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1. Introduction

Any natural assemblage of animals or plants usually contains several species
of organisms. It may therefore be described as diverse. Only in the unlikely
event that all the organisms in a collection belonged to the same species could
one say that its diversity was zero.

Diversity is thus a characteristic of biological collections. Whether the object
of study be a natural community of plants, a collection of insects caught in a
light trap, the microarthropods in soil samples, a population of breeding pairs
of forest birds, or the plankton organisms in a sample of sea water, it will almost
always exhibit diversity. A biologist will therefore wish to assign some numerical
value to this property of the collection he is studying.

Various methods of measuring diversity have been used in the past, the
simplest being merely to count the number of species present. More precise
measures take account of the fact that diversity has two quite distinct aspects.
Thus, besides knowing the number of species in a collection, it is also necessary
to consider how the individual organisms are apportioned among them. ¥or a
given number of species, a collection in which the species are fairly evenly rep-
resented has high diversity; whereas, if the bulk of the collection is made up of
only a few of the species, while the remaining species are poorly represented, the
diversity is lower.

Before describing in detail a way in which diversity may be measured, it is
worth while considering why the diversity of populations is of interest to the-
oretical biologists. The diversities of numerous populations have been measured
in various ways and facts such as the following have emerged: tropical commu-
nities are more diverse than those of high latitudes [1]; the communities of
continental land masses are more diverse than those of isolated oceanic islands
[1]; well established communities that have been undisturbed for long periods
of time are more diverse than immature ones; communities of short lived
organisms that show great seasonal variation in numbers (such as Lepidoptera
in temperate latitudes) have high diversity in midsummer and low diversity in
spring and fall [2]; sea floor animals living in shallow water form more diverse
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communities than do those at greater depths [2]; stable communities—those in
which the numbers of the various species remain comparatively constant—are
more diverse than unstable ones, in which great fluctuations in species abundance
commonly occur [3].

Results such as these suggest some tentative generalizations. It appears that
high diversities are characteristic of communities that are mature and stable,
and that occupy ‘‘hospitable” habitats. Conversely, communities that are im-
mature, unstable or exposed to rigorous environments are usually of low diver-
sity [4]. The interconnectedness of the concepts of maturity, stability and
diversity, and their dependence on environment, are of central importance to
students of the evolution of biological communities. It is not possible to go
further into these matters here; they have been fully discussed in [1], [5], [6],
and [7].

2. Information content as a measure of diversity

To measure the diversity of a collection, it has been suggested [5] that its
information content be used. For a collection of N individuals belonging to s

species with N; individuals in the ¢th species (¢ = 1,2, ---, s; > =1 N: = N),
the total information content (or diversity) is given by Brillouin’s formula

N!
1) B =log pimt N,

units of information. The argument for using an expression of the form of B to
denote the amount of information in a message is as follows [8]. Suppose a
message is to be composed using a total of N symbols (letters of the alphabet
or other code symbols) of which N, are of the first kind, N, of the second kind, - - -
and N, of the sth kind (X; N; = N). The number of possible messages that
could be formed with these ingredients is obviously N1/(N1!N,!- - -N,!). A recip-
ient of the message who knows in advance only what symbols it will be com-
posed of, but not what the particular message is, realizes that N!/(N1!N,!- - -N,!)
possibilities exist, all equiprobable, and this is the amount of his uncertainty
before receiving the message. Once the message has been received and decoded
this uncertainty is dispelled, and an equal quantity of information gained. The
reason for using the logarithm of the number of possibilities rather than the
number itself, will become clear below.

There is .an obvious analogy between a biological collection consisting of
various numbers of different species of organisms, and a coded message consist-
ing of various numbers of different kinds of symbols. In identifying the members
of a collection, one by one, and assigning each to its correct species, the actions
of a biologist are formally identical with those of a man observing, one after
another, the symbols in a message. There is therefore a property of biological
collections analogous to that property of a message known as its information
content. In the biological context, this property may be regarded as diversity.
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It is easily seen that B has the properties we desire in a measure of diversity.
For given N and s, B is a maximum when the individuals are divided among
the species as evenly as possible. That is, when N = N/s for-all 4, if N is a
multiple of s; or otherwise, denoting the integral part of N/s by [N/s] and
putting N = s[N/s] + r, when s — r of the species have [N/s] individuals each
and the remaining r species have [N/s] 4+ 1 individuals each. Moreover B is a
minimum when one of the species contains N — s 4 1 individuals and the
remaining s — 1 species have only one individual each.

Since one will often wish to compare the diversities of collections of different
sizes, it is more convenient to consider H = B/N, the diversity per individual
rather than B, the total diversity, of a collection. If now, throughout the formula

2.2) H = B/N = (1/N) {log Nt- ¥ log N;!}

we substitute Stirling’s approximation to the logarithm of a factorial in the
form log z! = z(log x — 1), the resulting approximation to H is

8 R N
' Ny N
(2.3) H = i; i logN;
or
(2.4) H' = =3 pilog p,,

where p; = N;/N for7 = 1,2, .-+, s, denotes the proportion of the collection
belonging to the 7th species.

Whether to use H as in (2.2) or H’' as in (2.3) when calculating the diversity
of a biological collection will be discussed in the next section. First it is worth
remarking on the connection between them.

The formula for H’ is immediately recognizable as Shannon’s [9] formula for
the information per symbol in a message composed of s kinds of discrete sym-
bols whose probabilities of occurrence are py, ps, * * - , Ps. But the formula for H’
was not originally derived as a limiting form of H when all the N; increase.
Instead, it was arrived at as follows. Consider a complete system of s events,
Xy, X, - -+, X, with probabilities py, ps, « -+ , pe. As & measure of the informa-
tion content (or uncertainty) of this system, we require a function of the prob-
abilities, H'(py, - - - , ps) say, which will satisfy the following conditions:

(i) H’ must be continuous with respect to all its arguments;

(ii) H’ must take its largest value when p; = 1/s for all ;

(iii) The addition of any number of impossible events, X1, Xs4e, -+ for
which p; = 0, 7 > s, must not alter the information of the system. That is we
must have

(25) H,(pl} c0ty Psy 0, -, 0) = H,(pl; Tty pe)-

Further, consider a second, dependent system of ¢ events, Y;, Y, ---, Y, and
let the conditional probability of the occurrence of Y; given that X has occurred
be g;;. Finally, consider the new complete system of the st joint events X.Y;
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for which the probabilitiesare 7;; = pugs; (¢ = 1,2, -+ ,8;5=1,2, -+, t). We
require that the information content of this joint system, namely
. H,(ﬂ'u, m™TI2y, “ Tst)

should be given by
(2.6) H'(py -+, ps) + X pH'(ga, + -, gir)-

It has been proved [10] that the only function satisfying these conditions is
2.7) H'(py, -+, p) = —C X pilog p:

T

where C is a positive constant.
Besides the fact that Brillouin’s H(= B/N) tends to Shannon’s H’ as the N;
increase without limit, there is another connection between these formulae [11].
As before, consider an s species collection with N; individuals in the sth species,
with >°; N; = N, and let its total diversity be B, as calculated from (2.1).
Suppose now that we remove from the collection a single individual chosen at
random. The probability that the chosen individual belongs to the 7th species
is thus N;/N. Denote the expected diversity of the remaining population, of
size N — 1, by E(B)). Then the expected decrease in diversity resulting from

the removal is
N1 N

3 . Nl N (N — 1)!
28)  Bo—EB) =legr—wi~ Xy ey N, — W

N;. N;
= —; 5 log N
In words, the expected reduction in fotal diversity (as measured by Brillouin’s
B) is identical with the initial diversity per individual (as measured by Shannon’s
H').
Further, the expected change in H (the diversity per individual as calculated
from Brillouin’s formula) is [12]

Bo E(By)
N -1

- ¥ = wr W '(%I)M (%)}

The term in braces is equivalent to a multinomial probability, so is less than
unity. It follows that Hy, — E(H,) is always positive. Thus we may conclude
that the expected result of removing a randomly chosen individual from a collec-
tion will always be to decrease the collection’s diversity per individual as meas-
ured by H.

(29) Ho— E) =

3. The choice between H and H’ as measures of diversity

Opinion among biologists appears to be divided on whether it is better to use
H or H' to measure the diversity of biological collections. My own opinion is
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that when all the members of a collection can be identified and counted H is
more suitable, for the following reasons.

(1) When measuring the information content (per symbol) of messages, H is
the appropriate measure for particular messages whereas H’ is defined only for
average conditions in long messages [13]. A biologist using H’ is therefore tacitly
assuming that his collection may be regarded as a random sample from some
much larger parent population and represents the average conditions in it. This
is usually a dubious assumption and one that should not be made unless its
reasonableness can be adequately demonstrated. If a particular collection is
treated as an entity to be studied for its own sake, H is the proper measure of
its diversity.

(ii) Even if one could regard one’s collection as being representative of a large
parent population, it is unsatisfactory to accept a single sample value of N,;/N
as a reliable estimate of p;, as is often done. This is especially true of the rare
species in a collection, that is, those having low values of N;. An attempt to
increase the values of the N; by enlarging the collection is no help, however,
for when this is done one usually obtains not only more members of species
already present but also, in ones and twos, individuals of species not previously
represented. It is unusual for a collection not to contain at least some species
with only one or two individuals [2]. Consequently, precise estimates of all the
pi, such as are needed to calculate H’, are not easy to obtain (but see section 7).

(iii) It seems desirable that a measure of diversity should depend, not only
on the number of species and their relative proportions, but also on the size of
the collection. Compare, for instance, a two species collection with 5 members
in each of the two species with another two species collection having 500 mem-
bers in each. The number of possible arrangements of the individuals is clearly
greater for the large collection than the small; this is the same as saying that
the large collection has the greater diversity per individual. But if one were to
put p; = p: = 1/2 for both collections, their H’ values (= log 2 in this example)
would be equal. However, H does depend on N, as well as on s and on the
relative proportions; also, it is always less than H’, the measure appropriate to
conceptually infinite populations. To see this we note that

D N = 1) = —log {NI!.N.—%N,! (%)N (z%)N}

That is, N(H' — H) is the negative of the logarithm of a probability and is
therefore always positive.

It may be objected that H is an unsatisfactory measure of diversity when it
is either impossible or undesirable to count the individuals in a collection. If a
collection consists of a natural community of plants growing together in a
defined area, it is impossible to count the individuals of those species that
reproduce vegetatively; parents and offspring remain organically connected by
rhizomes or stolons for an indefinite length of time and the very concept of
“individual” becomes meaningless. And in a collection in which the members
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of the different species differ markedly in size it may be desirable to record the
amount of a species by weight or volume rather than by number of individuals,
even if they can be counted. In such cases it may seem natural to use H’ instead
of H but the objections to H’ listed above still apply. It therefore seems best
to allow N; to denote the number of units of the 7th species whatever they
may be. For instance, in the plant population to be described in section 8, the
quantity of plant material of each species was determined as the fresh weight
in tenths of a gram of all above ground parts of the plants. These weights were
then substituted for the N; in the formula for H.

4. Units of diversity and the measurement of “evenness”

In the equations so far given the base of the logarithms has been deliberately
left unspecified since the only effect of changing the base is to change the size
of the units. Any desired base may be used; information theorists commonly
use 2 and the units of information are then binary digits or bits. Using an
arbitrary base, say n, one can define the units as “n-ary digits.”

For instance, with an s species collection we might use s as the logarithmic
base and measure the diversity by

1 N1
N & NN,

s-ary digits, where the bracketed subscript denotes the units.
Alternatively, if Shannon’s formula were used, we should have

4.2) Hy = —; p: log, p:

(4.1) H, =

s-ary digits. The greatest possible value of H(;,, which would occur if the in-
dividuals were evenly distributed among the species, is thus

(4.3) st)'max = —Z % log,ls = 1.

Clearly then, H(, measures the diversity of a collection relative to the max-
imum attainable, for the same number of species, in a collection of unlimited
size. In other words, H, = H/Hax, the ratio of the actual diversity in arbitrary
units (as calculated from Brillouin’s formula) to the maximum possible diver-
sity in the same units (as calculated from Shannon’s formula). Margalef [5] has
proposed that H, be used to measure what may be called the evenness compo-
nent of diversity. It depends, however, on the size of the collection as well as
on its evenness; a finite collection of maximum evenness, namely one in which
all the N; were equal, would still have H(y < 1 since, as already shown,
Hpox < Hpax. A better measure of evenness is provided by the ratio H/H yx
[12], in which both terms are calculated from Brillouin’s formula. Using the
symbols of section 3,
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T 7

In comparing several collections a biologist may compare separately the
three properties: number of individuals N; number of species s; and evenness
H/H pex. Or he may prefer the single measure of diversity H using the same
logarithmic base (that is, the same units) for all collections. Which course to
adopt depends on the biological problem being investigated.

“4.4) Hypox = log

5. Hierarchical diversity

Although H is commonly called the “diversity” of a collection, it could be
more exactly described as the specific diversity since it depends only on the
numbers of individuals in each species. We now wish to take into account the
hierarchical nature of biological classification. For simplicity consider only two
taxonomic levels and let the individuals in a collection be sorted in two stages:
at the first stage each individual is assigned to its genus; and at the second
stage each genus is taken in turn and its individuals assigned to their species.
Suppose that after the first sorting there are found to be g genera with N, in-
dividuals in the ¢th genus with ¢ = 1,2, ---, ¢; >{-1 N; = N. The generic
diversity of the collection may then be defined as

= Ll N
TN NI N,

After the second sorting the sth genus is found to contain s; species with N;
individuals in the jth of these species, where j = 1,2, - -, 8;; 2551 Nyj = N
The specific diversity within the 7th genus is then

108 e
g Nzl'Nd' Nia.-!

The specific diversity of the Whole collection is

!
(53) H =3 log ML
HNlt'HNZt ILINM!

N1 Nl
N[l°ng N'+ZlogN Ni.i!]

—HG+Z 1Hs.

(5.1) Hg

5.2) Hg,;

Similarly, if three taxonomic levels are considered, family, genus and species,
we may write

(5.4) H HF’+ 21 'HGz Z Z UHS ije



170 FIFTH BERKELEY SYMPOSIUM: PIELOU

Here Hp is the familial diversity. H ¢, is the generie diversity in the 7th of the s
families, which contains N, individuals. And s, ,; is the specific diversity in
the jth genus of the ith family; this genus contains N,; individuals.

Analogous equations may be written for any number of taxonomic levels.

Consider again the case in which only two levels are recognized. An s species
collection in which the individuals belonged to one or a few genera might well
be thought of as less diverse than another s species collection with many (up
to §) genera, although both could have the same value of H. A biologist wishing
to allow for this might define a new measure of diversity, H* say, by putting

(5.5) H* = ollc + 83 sz Hg
=1

and then choosing weighting factors o and 8 with a > . There seem to be no
“natural” values to assign to these constants and they would necessarily be
arbitrary. Alternatively, instead of weighting and adding the components, H
could be treated as a vector. The same approach could be used for any number
of taxonomic levels.

Whether these more elaborate measures of diversity will prove uscful in
ccological research only experience can show. In the meantime, specific diver-
sity as given by H is, in a sense, the most basic. If we assume that only con-
specific individuals are interfertile, then grouping the individuals by species
gives groups such that breeding is possible only within groups, and not between
groups.

6. Pattern diversity in sessile populations

If a collection consists of motile or freely drifting organisms such as plankton
in a water sample, it is impossible to do more than count the individuals in each
species. But suppose we are investigating a community of sessile organisms such
as forest trees; besides counting the individuals, we can also map their locations.
1t is then possible to study what may be called the community’s pattern diver-
sity [12] as well as its specific diversity. If the individuals tend to grow together
in single species clumps we may say that the pattern diversity is low, or that
the species are segregated from one another [14]. More thorough intermingling
of the species would give higher pattern diversity.

Consider a population of size N and assume that the numbers of individuals
N, with 4 =1, ---, s, in each of the s species is known. Denote the specific
diversity of any group of n neighboring individuals by H(n). Then, on the
hypothesis that the species are unsegregated, H(n) has expectation

, NP NS 1
(6.1) EHM} =L o= o Rl

where the summation is over all r; (0 £ r; £ n) for which 3 r; = n.
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Given an actual population, we may sample it at random, taking as sampling
unit a group of n neighbors; and we may calculate H(n), the diversity of each
sampling unit and hence obtain H(n), the observed mean. If H(n) does not differ
significantly from E{H (n)}, one may conclude that the species are unsegregated
or randomly mingled. Otherwise, if H(n) < E{H(n)} significantly, it follows
that there is segregation. It is convenient [12] to use the ratio D = H(n)/E{H (n)}
as a measure of pattern diversity. Then for unsegregated populations E(D) = 1;
low values of D correspond with low pattern diversity or a high degree of seg-
regation; high values of D with high pattern diversity or a low degree of segrega-
tion. Estimation of the standard error of D is described in [12].

The use of this measure of pattern diversity unfortunately requires two
arbitrary choices on the part of an investigator. These are:

(i) the method of defining ‘neighbors.” Various possibilities will occur to
ecologists and no single one is likely to be convenient in all circumstances. For
example, one could take the » individuals closest to a random point; or the
nearest individual to the center in each of n nonoverlapping sectors centered
on a random point;

(ii) the value of n, the number of neighbors to have in each sampling unit.

Evaluation of E{H(n)} and hence of D is impracticable with n > 4. It requires
calculation of the probabilities of all terms of a multivariate hypergeometric
series; and also of the H values corresponding to all partitions of n individuals
into s groups of which some may be empty. Further, use of the multinomial
distribution as an approximation to the hypergeometric will not usually be
permissible since it is likely that at least some of the N; will be as low as one
or two.

The statistic D can be useful to ecologists, however, as may be shown by
an example [12]. Six young populations of trees which had grown up on burned
over land were being studied. The number of trees in each inevitably decreased
as the populations aged since the young trees were too dense initially for all to
survive to maturity. The numbers of species in the populations ranged from
four to thirteen, and maps were available showing both the species and locations
of all trees present at a certain time, and also those that survived throughout
a period of time (which ranged from five to eleven years for the different popula-
tions). The answers to two questions were sought.

(i) Did natural thinning cause an increase or a decrease in the evenness
component of diversity? A decrease would occur if the rare species were more
likely to die than the common ones, so that in the course of time rare species
became rarer and common ones commoner.

(ii) Did natural thinning cause a change in pattern diversity, and if so, in
which direction? If deaths occurred chiefly within the single species clumps of
young trees originally present, owing to competition among them, the result
would be an increase in D (a decrease in segregation) with time. Conversely, if,
out of the numerous tree seedlings that originally germinated on each area, each
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species survived only in sites to which it was adapted and died out elsewhere,
the survivors would become increasingly well sorted or segregated and D would
decrease.

To answer the first question the evenness, as measured by H/Hp.x, was
determined for each population at the beginning and end of the respective
observation periods. In three of the populations there was an increase in even-
ness, and in the other three a decrease. There was thus no consistent tendency
for the common species to survive at the expense of the rarer ones.

To answer the second question, D was estimated for all six populations at
both dates. To do this H(n) was determined, with » = 3, by sampling each
population at a number of random points and observing at each point the species
of the nearest tree in each of three 120° sectors centered on the point. E{H (n)}
for n = 3 was calculated from (6.1). It was found that in all the five populations
for which D < 1 significantly at the earlier dates (that is, those which were
initially segregated), D increased with the lapse of time. This suggests that the
natural thinning resulted from intraspecific competition within single species
clumps of young trees. -

In studying the evolution of a plant community it is clearly desirable to
observe the changes that occur both in specific diversity, and in pattern diver-
sity or segregation. In an unstable or maturing community, the number of
species and their relative abundances can be expected to change, and also their
spatial arrangement relative to one another. Attempts to interpret the way in
which communities evolve should take both these changes into account.

7. Estimating the diversity of a large collection

As remarked in section 3, it is usually unsafe to assume that a particular
collection constitutes a randem sample from a larger population. For example,
the insects caught in a light trap should not be thought of as representative
of all insects within a certain radius, or even of all phototaxic insects within
that radius. Differences among the species in flying power, and in opportunities
to see the light, may exert a sorting effect. Also, the relative proportions of the
different species that are active may vary during the hours that the trap is
operating. A single catch should therefore be treated as a whole population and
not as part of a larger one. Often, however, a single catch may contain several
million insects and the collection is too big for all the individuals to be identified
and counted. Then the population value of H cannot be determined and it
becomes necessary to estimate the diversity of the collection from a sample.
What is estimated is, of course, H’, the average diversity per individual in the
large population.

A method of doing this has been described by Good [15]. We assume it to
be possible to mix the collection (now the “population”) thoroughly and take
from it a truly random sample. The sample need not contain representatives
of all the species in the population; the fact that some rare ones may be missed
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does not affect the argument. We hypothesize that the (unknown) number of
species is s, and that the population proportions of the species, in any order, are
P1; P2, -+, P.. We now identify and count the individuals in the sample and
denote by v, the number of species represented by r individuals. Thus, if we
have ranked the species in order of increasing abundance and, as before, have
put N, for the number of individuals in the ith species, we now have

N:;=1 for t=1,2,---,n
N;=2 for t=n+1,n+2 -, mnt+nr

(7.1)

r—1 .or=1 r
EVi'l"l,ngVi'l‘z, ey 2 Vi

=1 i=1

N,

Il

r for ¢

Il

Then 3, r», = N, the size of the sample.

Also, denote by g, the unknown population proportion of an arbitrary species
that is represented by r individuals in the sample. Good [15] then proves that
the diversity of the population as measured by Shannon’s formula, namely
H' = —3 p;log, p: is given exactly by

, 1 1 1 1
(G.2)  H =3 T rEG) {T 1o+

d
p— 4o =" Er-_log,E(v,)
— E[log, (1 — Qr)]}-

We now wish to estimate H’ from the data. First it is necessary to smooth the
sequence vy, v, - - - and replace it by the sequence v, »;, - --. Ways of doing
this are described in [15]. Using these smoothed values, Good then shows that
as an estimator of population diversity we may write

(7.3) ﬁ’=logeN—Alr§rv{(l+%+---+%—7+%Iog,v§),.

where ¥ = 0.5772 --- is Euler’s constant and the differentiation is performed
graphically or numerically. Good does not give an estimator of Var ().

Three great advantages of estimating H’ by this method are: (i) it does not
require.that the population proportion of the 7th species be estimated by N./N;
(ii) it is not necessary to know the number of species in the population; and
(iii) no assumption is made as to any relationship between », and r. Thus we
need adopt no hypothesis such as Fisher’s [16], that the expectations of », form
a logarithmic series, or Preston’s [17], that they have a lognormal distribution.
. Disadvantages of the method are: (i) it requires the existence of a parent
population from which it is possible to draw a random sample of individuals;
(ii) the sample must be large, since large values of v, (when r is small) are re-
quired to permit acceptlable smoothing of the sequence vy, vs, - - -
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8. Estimating the diversity of a plant community

Of all the collections or communities whose diversity a biologist may wish
to measure, probably the hardest to deal with is a tract of herbaceous vegeta-
tion. Unless the vegetation is extremely sparse (as in a desert) or the area under
study exceptionally small, it will usually be impossible to examine more than
a small proportion of the total area. The area may be sampled with randomly
placed quadrats and there is no difficulty in determining the diversity H of each
separate quadrat. However, because of the patchiness of vegetation—the tend-
ency for large single species clumps to occur—any one quadrat will contain
only a small portion of the vegetation pattern and only a fraction of the total
number of species. Therefore the contents of a single quadrat cannot be “rep-
resentative’” of the vegetation of the whole area and consequently E(H), the
expected within-quadrat diversity per individual will usually be considerably
less than H}op the average diversity per individual in the whole population. To
paraphrase Lloyd and Ghelardi [18], H is not a sample of something bigger;
it is 2 measurement of something that exists on a local scale. How then can Hy,,
be estimated? A possible method is as follows.

Suppose we take the quadrats in random order. Let ®; be the total diversity
of the first. Add the data from the second quadrat to those of the first and call
the total diversity of this combined pair of quadrats ®,. For example, if the
first quadrat contained species 1, 2, 3 and 4 in amounts Nu, N1, Ny and Ny,
where Y ; Ni; = N1. and the second quadrat contained species 3, 4 and 5 in
amounts Nes, No and Nas (3°; Noj = N2.), then the combined pair of quadrats
would have total diversity

®: = log (N1. 4+ N2.)! )
? Nu!Np!(Nis + Nas) (N + Nog) INos!

(The first digit in each subscript denotes the quadrat and the second the species.)
Continue in this way and denote by ®; the total diversity of the pooled data
from the first k¥ quadrats.

Analogously, we may put

8.1)

By,
%
2 N;.
i=1

where qii = (ZF-1 N;:)/(Z¥-1 N;.). That is, 3¢ and 3¢; are the diversities per
individual of the pooled contents of the first £ quadrats as given by Brillouin’s
and Shannon’s equations respectively.

If sampling were continued without replacement until the whole population
was exhausted the final ®; would, of course, be identical with By, the popula-
tion value of the total diversity; correspondingly, 3¢; would be identical with
H,.p. Suppose, however, it is feasible to sample only a small fraction of the
population. If we examine the curve of 3¢ against & we should expect to find
that 3C; increases (not necessarily monotonically) at first; and that the curve

(8.2) 3, = » 3= — 2 qui log gus,
%
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then levels off (if the sample is large enough) becoming approximately horizontal
for all &k greater than some ¢. If this happens we may reasonably regard the
first ¢ quadrats taken together as providing a ‘‘representation’’ of the parent
population. Then 3C;q, 3Ciy2, - -+, 3eyr, - - - are all estimates of Hpop and we could
take the final value as our chosen estimate. There is no way of determining its
standard error however, since the 3’s are not independent.

To obtain an estimate whose standard error can be estimated we may proceed
as follows. Consider ®:, the total diversity of the pooled contents of the first &
quadrats. As Baer [11] has shown (and see section 2), the removal of a single
randomly chosen individual from any one of the quadrats causes an expected
reduction in ®; of 3¢;. This is exact and is true for any k. For sufficiently large %,
the discarding of a whole quadrat, say the kth (which contains Ny. individuals)
will cause an expected reduction in total diversity of

(8.3) E(®; — ®r_1) = N3.3C;.

The approximation will be closest when the contents of the discarded quadrat
constitute a random sample from the contents of all k quadrats; it is probably
still fairly good even when this condition is not met, provided k is large enough
and the individual quadrats (and hence the values of Ny.) are small enough. If,
therefore, we put (®; — ®x_1)/Nz. = hi, say, for all k > ¢, we obtain a sequence
heya, heye, - - - of independent random variables such that E(he.,) = 3Ci4s. So
if it is justifiable to assume that ¢ or more random quadrats provide an adequate
representation of the population, we may take % as an estimate of Hps,, and
also put Var (H}.,) = Var (7).

Ezample. It was desired to estimate the diversity of the ground vegetation
in a 3000 sq m area of mixed woodland, using the data from a sample of 100
randomly thrown meter square quadrats. The number of species in all the
quadrats taken together was 62, and the greatest number found in any single
quadrat was 14. The contents of a quadrat were measured by cutting off all
the plants in it at ground level, sorting them into species, and weighing the
amount of plant material (fresh) of each species to the nearest tenth of a gram.
These weights were then treated as the N; values for calculating H for the
quadrat. The mean of the 100 observed values of H was H = 1.227 (using
natural logarithms). The successive values of 3¢, were calculated as already
described, and the way in which 3¢, varied with & is shown in figure 1. The final
value, based on the total sample, was 3Ci00 = 3.214. Taking ¢ = 70 (a subjective
choice), 30 values of h, namely hqu, hz, - - -, hao, were obtained. It was found
that Hpop = h = 3.056 and Var (h) = 0.026, whence (assuming % is normally
distributed) the 95 per cent confidence limits for H},, were 2.74 < Hpop < 3.37.

As had been expected, H},, greatly exceeded H. The ratio E(H)/Hpop (of
which H/H}.p provides an estimate) can, indeed, be thought of as a measure
of pattern diversity or of its converse, segregation. Yet another interpretation
consists in regarding this ratio as measuring the “graininess’” of the vegetation
pattern; a coarse grained pattern is one in which the diversity within any single
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quadrat is low; the finer the grain, the greater the proportion of the pattern
that any one quadrat can contain, and the more closely will £(H) approach H .

The magnitude of the ratio H/H}op will, of course, vary with the size of
quadrat used since graininess is a relative property. A pattern can only be
defined as fine grained (or coarse grained) relative to some arbitrarily chosen
scale: a pattern that would be considered fine grained on a small scale (or when
sampled with large quadrats) is coarse on a large scale (or when the quadrats
are small).

9. Conclusion

Simpson [19] has written: “The aim of biology is to understand the structure,
functioning, - -« , and history of organisms and populations of organisms.” One
of these aims, the understanding of population structure, seems most likely to
be gained by comparing the diversities of as many populations as possible, of
various taxonomic groups, in various geographical regions and habitats, and at
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various times. This requires that the data gathered by many different people
be comparable. So it is important that ecologists should agree on, and consist-
ently use, a measure of diversity that is applicable to any population whatever.
I believe that information content meets this requirement. It can either be
determined or (for large populations) estimated for any collection that can be
brought into the laboratory for sorting and counting, or for any community
that can be delimited on the ground.
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