2D _B (0) 1 - exp [-(k1 + k2D)]t}.
k, + k2D

The reactioni between DNA and cells can be terminated after an arbitrary time
of contact t by the addition of the enizyme deoxyribonuclease (DNASE), which
very rapidly destroys any DNA which is not yet "fixed" in the irreversible
(B,. DNA) complex. The DNASE does not, however, affect the reaction
(B * DNA) 4 BTr, so that the observed number of traiisformants corresponds,
unider these assumptions, to (Be - DN\A) = T at the time of additioni of the
DNASE. For small t, e(quationi (2.2) approximates to

(2.3) T = k;2DtBc(O),
while when t oo the saturatiing transformation level is given by

(2.4) B (k/k2) + )
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Equation (2.3) predicts that the number of tranisformaiits, for small t, should
vary linearly with time, DNA conceiitrationi, anid the cowcenitration of competent
cells. This is in reasonably good agreement with the experimental data, except
possibly for very small values of t [21]. When k1/k2 is very much larger than D,
equation (2.4) predicts that the saturatinig level of transformiants (T'¢) is propor-
tional to the DNA concenitration, wlhereas when kj/k2 is very niich less than D,
it approaches the initial concentration of comipetenlt bacteria B,(O).

This simple theory was modified by Fox and Hotchkiss [10] and Lerman anid
Tolmach [20], oIn the basis of their experimental results, to include the pos-
sibility that the reaction BC+ (BC* DNA) was reversible. This gives rise to the
scheme in figure 3, where k2 is the reverse reaction rate, (Bc* DNA) -> BCand

k/~~~~~~~
2 BiLBc DNA] 8kr

c k2

k
B

FIGURE 3

Scheme of theoretical model for transformation based on modification
by Fox and Hotchkiss [10] and Lerman and Tolmach [20].

k3 the rate of the irreversible reaction (BC* DNA) -4 BTr. The complete system
is described by the set of equations

(2.5) dB,- -k1B - k2DB, + k2Bi,dt

(2.6) dB- = k2DB, - k2Bi - k3Bi,dt
and

(2.7) dT=k=Bi,
where Bi represents the concentration of the complex (B6 * DNA) and T that
of the transformed cells BTr. If we neglect ki and assume that T is small relative
to the initial concentration of competent cells B,(O), then we may write approx-
imately

(2.8) Bi + Bc = coInstant = Bc(O).

Substituting for BC in equation (2.6) gives the classical solution of enzyme
kinetics

(2.9) Bi = 1 + (k' + k)/k2 - exp [-(k' + k3 + k2D)t].
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When t is large enough to neglect the exponential term, we have, approximately,

(2.10) T = k3tDB,(O)
k2+ k3)/k2 +D

These are the equations used by Fox and Hotchkiss [10] to estimate Km =
(k2 + k3)/k2, the effective Michaelis constant, and k3B,(0) the effective Vmax.
Cavalieri and Rosenberg [8], assuming enzyme kinetic theory, namely, B. +
Bi = constant, have extended equation (2.10) to include a term allowing for
competing inactive DNA and a constant multiplier for the probability of ex-
pression of the incorporated DNA. A similar scheme has also been proposed
(though not analyzed) for Hemophilus by Goodgal and Herriott [14].
More generally, the exact solutions of equations (2.5) and (2.6) can be written

in the form
(2.11) B, = ae- xit + le-X2t,
and
(2.12) Bi = 'y(e-xlt - e-x2t), X2 > Xl > 0,
where -Xi and -X2, with X2 > X1 > 0, are the solutions of the quadratic equa-
tion
(2.13) X2 + X(k, + k2D + k2 + k3) + k1k2 + k3(k1 + k2D) = 0,
and a, 13, y are chosen to satisfy the initial conditions B. = B,(O) and Bi = 0
when t = 0. Thus, from (2.6) and (2.12) when t = 0

(2.14) dBi - k2DB,(O) = ( l2-1).dt
From (2.7) and (2.12)

(2.15) T = k3 Bi dt = k3 [7( )_y (ex ex )1,

so that when t -x 00,

(2.16) T. = k3y 1 1) = k3y(X2- X1)
(X X2 X1X2

Thus, from (2.13) and (2.14),
k3k2DB,(O) _ DBe(O)(2.17) Tm = k1k2 + k3(k1 + k2D) D + Ll (k2 + k3)

Thus, as before, in equation (2.4), the saturating level of transformation is
approximately equal to B,(O) when D is large and is proportional to D when D
is small. We have further from equations (2.14) and (2.15) when t is very small,

(2.18) T = 2 kk2DB,(O)t2 + 0(t3),

showing an initial quadratic dependence of the number of transformants on the
time of contact. An initial lag in the appearance of transformants corresponding
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to such quadratic variation has in fact been reported by Levine and Strauss [21].
However, if transformation is terminated in such a way as not to destroy the
(B. * DNA) complex (for example, by washing), the bacteria complexed at the
time of termination would result in additional transformants according to equa-
tions (2.5), (2.6) and (2.7), with D = 0. The solution of these equations is then

(2.19) T = k2+ k {1- exp [-(k2 + k3)rIJ},

which tends to (k3Th)/(k2 + k3) as -> oo, where Xi is the value of B; at the
time of termination and r is the time since termination of transformation. When
t is small, from equations (2.12) and (2.14), we have

(2.20) Xi = Y(X2 - Xi)t = k2DB,(O)t
so that the resulting total frequency of transformants is given by

(2.21) T = k3DB0(0)t + 0(t2),(k2 + k3)/k2
a result closely analogous to equation (2.10), when D is small.

Suppose k1 and k3 are small compared with k2 and k2. Then from equation
(2.13), Xi is small compared with X2. If now t is such that Xit is still small enough
for e-t - 1, but X2t is large enough for e-X2t to be small, then from equation
(2.12), Bi -'y and is approximately constant. Now from equation (2.14), we

have

(2.22) = k2DB0(0)

and from equation (2.13), whose roots are -X2 and -XI for X2 > Xi > 0, we have

(2.23) X2- 1= ki + k2D + k2 + k3-2X1.

Thus, from equation (2.7), neglecting Xi, we have

(2.24) T -~ks'yt = k3DB0(0)t(k1 + k1 + k3)/2
which is the same as equation (2.10), derived under the normal assumptions of
enzyme kinetics but with (k1 + k1 + k3)/k2 replacing (14 + k3)/k2, and in con-
trast with equation (2.18), shows a linear dependence of the number of trans-
formants on the time. This equation (2.24) applies to a slightly later time, when
an approximate steady state in the number of (B, * DNA) complexes has beeii
reached.

It should be emphasized that these models effectively refer only to the initial
attachment stage, and subsume under the single parameter k3 the consequences
of the four later stages of transformation.

2.2. Two markers. Following the simple approximate kinetic theory out-
lined above, the number of transformants for any given marker for a short time
of exposure of cells to DNA and a relatively low DNA concentration is given
approximately by
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(2.25) T, = K,DB,t.
Here the subscript 1 refers to a particular marker, D and BC are the concentra-
tions of DNA and competent bacteria, t is the time, and K, is an overall rate
constant. If the interactions between DNA and cells are independent events,
double transformations involviing a second marker (subscript 2) not generally
on the same molecule as the first, will be dependent on the concentration of
transformants for the first marker T1, that is,
(2.26) T,, = K21I'tD = K17'2tD = KlK2B,D2t2.
Thus, for small t, the number of double transformants for "independent"
markers is proportional to the square of the time and of the DNA concentration.
This has been verified by Goodgal [13], Kient and Hotchkiss [19] and others.
In particular, Kent and Hotchkiss [19] have verified the linear dependence of
112 on time and DNA concentration given that T, has already reached a saturat-
ing level. From equations (2.25) and (2.26), we have

(2.27) T1,T2 - BC.T12

Thus, having observed T1, T2, T12 and N, the total number of cells in the recip-
ient culture, the proportion of competent cells p = BC/N is estimated by
T1T2/T12N. (See Goodgal [13], Nester and Stocker [24], Kent and Hotchkiss
[19].)
When the two markers occur on the same molecule they are said to be linked

and then only a single interaction between cells and DNA is needed to give rise
to the double transformant. In this case

(2.28) T, = K,B,Dt, T2 = K2B,Dt, anid T12 = K12B,Dt,
where K, K2, and K12 are the rates with which the attached molecules give
rise to single transformants of types 1, 2 and double transformants of types 12,
respectively. The proportion of double transformanits niow varies linearly with
the time anid the DNA concenitrationl. This distinctioin between the kinetics of
linked and unlinked double transformationis provides the most clear cut criterion
for linkage between markers in transformation (see, for example, Goodgal [13],
Nester, Schafer, and Lederberg [23], Kient and Hotchkiss [19]). It should be
emphasized that these analyses apply only to the initial rates, wheni t (anld/or
D) is small, aiid not to the saturation levels, when t (and/or D) is large.

3. Multiple site attachment model

The siml)le kinetic models described inl the l)reViOus sectionI mlade lno attempt
to specify the details of the reaction betweeni cells aiid DNA. Ill particular, 11o
specific assumptions were made as to the niumber of attachmenit sites per com-
I)etelit bacteria. IHowever, as will be slhowni below, assuminig exponential kinetics
does imply certain assumptions as to the iiumber of attachment sites and also
as to the probabilities of their being filled. The oiily published attempt to work
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out a more detailed model of the transformation process is due to Balassa arid
Prevost [3]. A closely analogous model was developed independenitly by Bodmer
in unpublished notes in 1962.
We make the following assumptions.
(1) The competent bacterium has k reccl)tor sites for donor DNA molecutks

which have Ino specificity with respect to type of DNA molecule.
(2) The initial association betweenl sites and DNA is mediated by random

diffusion and we assume irreversible attachment immediately after contact.
This implies that the probability that a given site contacts a DNA molecule in
the time interval dt is aD dt where a is a rate constant and D is the overall
concentration of DNA molecules per competent cell. The probability of a site
being contacted at least once in the time interval t, and so filled irreversibly, is
then 1 e-a = q, say. Consider now a series of independent markers i where
i = 1, , n and the relative proportion of molecules carrying marker i is i.
Then the probability that ri sites are filled with molecules of type i anid ro sites
are empty is the multinomial

kt ~~~n
(3.1) n (1 - q)ro I (qdi)r,

II r-i! i=1
i=o

where Yt=o ri = k and 5t=li = 1, since the probability of a site being filled
with marker i is qfi and of a site being empty is 1 - q. We now assume further,
for simplicity, that the probability that a cell will give rise to a transformant
for marker i, given that it has ri sites filled with the appropriate molecule, is ay r1.
The parameter -y then includes the probability of the correct recombinatiolnal
event taking place and the probability of subsequent expression. We must have
ri,yi such that Yiri < 1. The total probability of transformation for marker 1
alone, say, is then

(3.2)~ ~ ~ ~ ,yr1k!n(3.2) E nzlrsk! (1 -q)rT II (qfli)i = ylkqjBl.
all ri such

that =n ri=k II r-

The number of transformants is therefore

(3.3) T, = y1jflkB,(1 - e-aDt),

where Bc is the initial number of competent cells, which are assumed to retain
their competence until they are transformed. Generally, f3, will be small (usually
at most a few per cent and probably <1/k) so that 'y can be nearly one, sig-
nifying a high efficiency of integration by recombination and of subsequent
expression. Thus, 'yL6lk may be of order one, so that as t - - the proportion
of transformants Ti for each marker tends to B, This, of course, implies a high
frequency of cotransformation for unlinked markers at saturation, which is lnot
generally found. When t is small,
(3.4) T ,= -y,0kaDB,t + O(t2),
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showing once again the linear dependence of the number of transformants on
DNA concentration, concentration of competent cells, and time.
Assuming independent integration of markers on different molecules, we take

the probability that a cell will be transformed for markers i and j, given that
it has, respectively, ri and r, sites filled with molecules of type i and j, to be
ry,yyjr,rj, so that the probability of the double transformation T12 is, for example,

(3.5) E ,, yly2rlr2 (1 - q)ro fl (qj3i)ra = f1Y7213L62q2k(k -1).
anl r such ST !

that 1?Ori-k IIri-

Substituting for q, this becomes

(3.6) T, = yjlj%2#2k(k - 1) BC(1 e-at 2.
If k is much larger than unity, we have

(37) T1T2 BT12
as before. In this expression T1 and T2 include the double transformants, so that
it is valid even when T1 and T2 are not large compared with T12. The result
does, however, depend on assuming that the number of sites k per bacterium is
constant. (See Balassa and Prevost [3].) Note that when t is small, equation
(3.6) gives
(3.8) T12 = 'yL8l'y22k(k - 1)B.D2t2 + 0(t2),

showing again the quadratic dependence of unlinked (independent) double
transformations on DNA concentration and time, when t is small. The linear
dependence for linked double transformations follows from exactly the same
arguments as given before. From the fact that if q -- 1 and yjkij -+ 1 many
competent cells would be transformed for a large number of markers, which
does not seem to be the case, we must conclude that for this model to be valid
either q always remains small and/or kfliyi is small for all i. Small q, that is,
a low probability that a site will be filled, implies that random collision by
diffusion between sites and molecules is a severely rate limiting step in the
transformation process. Arguments developed in the next section suggest that
this is unlikely. Small k0ai could arise either from k being much less than 1/j3
or from the probability of integration and expression yt being small.

4. Growing point attachment model

Recent evidence on the involvement of DNA synthesis in transformation [4]
suggests that the donor DNA is integrated at a stationary growing point of
DNA synthesis. The growing point is probably associated with the cell wall
membrane [12] in such a way as to make it readily accessible to incoming donor
DNA. This model for the initial stages of transformation has two features which
clearly distinguish it from the other models we have so far considered. First, it
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implies that there is only one attachment site (or at most perhaps two or three)
for donor DNA on the recipient cell. Second, it implies a restriction on the
donor DNA molecules which are acceptable for transformation at any given
attachment site. Only those molecules containing regions homologous to the
portion of the recipient chromosome surrounding the growing point associated
with any given attachment site can be integrated at that site. We shall now
describe a simple model encompassing these features.
We consider the fate of a given attachment site under the following

assumptions:
(1) molecules arrive at the site according to a Poisson process parameter p,

that is, the probability of an arrival in time dt is ,u dt where dt is small;
(2) the proportion of acceptable molecules is ,B;
(3) unacceptable molecules stay at the site for a random length of time t

with probability density function g(t). While at the site they prevent any
further attachments;

(4) acceptable molecules "fix" the site, preventing any further attachments.
The probability that a site becomes fixed in the time interval (t, t + dt) is

then given by the integral equation

(4.1) f(t) = 1e,ed' + f|fJ-T (1 - #)ye- g (t) f(t - r - 0) dt dT.

The first term is the probability that the first particle arrives at time t and is
acceptable, while the second term is the convolution of the probabilities that
the first particle arriving at time T is unacceptable, stays for time t and then
afterwards an acceptable particle arrives in the time interval (t, t + dt). If we
take Laplace transforms, multiplying each side by e-st and integrating over t
from 0 to xo then equation (4.1) becomes

(4.2) 5P(S) = s + + ) 4(8) s(s),

where so(s) and 4,(s) are the Laplace transforms of f(t) and g(t), respectively.
Solving equation (4.2) for S(s) gives

(4.3) (p(s) =(s + .)-(1- )M i/'(s)

If we assume, that g(t) is an exponential distribution Xe-1', then #,(s) =
X/(s + X) and

(4.4) P(s) = (+ ) (s +A)(S+ ,))(8 +
_ I (Si+) + / 8s2+)
(S1- 82) (8 - 1) (82 - S1)(S-S 82)

giving, on inversion,

(4.5) f(t) = s - s2 [(s1 + X)ealt - (s2 + X)e82t],
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where si, 82 are the roots of the quadratic

(4.6) 82 + S(X+ A) + p#X = 0.
The probability of a site not being fixed by time t is therefore

(4.7) F(t) = f f(r) dr = A [(1 + eit -(i + ) e82j

Since, from equation (4.6), si and 82 are both negative, clearly as t -o o, F(t)
0, leaving no unfixed cells. When t is small

) S2- L81[ . (1-sit) (S2 1- 82t) + 0(t2),
so that the proportion of transformed sites is

(4.9) 1 - F(t) = pAt + 0(t2),
since from equation (4.6), S1S2 = #:X. The above equation for F(t) can also be
obtained by the standard "infinitesimal" arguments, yielding two simultaneous
differential equations for the probability a site is empty and the probability a
site is transiently occupied. This derivation depends on Poisson arrival distribu-
tions and exponential waiting time distributions for unacceptable molecules,
and so is not as general as the result given by the integral equation (4.1).
The parameter ;s, which represents the rate at which cointact is established

between DNA and cells, will, for simple diffusion theory, be proportional to the
DNA concentration. Thus, assuming one attachment site per cell, equation
(4.9) is analogous to the equations (2.3), (2.10), (2.21), (2.24), (2.25), and (3.4)
for the expected number of transformations when t is small. These equations
all reflect the same assumptions of independence between cells, and random
collision between DNA and cells as mediated by diffusion.

If there are two attachment sites on a cell, designated by subscripts 1 and 2,
the probability that both are fixed by time t with their appropriate molecules
is (1 - F1) (1 - F2), assuming they are independent. When t is small this gives
192/h2t2 + 0(t3), predicting, as before, quadratic variation of the number of

unlinked double transformations with respect to time and DNA concentration.
However, when t -+ oo, F1 and F2 -O0 so that the probability that a cell has all
its sites fixed with the appropriate DNA molecules tends to unity. The saturat-
ing level of cotransformatioii for unliniked markers depends therefore, with this
hypothesis, on the pairwise cliromosomal distributions of the attachment sites oln
single cells. Only if the acceptable regions for pairs of sites are randomly dis-
tributed along the chromosome will the limiting level of cotransformatioll for
unlinked markers be the product of the levels for the two constituent markers.
A change in the specificity of the attachment site with time by slow movement
of the growing points will lead to a somewhat different picture of the kinetics
of cotransformation for unlinked markers. Cotransformation of linked markers
oni the same molecule cain be interpreted in exactly the same way as has been
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done in previous sections. The observed relatively low frequencies of cotrans-
formation for linked markers situated on different molecules (obtained by mixing
DNA's prepared from two singly marked bacterial strains) are explained by a
slight relaxation of the assumption that once a molecule is fixed at the attach-
ment site no other molecules are acceptable.
When t is large, F(t) will be dominated by the term involving ealt, where

IslI < Is21. If d << 1, which will usually be the case, then from equation (4.6),
we have

(4.10) s=+ (2)

so that, from (4.7), we have

(4.11) F(t) exp (- t).

The effect of the finite mean time of attachment of unacceptable molecules 1/X
is represented by the factor X/(X + Iu) in the exponent, which tends to 1 as
X -* oo and the mean attachment time tends to zero.

If we include in the model a probability v dt that any unfixed site loses its
competence in the small time interval dt, then the new probability that a site
will become fixed in the time interval (t, t + dt) is f*(t) = f(t) e-,t, where f(t) is
defined as before. This simply includes the extra term e- for the probability
that the site is still competent at time t. If we allow, further, for an influx of
competent sites at a rate v dt, then the probability that a site becomes fixed in
the time interval (t, t + dt) is now

(4.12) f**(t) = v e"cvrl(tP T)f(t - Ti) dTi.

This is the convolution of the probability that a site becomes competent at time
Ti, remains competent for a time t - r and given that it remains competent,
becomes fixed at a time t -Tr after becoming competent. The Laplace trans-
form of f**(t) is thus given by [v/(s + v)] so(s + v) where as before sp(s) is the
transform of f(t). If at time t = 0 there are B, competent cells and a population
B of cells can become competent with probability v dt in the small time interval
dt, then assuming one site per cell the total number of cells that become fixed
in (t, t + dt) is

(4.13) Bcf*(t) + Bf**(t),

which has a Laplace transform

(4.14) --(s+ )(Br+ BP

So long as v and v are small the asymptotic properties of this model are similar
to those already discussed above.
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5. The application of diffusion theory to the growing point model

The kinetics of absorption of virus particles to bacterial cells was explained by
Schlesinger [26] in terms of a two body collison model involving freely diffusing
virus particles and bacterial cells. The model he used was based on a theory of
the kinetics of coagulation developed by Smoluchowsky. The theory predicts
that the quantity of a solute J dt which diffuses onto a sphere of radius R in a
small interval of time dt is given by
(5.1) J dt = 47r DRc dt,
where D is the diffusion coefficient of the solute particles, and c their concentra-
tion. If the diffusion of the bacterial cells is ignored, then equation (5.1) is
applicable to transformation on the assumptions that the solute is DNA, that
R is the mean radius of a sphere whose volume is approximately equal to that
of the bacterial cell, and that a contact anywhere on the surface of the cell
leads to the location of the attachment site. Since the average DNA molecule
will be long compared to R, this latter assumption is perhaps not too unreason-
able. Following the growing point model developed in the previous section, we
should then have

(5.2) ju = 47r DRc,

where J is measured in numbers of DNA molecules, sincee dt is the probability
of a molecule contacting a competent cell in the small time interval dt. A typical
concentration of DNA used in a transformation experiment is 1 ,ig/ml or
(10-6/2 X 107) X 6 X 1023 = 3 X 101° molecules/ml where we assume an av-
erage molecular weight of 2 X 107. The radius R may be taken as approximately
5 X 10-5 cm and D as approximately 10-8 cm-2 sec-1 (see, for example, Tanford
[28]). These values give ,u = 1.9 X 10-1 corresponding to a mean interval of
about five secs between collisions between bacteria and DNA molecules. From
our knowledge of the average size of the DNA molecules we can take a = .01.
If now we assume the asymptotic formula (4.11) for the probability that a cell
is not fixed by time t, the approximate time needed to produce half the saturat-
ing level of transformants is given by (tXt3/X- + u) = loge 2 which leads to the
following estimate for X

(5.3) 4. log. 2
t143 - log, 2

A reasonable value for t is 15 min or 900 sec, which with the previous estimates
of uA and 3 gives X = 0.082 corresponding to a mean time of about 12 sec for
the length of time an unacceptable molecule remains attached to an attachment
site. This may be compared with the average time taken to replicate a portion
of the genome corresponding to the size of the donor molecule, which is about
30 sec.
Assuming the specificities of attachment sites are random with respect to

chromosomal location, the proportion of the whole genome available at an
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attachment site u will be related to the proportion of transformants for a given
marker p and the proportion b of the recipient cells which have an attachment
site (that is, are competent) by the formula
(5.4) ub = p.
Saturating transformation levels of one to two per cent are frequently attained
in the B. Subtilis transformation system, on which most of this discussion is
based. Thus, since b < 1, we must have u _ 1/50 to 1/1000. From experimental
considerations it seems unlikely that b is greater than about 0.2, suggesting a
value for u of from 0.05 to 0.1.
While the calculations described in this section are undoubtedly very rough

they do not indicate any major discrepancy between the requirements of the
growing point model and experimental observations.

6. Recombination theory

The probability that a single marker will be integrated once the appropriate
molecule has been fixed will simply be a further constant multiplier relating the
frequency of transformants to the frequency of competent cells fixed for the
appropriate DNA molecules. This frequency will, of course, depend in some way
on the properties of the DNA molecules on which the marker is situated. How-
ever, to relate the relative frequencies with which single and double trans-
formants are produced for markers which can be on the same molecule (that is,
are linked) requires some assumptions concerning the nature of the recombina-
tion process leading to integration. A simple recombination theory will be de-
scribed in this section which is similar to that discussed by Balassa and
Prevost [3].

Following classical theories of recombination as developed originally by
Haldane [15] (see also Bailey [2]), we assume that integration is mediated by a
series of random switches in the association of donor DNA with the recipient
chromosome. Thus, in figure 4, OT represents a donor fragment temporarily

*-e2-> a 4 2,

T R7 X R6 R3 R2 0
lxi I {donor DNA

Q R8 R5 R4 RI a

recipient chromosome
FIGURE 4

Schematic representation of integration by recombination.
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aligned with its homologous region on the recipient chromosome aQ, and X the
position of the mutant lesion in the recipient chromosome (a-) distinguishing
it from the donor (a+). The poinits Ri represent homologous positions on the
donor and recipient where an exchange in the associations of donor and recipient
material has occurred. Thus, for the particular configuration of figure 4, integra-
tion gives rise to a recipient chromosome aJR1R2R3R4R5R6R7R8S:2 which has
donor fragments R2R3 aind R6R7 replacing the homologous recipient regions
(R1R4 and R5R8, respectively). Transformation will be achieved only if a region
including X is integrated into the recipient chromosome. In terms of DNA
structure it seems probable (for example, see Bodmer and Ganesan [6]), that
OT and ac represenit single strands of a DNA molecule having the same polarity
and that the exchange process is mediated by an exchange in pairing of donor
and recipient strands with their complementary strands, followed by breakage
and rejoining. A viable transformation will only be produced if the number of
exchanges withini the interval OT is even, so that both the a and Q ends of the
recipient chromosome are incilded in the final product. There are two distinct
possibilities, either (1) all products of an odd number of exchanges die or are
simply not observed or (2) there is a mechanism which forces an even number
of exchanges. Experimental observations on the efficiency with which integrated
donor DNA gives rise to transformants, as well as general theoretical considera-
tions, favor the second of these two possibilities. For example, switching may
be a directed process, starting from a and proceeding toward Q, which is such
that if an odd number of switches has occurred by the time T is reached, a
further switch back to the recipient chromosome is forced at the terminal
point T.

Assum11e niow that the probability of the switch occurring in a small increment
of length dx is simply dx for all positions on the donor fragment. The number
of switches occurring in the interval x will then have a Poisson distribution.
This implies that switches occur independently at any position and that length
is measured by a recombination metric which is such that an average of one
switch occurs per unit length. It is clear that this metric will, in general, be
monotonically related to the actual physical distance along the DNA molecule
as measured in nucleotide pairs. Recombination data from many organisms
suggests that the relationship may in fact be one of simple proportionality. The
probability that an odd number of switches occurs in the length x is (1 -e-2x)2,
which is Haldane's [15] classic formula relating recombination frequency and
"map" length. Given a particular molecule with the lengths OX = 41, XT = f2,
and 4i + 42 = L, as in figure 4, there are at least three possible expressions for
the probability that the marker a+ will be integrated, depending on the assumed
model.

Model 1. If all products of an odd number of exchanges in OT are lost, the
initegration probability is {[1 - exp (-2f4)]/2} {[1 - exp (-2f2)]/2}, thisbeilig
the probability that an odd number of switches occurs in OX and in XT.

lIodel 2. S\witching occurs sequentially, at random, along the donor frag-
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ment starting at 0 and p)roceeding toward T. If there is still an odd niumber of
switches by the time T is reached, then a further switch at 7T is forced. The
integration probability is now simply (1 - e-21)/2, since if an odd number of
switches has occurred in OX, the model forces an odd number in XT and so an
even number in OT.
Model 3. As in model 2, except that the switching process can start with

equal probability, either at the end 0 or at the end T. The integration prob-
ability is now [1 - exp (-24i) + 1 - exp [(-22)] /4.
Model 2 is the only one giving a polarity effect, such that the probability of

integration is not the same when OX = 4i and X7' = f2 as wheni OX = 42 and
XT = t4 where {l F1 42. For a given molecule, model 2 gives a probability of
integration which increases monotonically as the distance OX increases. Models
1 and 3 give a maximum probability of integration when 4i = 42 = L/2 for
molecules of fixed length 4, + 42 = L. Only models 2 and 3 will be considered
for the rest of this section.

In the introduction it was pointed out the DNA preparations used for trans-
formation are probably equivalent to a random chopping of the bacterial
chromosome into some hundred fragments. We cannot, therefore, assume that
the marker we are interested in has a defined position on all molecules with
given length. We must assume a probability distribution for {l and .2 given
that f4 + 42 = L. Most models simply assuming random "chopping"; we make
the assumption that {l and 42 are distributed uniformly in the interval (0, L).
This gives an average integratioin probability

(6.1) r(L) =1 [1-1- (1 -2L)],

for both models 2 and 3. When L is small

(6.2) r(L) -L + O(L2)

and as L - oo, r(L) -* 1/2. Thus, with this simple model, the maximum integra-
tion probability is 1/2. We have

(6.3) dr - I e-2L e-2L
dL -4L1 4L2 2L

e-2Le- 2L
= 4L2 [e2L(1 + 2L)] _ 0

for all values of L. Thus, r(L) increases monotonically from 0 to 1/2 as L in-
creases from 0 to co.
We shall now consider recombination for two markers Xi, X2 whose distance

apart t is less than the length L of donor molecules. Then, as indicated in figure
5, there are three classes of molecules of length L which carry one or both of the
markers Xi, X2. The first class has its right end 0 falling in the interval X1X2 on
the chromosome and carries only marker Xl, the second with its left end T in
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T X, 0

2) T X2 °

T 2

3) T Xl 2 0 I

Bacterial A Xl X_2_8
chromosome I L L __________L_ '_

I~~ ~
I~~

FlIGURE 3

Recombination scheme for a pair of linked markers.

X,X2 carries only marker X2, while the third with both ends outside the interval
X1X2 carries both markers. If we assume random chopping, the positioil of the
end T is uniformly distributed in the interval AX2 on the recipient chromosome.
Preferential breakage points would, of course, give rise to different distributions
of the position of T. Assuming random chopping the relative proportions of the
throe types of molecules are f/(L + t), t/(L + f), and (L - t)/(L + t). When
t << L, molecules of type 3, containing both markers, predominate. Assuming
recombination model 2, the probability that both markers X1 and X2 are inte-
grated from molecules of type 3 is

(6.4) r33 = -(1 + e-2t) [1- 2(t-t)

since this requires an odd number of switches in OX2 and an even number inX1X2.
The probabilities of integrating, singly, the markers X1 and X2 from molecules
of type 3 are, analogously

r3= (1 e- 2 [1 + e-2(l-)]-
(6.5) 1 1

r32 =" (1 e-2t) [1 e-2(t-)],

respectively. The three corresponding probabilities for model 3 are clearly
I

(1 + e-2t)[1 -e-2("-t) + 1 -e-2(L-4)]

(6.6) (1 - e-2t)[1 + e-2("-t) + 1 -e-2(L-4)],

8 (1 - e-2t)[1 - e-2(h-t) + 1 + e-2(L-ei)1
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respectively. The integration probabilities r,, for marker XI from type 1 nmol-
ecules, and r2, for marker X2 from type 2 molecules, are as given before for
single markers.

If now we wish to distinguish single and double transformation events, we
have to average over distributions of {l which are appropriate for the three
different classes of molecules. Again, assuming random chopping, tA will in all
cases be uniformly distributed, but over different intervals. For the three types
of molecules the intervals will be (0, f), (L, L + t), and (e L), respectively,
where L _ t. The average values of all the integration probabilities under these
assumptions are given in table I. When L < e,

(6.7) r3l = r32= r33 = 0 aild r = ?=2 e-

as before. There is polarity with respect to the frequency of integration of single
markers when the different molecular types are considered separately. However,
since

~- 2
(L f)(6.8) L+ (r2- ri) =-4L) [1 -C-2(L,-t)] = L+e)(r3l - 732),(.) L + t

1 4(L + t) LL
the polarity effects cancel each other. For given L (_ t), the average frequency
of single transformants (either marker) is

(6.9) jY' = L+ (r, + r2) + L (r3i + r32),
and of double tranisformants

(6.10) TD=L+e r3 = (1 + e 2t) L + ei-2(L t) [1- e 2(Lt)1}

for both models. Substituting for ri, and so forth, in equation (6.9) w,e have,
for both models,

(6.11) TS = 2(L+ ) [2- (1 - c-2)-2 2 (e2t-1)]

+ 2(L + t)(1 2t
L t (I___ e__ 2

L + t 4(L + f) [2(L- )-1-e2(Lt)]
When L - t is small

(6.12) TD= (L - f)2 (1 + e2t) + O(L-e) 3,4(L±+t')
while

(6.13) Y'~s = L + tS+(--t L + e(-t
Thus, for markers sufficiently far apart, it should be possible to find conditions
where a reduction in the average length of donor molecules L causes a drop in
the frequencies of double transformants but hardly affects the frequency of
single transformants. Kinowing the value of L, in physical terms, at which this
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TABLE I

INTEGRATION PROBABILITIES FOR Two MARKERS CORRESPONDING TO THE
SCHEmE GIVEN IN FIGURE 5

In each case the first term is the probability given t4 and the second is the probability
averaging over 41 in the appropriate interval.

Molecule Type Model 2 (polar) Model 3 (nonpolar)

Type 1. Proportion 1 1
11(L + t) 2- (1-e-2e4) - [2-e-2(L-ed) - e2t']

ri = probability of in-
tegrating only XI1 1 1 11_ e2c ' 1 e-2L

11 uniform in (0, t) 2 L 21 J 4 21 2t

(e2t -1)]
Type 2. Proportion 1 e-2(4-t)]1/(L + 1) [12
r2 = probability of in-

tegrating only X2 same as r
t1 uniform in 1 - e-2 21

(L, L + t) 2 2t (e

Type S. Proportion
(L -t)/(L + t)

ti uniform in [t, L)
r31 = probability of in- 1 1

tegrating only XI 4(14-e2t) [l + e2((1t)1 8(18-e-) L2 +1 -
- e-2(L-4l)i

1(1-e21){ 1 + 2(-) - (1- e-2

[1 -e-2(L-t)1}

r32 probability of in- -1 e-2t) e-2(4,-0]I)ie2
tegrating only X2 4 (1-e- [18-

[2 - e-2(ti-t) + e-2(L-I)]

(1-e-2t) same as r3s

{1 -2(L_) [1 - e-2(L-)]}

r33 = probability of in- ! (1 + e2e) [1 -e-2(t-t)] - (1 + e2t)tegrating only 4 8
Xi and X2 [2 -e-2(4t-) e-2(L-10]

1 (1 + e-2t) same as for model 24

(-2(-1)[ - e-2(L-)]}
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change in the kinetics of double versus single transformation occurs might be
one way of relating directly the genetic and physical length metrics. The fre-
quency TD increases monotonically from 0 as L - t increases or equivalently
for fixed L, as t decreases, and so is directly related to the distance between the
markers. We require, however, an estimate for this distance t, which is inde-
pendent of L. A commonly used parameter is the cotransfer index [22]

(6.14) C = TD

From equations (6.10) and (6.11), we have that

(6.15) 1 - C-= 8t + 2(1 - e-2t)[2(L -) - 1e-2(L-)](6.15) 1 - C-=C8t + (3 - e-2)[2(L- 1)- (1 - 3e-2e-2(Lt)
When t is small, this reduces to

(6.16) 1 C=2 2L 1- 2L + 0(t2) or 1-C- 2t if L >> 1.

Thus, for markers which are very close together, 1 - C is a reasonable measure
of the genetic distance between them. When 4 is small

(6.17) TD -1.4[1 - I(1 - e2L)],
which is the usual single marker transformation frequency, and Ts/TD - (1 -
C) - 2t, since Ts is small for closely linked markers. TS caIn often be measured
rather more easily than TD using appropriate selective techniques. However, TD
can then be estimated from the transformation frequency, determined in the
same experiment, for some other unlinked marker. This approach to estimating
small distaiices in transformation experiments by using the transformation fre-
quency of an unlinked marker to standardize the frequency of recombinant,
single transformants for pairs of closely linked members has been used, for
example, by Sicard and Ephrussi-Taylor [27].

7. Discussion

The complete transformation process is the product of a number of colnstit-
uent processes which, as discussed in previous sections, fall into two categories.
The first is the combination of attachment, entry and synapsis and the second
recombination and expression. Attachment models account for the main features
of transformation for single markers. However, for joint transformation of
linked markers, the interpretation of the recombination mechanisms becomes
of some interest. It is important to emphasize that the parameters for each
stage of the process are functioins of the integrity of the DNA preparation used
as well as of the competent state of the recipient cells. Variations in the size of
DNA molecules (before and after denaturatioin) are particularly significalnt iII
this respect [3]. Moreover, while all our discussions oni recombiniationl focused
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on molecules of fixed size L, there is, as pointed out already, considerable
heterogeneity with respect to the size of molecules in the standard preparations
of DNA used for transformation experiments. In summary, then, the complete
transformation process may be described, for molecules of given size L, by the
product
(7.1) T(L) = [1 - F(t, X, I., 9)] r(L) m(L) e,
where the first factor is the probability of fixation of a favorable molecule, the
second is the probability of the appropriate recombinational event, and the
third and fourth are probabilities of expression. The quantity L basically refers
to the single stranded size of the DNA, which is measured by the size after
denaturation. The parameters X, A, A may all be functions of L, while m(L) is
that part of the probability of the expression which is a function of L. The

ultimate probability of transformation will then be T= f T(L)p(L) dL,

where p(L) is the probability density for molecules of size L in the donor DNA
preparation. Thus, for example, to describe the effect of a given treatment of
the DNA on transformation requires the specification of the effect of the treat-
ment on p(L) and hence on T. The effects on transformation of deoxyribonuclease
treatment of the DNA have been extensively studied (see, for example, [5]).
Some deoxyribonucleases create breaks in single strands of the DNA molecule
and so effectively reduce L. It has been shown experimentally that such treat-
ment causes a reduction in transformation frequencies which is directly cor-
related with the reduction in the effective value of L, in this case the distance
between breaks on one strand of the DNA molecule. This reduction has been
shown to be mediated through an effect on F as well as m and presumably r.
A description of the change in p(L) when scision is at random goes back to
Charlesby [9], though Bodmer [5] and Bresler, Kolinin, and Perumov [7] have
made some further generalizations. The problem is closely analogous to the
analysis of neutron cascades (see, for example, T. E. Harris [16]). The complete
quantitative interpretation of these effects is, however, likely to be very complex
and would probably add very little to their understanding.

There are undoubtedly numerous possible extensions and generalizations of
the models we have presented. Thus the possibility of interference between
adjacent switches has not been taken into account in the recombination theory.
This could presumably be included in a manner analogous to the theory which
has been developed by Fisher and Owen (see Bailey [2]). Balassa and Prevost
[3] following Hotchkiss [17] have considered the effect on integration and re-
combination of assuming the genetic marker has a finite length rather than being
a point. However, their model for recombination, as well as that sketched by
Bresler, Kolinin, and Perumov [7] does not take into account the fact that the
DNA molecules probably do not have defined ends. The whole process of trans-
formation is sufficiently complex that a complete quantitative description, even
if the basis for constructing it were fully understood, would involve too many
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unmeasurable parameters and would be quite unwieldy. The value of model
building is in formalizing and clarifying ideas on the mechanisms involved and
in highlighting the expected qualitative features of the observed quantitative
experimental observations.

8. Summary

The transformation process can be divided into at least five stages: (1) initial
attachment; (2) entry; (3) synapsis; (4) recombination (or integration); and
(5) expression. Mathematical models fall basically into two categories: (1)
models for the initial attachment, entry and synapsis of donor DNA and (2)
models for the recombination process.
Simple models for the attachment process based on enzyme kinetic theory are

discussed first. These illustrate the initial linear dependence of the number of
transformants for a single marker on the time of contact, except possibly for
very short times, and also on the DNA concentration. The number of double
transformants for two unlinked markers is, in the initial stages of contact, pro-
portional to the square of the time and of the DNA concentration.
A more specific probabilistic model is next discussed which involves random

collisions of DNA molecules of different types with a given number of receptor
sites on the recipient bacterium. This gives essentially the same results as the
simpler kinetic theory.

Recent evidence on the involvement of DNA synthesis in transformation
suggests that donor DNA is integrated at a stationary growing point of DNA
synthesis. This implies that there is only one, or at most a few, attachment
sites on the recipient cell and that only certain donor molecules are accepted
by any given attachment site. A probabilistic model incorporating these fea-
tures is described and analyzed. Application of diffusion theory to the model
suggests rate constants for the attachment process which are not incompatible
with the observed time kinetics of transformation.
A recombination theory is outlined in which it is assumed that integration is

mediated by a series of random switches in the association of donor DNA with
the recipient chromosome. Expressions are given for the dependence of single
and double transformation frequencies for linked markers on the distance
between the markers and on the average length of the molecules. The overall
quantitative description of the transformation process, combining these various
models, is discussed.

I am grateful to Professor Joshua Lederberg for stimulating my interest in
models of the transformation process and to Professor Samuel Karlin for sug-
gesting the integral equation approach used in the analysis of the growing
point model. I would also like to thank Mr. Larry Okun for his many helpful
suggestions on the manuscript.
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