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1. Introduction

Existing computers are too slow, have too little storage and not enough proc-
essing capacity to cope with certain tasks. The following are typical of such
tasks: inspection of all branches of the "tree" of all possible move sequences of
a game, such as chess, optimization of (nonlinear) functions of many variables,
certain decision and cognition problems.

It is the contention of this paper that speed, memory, and processing capacity
of any possible future computer equipment are limited by certain physical
barriers: the light barrier, the quantum barrier, and the thermodynamical barrier.
These limitations imply, for example, that no computer, however constructed,
will ever be able to examine the entire tree of possible move sequences of the
game of chess.
Some mathematicians (for example, the intuitionist school) object to certain

kinds of "existence proofs" and favor "constructive proofs." Finite problems-
including problems such as examination of the chess tree-are considered as
trivial in this context. In view of the physical barriers to computation, however,
many finite problems are transcomputational.

In order to have a computer play a perfect or inearly perfect game (chess, go,
and so forth) it will be necessary either to analyze the game completely (as, for
example, "Nim" has been analyzed cf. Wang [23]) or to analyze the game in an
approximate way and combine this with a limited amount of tree searching.
Such an approach has been pioneered, for example, by Samuel [18] for checkers,
Gelernter [8] for theorem proving, Slagle [21] for evaluating integrals, Raphael
[14] for question answering. A theoretical understanding of such heuristic pro-
gramming, however, is still very much wanting.
Some further aspects of the physical limits of computation have been discussed

in Bremermann [4]. A preliminary announcement of the results of this paper
was made in Bremermann [3].

2. The light barrier

Signals travel no faster than the speed of light. In one nanosecond (10-9 sec)
light travels a distance of about one foot. A random access memory that is
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to deliver information to a given point at nanosecond speeds must thus have a
diameter no larger than about a foot. For a combined consequence of the light
barrier and the (following) quantum barrier see Bledsoe [1] and Bremermann [3].

3. The quantum barrier

In the following we assume Shannon's definition [19] for the capacity of a
continuous channel. The capacity of a data processing system we define as the
sum of the capacities of all its input, output and internal channels (channels
between processing, control, memory units, and so forth).

PROPOSITION. The capacity of any closed information transmission or process-
ing system does not exceed mc2/h bits per second, where m is the mass of the system,
c the light velocity, h Planck's constant.
Note that the system is assumed to be closed. Its mass coInsists of the mass of

the particles making up its structure plus the mass equivalent of energy em-
ployed in signals, and so forth. No matter how the total mass is distributed, the
mass equivalent of the signals is bounded by m and the signaling energy by mc2.

According to quantum mechanics, electromagnetic oscillations are quantized
and so are all other signals. With every moving particle a wave is associated
which is quantized such that the energy E of one quantum is E = hv, where v
is the frequency of the wave. In order that a signal with which a frequency v is
associated can be observed, at least one quantum of the signal is required. This
condition limits the frequency band that can be used for signaling to Vmax =
mc2/h since above vmax the energy of one quantum would exceed Mc2.
The capacity C of a band limited channel is given by a formula due to Shannon

[19]

(3.1) C = Vmaxlog2(1 + )

where S and N are the signal and noise power.
To compute the noise energy we assume that our signal is represented by a

time varying complex valued function f (t). (If the physical signal is a vector,
spinor or other nonscalar quantity, then we choose a suitable representation and
consider each scalar component as a separate channel.) Suppose f (t) is observed
for a time interval AT. In this interval we represent f (t) by means of a Fourier
series

(3.2) f (t) = , a einet
n=-co

where w = 27r/AT and
1 JT(3.3) an = AT

f(t)e-in. 9 dt.

If the spectrum of f(t) is band limited, then an = 0 for Inwl > cma: which is
equivalent to inj > vm.. AT. According to the rules of quantum mechanics,
phase cannot be measured, only amplitudes. Moreover, energy measurement is
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governed by the uncertainty principle; AE _ h/AT. The partial waves are
independent. Measurement of f (t) amounts to a measurement of the energies of
the partial waves, each of which contributes an uncertainty of AE. We interpret
this as quantum noise with energy AE which perturbs the signal. There are
Vmax AT partial waves of different frequency (not counting phase). Thus the
total noise energy is AEBmaz AT = mc2. It is equal to the signal energy. Hence
the signal to noise power ratio is one. Hence by Shannon's formula the capacity
is C = vma, log2 2 = Vma,x = mc2/h. Thus the capacity is proportional to the
energy allotted to a channel. Thus, if the total energy is split up between several
channels, the total capacity is the same as in the case when the total energy is
allotted to a single channel. Hence our proposition follows. It is dependent, of
course, upon the validity of quantum mechanics, which, as physical theories in
general, is subject to modification if empirical evidence contradicting the theory
should be found.

4. Interpretations of the quantum barrier

The quantity h/c2 is the mass equivalent of a quantum of an oscillation of one
cycle per second. Our proposition can be stated as follows: information trans-
mission is limited to frequencies such that the mass equivalent of a quantum of
the employed frequency does not exceed the mass of the entire transmission or
computing system. Put in a different way: each bit transmitted in one second
requires a mass of at least the mass equivalent of a quantum of oscillation of one
cycle per second.
The mass of a hydrogen atom is about 1.67 X 10-24 gm, while c2/h = 1.35 X

1047 gm-' sec-'. Thus our proposition implies that per mass of a hydrogen atom
no more than 2.3 X 1023 bits can be transmitted per second. It appears that our
limit is quite a generous one.
On the other hand, the number of protons in the universe is estimated as about

1073. Thus, if the whole universe were dedicated to data processing, and not
counting other factors that tend to restrict data processing, no more than
2.3 X 1096 bits per second, or 7 X 10103 bits per year could be processed. Note
that this figure falls short of the number of 10120 possible move sequences of the
game of chess (compare Bremermann [4]).
Another way of looking at the quantum barrier is the following. The size of

the nucleus of the hydrogen atom is about 10-12 cm. Light travels one centimeter
in 3 X 10-11 sec, thus it takes 3 X 10-23 sec to travel the distance of the size of a
proton. Thus the quantum barrier is equivalent to processing about 7 bits per
proton mass in the time it takes light to traverse the diameter of a proton.
The quantum barrier was announced in the form of a conj ecture in Bremermann

[3]. W. W. Bledsoe [1] derived from it an absolute bound for the speed of serial
machines. The notion of quantum noise apparently was coined by Gabor [6], [7].
Quantum effects in communication channels have also been studied by Bolgiano
and Gottschalk [2], Lasher [13], and Gordon [9], [101. The latter gives a formula
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for quantum noise in a transmission line that operates at a fundamental fre-
quency v. For small noise power (from other sources) the quantum effect amounts
to an equivalent noise power of hvB, where B is the number of modes (harmonics)
that are excited. Kompfner [12] has pointed out that Gordon's results imply
that quantum noise constitutes a problem in optical communications, for ex-
ample, if a laser beam is used as carrier. Gordon's results imply that for a
frequency of 6 X 1014 cycles per second (that is, one half micron wavelength, in
the visible spectrum) quantum noise is about 100 times as large as thermal
noise at room temperature (-300° K). Thermal noise, in general, will be dis-
cussed in the following sections. For a further bibliography on quantum noise
effects, see Gordon [10]. Note that quantum effects discussed in the literature
are mostly concerned with special cases. In contrast, our quantum barrier is an
upper bound on data transmission that for most any specific case could be
substantially improved, which, however, has the advantage of being universal.

5. The thermodynamical barrier

The quantum barrier is comparable to the first law of thermodynamics; it
establishes a mass energy equivalent for the bit rate of a signal. It does not take
into account entropy changes.
The second law of thermodyniamics asserts that the state of an isolated system

changes in such a way that the entropy increases. According to Boltzmanii-
Planck the entropy change of a system is equal to k In (P1/P2), where P1 and P2
are the probabilities of the initial and final states.

Brillouin [5] distinguishes between free and bound information. Information
theory is an abstract theory; the symbols and their probabilities are abstract
quantities. When they are represented by physical states or events the infor-
mation becomes bound. We are concerned with bound information.

If a quantity I (bits) of information is encoded in terms of physical markers,
the probability of the state of the system is decreased by a factor of 2-' and thus
the entropy is decreased by k ln 2' = Ik ln 2. If the system is isolated, there must
be a compensating increase in entropy to offset the decrease.

If the total system is composed of an information system in contact with a
thermostat, then if there are no other entropy changes (for example, chemical),
then the thermostat absorbs AQ = TAS uniits of heat, that is kT ln 2 units per
bit of informatioin (compare Brillouin [5], J. ltotlhstein [15], [16], [17] and
Setlow-Pollard [20]). This calculation applies only to processes where quantum
effects are niegligible. Brillouin ([5], p. 185) has shown that in the special case
where the physical marker is a harmonic cscillator of frequency v the amount
of heat generated is kT In 2 in the thermal range, that is, for hv < kT but hv
when hv > kT. Thus when the rate of information processing is rapid, we may
expect quantum effects that increase the amount of heat generated above kT ln 2
per bit. Here, obviously, are open problems. There also remains the problem
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whether and under what conditions the receiver of bound information can utilize
the negentropy conveyed.

In Bremermann [4] it was shown that microorganisms (E. Coli) produce
bound information as they grow and do so about as efficiently as the kT In 2 per
bit rule will permit.

6. Efficiency of the brain

According to von Neumann [22] the human brain dissipates about 10 watts of
heat. If we assume that there are 1010 neurons and that each neuron processes
100 bits per second (which would seem a generous estimate) at 310°K, we have
1012 sec-' kT In 2 - 3 X 10-2 ergs/sec = 3 X 10-9watts. Thus if for each bit
processed kT ln 2 ergs would actually have to be dissipated, the brain would still
be inefficient by a factor of about 3.3 X 109 t 3 X 109. Thus data processing
in the brain is thermally inefficient unless processing occurs also at the molecular
level in neurons and glial cells as has been suggested by Hyd6n [11].
NOTE ADDED IN PROOF. The author has become only recently aware of the

work of D. S. Lebedev and L. B. Levitin which is concerned with closely related
questions [24], [25], [26], [27].
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