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1. Introduction

The new direction in scientific investigations, associated with modern tend-
encies in engineering and called "reliability theory," has imposed enormous
demands on the theory of probability and mathematical statistics. Naturally,
in the present short paper we are forced to restrict our selection to just a small
number of problems.
Without the ideas and concepts of the theory of probability, even the funda-

mental concepts of reliability theory cannot be clearly defined. Therefore, the
theory of probability is not only a computational apparatus, but also a method-
ological basis for reliability theory. An inadequate perception of the nature of
those phenomena which must be encountered in problems of reliability theory
often leads engineers to certain misunderstandings. An attempt for greater
clarity naturally obliges us to turn to the elaboration of general initial concepts.
We understand the reliability of an object to be the capacity to retain the

properties determining its quality unscathed. All possible states of the object
which are equivalent from the viewpoint of its reliability, will be combined in
the class x. The set of all possible classes x generates a phase space of the states
of the object E.
For example, if the object consists of n units each of which may be either in

the in-service or out-of-service state, the phase space E is generated by points
(El, E2, * * , fn) whose coordinates may take only two values: fi = 0 if the i-th
unit is in service, and Ei = 1 if the i-th block is not in service. Under the assump-
tion that the out-of-service blocks have been repaired and work serviceably
during random time intervals with an exponential distribution, the state of the
object is described entirely by the fact that the object is at some point
(li, E2, . . , E.f) of the phase space E at the time t. If the out-of-service units
are subject to repair which lasts a time distributed according to F(t) . 1 - e-tj
we must also indicate the time ri during which the failing unit with number i is
repaired, in order to describe the state of the system. Here we assume that
each unit goes to repair immediately after going out of service. Therefore, in
this case we should examine a more complex phase space E consisting of points
of the form (Ei, r, * * *, en, Tn) If ei = 0, then ri is also assumed to be zero.
If el = 1, then 0 < ri < oo.

Various changes associated with wear (in mechanical systems), or with agiing
259
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(in radio electronic units), occur in the component parts of an apparatus as
time passes. Hence, if the state of the object were xi at time ti, the state x2 of
the object at time t2 > t1 might not coincide with xi. If xt denotes the state of
the object at time t, the sequence of states xt for t > 0 may be considered a
random process. The establishment of the stochastic structure of the process xt,
describing the evolution of the unit under study, is one of the most important
problems. In substance, this is one of the fundamental problems of the statistics
of stochastic processes.

After the phase space E has been determined and the stochastic process xt
has been given, the problem of selecting the numerical characteristics of re-
liability arises. Such a selection may not be unique since it depends on the
purpose for which the unit has been manufactured. Sometimes one single num-
ber will yield a thoroughly inadequate representation of the reliability, anld
several numerical indices of reliability are necessary. Any numerical character-
istic of reliability may be considered the mathematical expectation of some
functional cI defined on the trajectory of the process xt:
(1) a = M4I[Xt].
Such an approach actually means that a certain weight is attributed to each
trajectory in the trajectory space of xt.
Thus the mathematical model describing the behavior of an object consists

of three elements: the phase space E, the stochastic process Xt e E, and the
system of functionals bi[xt].
The concept of failure is defined as follows. In the space of states E some

subset Q C E is specified. Loss of operational capability of the item is repre-
sented by a trajectory of xt falling into this subset. The form of the set Q is
determined by starting from specific conditions. When the trajectory xt falls
into the set Q, a failure is said to occur. Failures are defined as sudden
(catastrophic), gradual (wearout), and intermittent. If the change in trajectory
should occur as a jump, with the trajectory dropping into the domain Q, the
failure is called sudden. If the trajectory should change gradually, as a result
of changes in the values of the parameters (gradual wear of the surfaces of
rubbing parts, aging of radio electronic units), the failure will be gradual. If
the trajectory, having fallen into the set Q, should be capable of leaving this
set (without relying on the repair unit), the failures will be called intermittent.

In such an approach all known numerical indices of reliability are easily ob-
tained. Define the functional 4i as follows: cIi[xt] = 1 when the trajectory xB
is not in the set Q for any s < t, and 4'1[xt] = 0 otherwise. Evidently,
(2) al = M41[xt] = R(t)
where R(t) is the probability of faultless operation of the unit for the length of
time t. Usually R(t) is called the reliability of the unit.
Now, let the functional 42 be the length of the time interval up to the time

of first entry into the set Q. The constant a2 is a useful numerical characteristic
of reliability, the mean time of faultless operation.
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The simultaneous examination of a large set of mathematical models of relia-
bility theory {fa), xf,4}, 5 e A is characteristic of a number of problems of
reliability theory. The choice of the optimum model in the sense of the numeri-
cal characteristic I^ is a fundamental problem here. Included in such a scheme
are problems of synthesis of reliable systems, particularly, the selection of the
optimum number of standby blocks. In this latter case, a mathematical model
corresponds to each set of numbers of standby blocks.
The proposed system of exposition is customary for modern probability theory.

We consider it natural and necessary in reliability theory.
Important questions are associated with the class of random processes which

is of particular interest in reliability theory. First of all, it is clear from the
above that a sufficiently complete approach requires the analysis of general
stochastic processes whose theory is expounded, for example, in Doob's book.
At present, in many monographs and journal articles devoted to reliability

theory, the customary approach is restricted to the examination of the case in
which all the distributions involved are assumed to be exponential. This is
unnecessarily restrictive and not in keeping with the requirements of the field.
Actually, the restriction to this simplest class of homogeneous Markov processes
radically oversimplifies the true situation in the overwhelming majority of
problems.

This fact was noted long ago in connection with queueing theory problems.
Imbedded Markov chains (in the terminology of D. Kendall) were examined
by A. Ya. Khinchin [2]. Later W. Smith [3] introduced semi-Markov processes.
Stochastic Markov processes which are specific for reliability and queueing
theory problems, were studied by D. Cox [4], B. A. Sevastyanov [5], and
Yu. K. Belyaev [6].
Many years ago A. N. Kolmogorov proposed the examination of a class of

so-called Markov processes with discrete occurrence of events. The behavior of
the trajectory of these processes in the phase space e is described as follows.
In some parts the trajectory is defined in a deterministic manner (as the solu-
tion of differential equations, say). Then at random times both the location in
phase space and the parameters of the governing motion change by a jump.
The motion proceeds deterministically up to a new occurrence of an event,
and so on.

2. Approximate formulas for a general stochastic model

In this sketch, we consider a general mathematical model of a system with
standbys. The system consists of m different kinds of blocks bi, * - *, bi. There
are ki blocks of the i-th kind, of which 4i operate, 4 are out of service, and
4s' = ki- (i + 4f) are standbys. The system has n repair units R1, R2, * * * , Rn.
The repair unit Ri may repair blocks of bl,j,, ... , bji types. Moreover, a definite
priority system for the orders of repairs is given when out-of-service blocks
accumulate and there are queues for the repair units. Blocks of the i-th kind



262 FIFTH BERKELEY SYMPOSIUM: BELYAEV, GNEDENKO, AND SOLOVIEV

i = 1, * * *, m may get out of order after random time intervals which are
distributed according to the law Fi(t), wheni the block of type Bi operates, and
according to the law Pi(t) when it is in standby. The time to repair the j-th
block by the i-th repair unlit is also considered stochastic with the distribution
law Fi,j(t).

In such an approach the phase space E consists of the points

i VI, Q, I,
tb ..
I(3) Yt,Zl, **zidi... ) sZ xJo *.. *, ffz,4,Zt>, J* ;>}

i = 1, * **, m; j, j', j" = 1, 2, E=,St=ki. For blocks of the i-th type, ti is the
number in service, 4 is the number out of service, fi' is the number in standby;
Zi,j, Z ",1,Zt,' are quantities numerically equal to the time during which the blocks
are, respectively, in service and operating, in service and in standby, out of
service and being repaired. If it is assumed that the in-service and in-repair
times are mutually independent random variables, then the process of the
change of state in the phase space 8 will be Markovian with discrete occurrences
of events.

Actually, a change of state during the time At may consist only of transla-
tions along half-lines. In this case all the positive coordinates zij, Zt,j, Z"tj are
increased by At during the time (t, t + At). Also, jumps may lead into states
which differ from the states preceding the jump, in that one of the coordinates
zij, Zt,j, z" either vanishes (which corresponds, say, to failure or repair), or
starts to increase from zero. Thus, the appropriate numbers ti, ti, te change by
one.
One may derive integro-differential equations for the stochastic behavior of

this system. However, a solution in analytic form has apparently been ob-
tained, so far, in only two cases. In the first case, there is an unlimited number
of repair units; in the second, only a single repair unit.
The solution of the corresponding systems of integro-differential equations

has successfully been found in simple explicit form in a number of works devoted
to the study of stationary distributions. The most general model was considered
by I. N. Kovalenko [7].
Let us assume that the unit consists of S groups of elements; the j-th group

containing N1 elements. The elements may fail according to the following
stochastic law. Let the event (k1, - * *, k8, t) be that kj elements of the j-th
group are out of order at time t. Then, the hazard rate of an element of the
j-th group equals Xj(k1, * * *, kQ). The probability of failure of two or more
elements in the time At is o(At). It is assumed that the number of repair units
is N1 + * * - + N8, that is, each element which has gone out of order, immediately
starts to recover. The recovery lasts a random time with the distribution law
,j(x), with the mean Tj < a>. Let p(ki, * * *, kI, t) be the probability of being

in the (ki, * , kIc, t) state at the time t. Let Pk,,-,k. denote the limit
limp(kT ,* E 1, I oe t)t fohe t .
THEOREM 1. In order that for all ki,* , k. there exist probabilities Pk,, *-,k.,,
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defined by the set of parameters Xj(k1, * * *, k,) and Tr, and independent of the form
of ,j(x), it is necessary and sufficient that the following condition hold: for every set
(ki, * * *, k,) and for every pair of sets (i1, * * *, iki+,+. ..+k), (il, . . ,ik.+ +k.)
containing exactly k, elements equal to v, 1 < v < s, the equality

ki+---+ka /Lt-1 Z-1 ki+-* +k. /-1 t-1
(4) II ...t E*X im = I Xj't ( E 1 * s#n.)

?=1 =l m=l 1=1 m=l mn=l

is satisfied with 5ij = 1 for i = j, 8i,j = 0, i - j. In this case the Pk....k are de-
termined by the formula.

dTktl tk. ki+ ...+k. ti- t-1
(5) Pki*.-k =kT T**x *1mlm* pO,O...o,k1! T-.! 1e=I1 =

where (il, * ik,+ ... +k is any setfor which exactly kv elements equal v, 1 < v < s.
Somewhat earlier, T. P. Maryanovich [8], [9] considered specific problems

with standbys. He obtained stationary probabilities whose form was determined
entirely by the mean repair times rT.

In order to solve a number of reliability problems with one repair unit, a
special class of processes with discrete occurrence of events, the linear Markov
processes [6], may turn out to be useful. The stochastic process xi is called a
linear Markov process if the phase space g consists of groups of points &0 and
sets of half-lines {4, j, z), z > 0, (f, j) E &I. If xt = i C 8& at time t, then dur-
ing the time (t, t + At) the trajectory will go over into the state j E 8e with
probability iA.jAt + 0(At), or into the beginning of the half-line (4, j, z) with
probability Xi,;(4, j) At + o(At) if j E 8e. If xt = (4, j, z), j ¢ Ao, then jumps of
two kinds may occur mutually independently.
A jump of the first kind will occur when the process skips from the state

(4, i, z) E &I into the state (4, j, z + At) during the time with (t, t + At) with
probability Xi,jAt + o(At). A jump of the second kind occurs when the process
skips from the state (C, i, z) either into the state j E &o or into the beginning of
the half-line (f', j, 0) with probability

(6) F1(z + At) - FI(x)
1 - Ft(z)

Some general properties and examples of the utilization of this class of processes
are presented in [6]. Let us note that processes of this class are called semi-
Markov processes.
The study of a class of Markov processes with discrete intervention by an

event is important both for the development of general reliability theory and
queueing theory.
A number of problems in reliability theory, in both formulation and in

methods of solution, are similar to those occurring in queueing theory. Some-
times this difference is purely verbal, and the comparison of problems of the
two areas may be accomplished with a small dictionary.
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RELIABILITY THEORY QUEUEING TIIEORY

Failure Call, Demanid

Time to repair Duration of service, conversationi

Repair uniit Servicinig apparatus

The occurrences of events of a definite kind, unit failures in reliability tlheory,
and service demands in queueing theory, play a central part in both queueing
theory and reliability theory. The question is, what are the characteristics of
the distribution in time of demands for service? Many investigations have been
devoted to this question as far back as the time of the classical work of K. Erlang.
In particular, the appropriate results of A. Ya. Khinchin are well known from
his book [2]. Within recent years we have obtained new results in this area and
we present here a formulation of some of them.
A system of random variables 71(A), given for intervals A, is called a ranldom

flow if, 77(A) = 0, 1, 2, - - - .

(7) 7(AilUA2) = 7(Al) + n(A2), for AlnA2 =

Let -qn(A) = 117n,r(A), where ?in,r(A) are mutually independent random flows.
Let us say that the sequence of flows n?,,(A) converges to the flow 7(A) as n -* 0 if
for any set of intervals Al, -- , Ak the distribution functions of the vectors
{ln(A1) ... , l.(Ak)) converge to the distribution function of the vector { --(,* ,
'q(Ak)} at points of continuity. Let A(A) be a measure on the line. We call the
flow q(A) Poisson with fundamental measure A(A) if the values of -(A) are mutu-
ally independent for nonintersectiing intervals and

(8) P{'q(A) = k4 - [A(A)]k e-A(A)

Let us introduce the following notations:

P., (k; t, s) = P{7n,,(S, t) = k1, s < t, k = 0, 1, *
kn

(9) An(t, s) = E pn,,(l; t, s)
r=1

kn
Bn(t, s) = [1- pn,r(O; t, s) -pn,r(l; t, s)].

The flows rqn,r(A) are called infinitesimal if for any fixed interval A = (0, t),
(10) lim max [1 - pn,r(O; t, s)] = 0.

n-- I <r <kn

In other words, the flows rjn,r(A) are inifinitesimal if for any e > 0 and an arbi-
trary but fixed interval A = (0, t) it is possible to give an n such that for all
r, P{q7n,r(A) > 0) > e.

B. I. Grigelionis [10] proved the following assertion.
THEOREM 2. For the convergence of sums of mutually independent infinitesimal
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random flows 1n,r(A) to a Poisson flow with fundamental measure A(A), it is
necessary and sufficient that for any fixed s and t, (s < t), there be satisfied the
relationships

(a) lim An(t, s) = A[(t, s)],
n-a

(b) lim B.(t, 0) = 0.
n-

The proof of the necessity of the conditions of the theorem is a simple corol-
lary of a theorem of B. V. Gnedenko and Marcinkiewicz (see [17], p. 133). The
proof of the sufficiency is also based on this theorem, but here one must estab-
lish the asymptotic mutual independence of the values of the total flow r,n(A)
on nonintersecting time intervals.

Several earlier results are contained in this theorem, including the theorems
of A. Ya. Khinchin [2] and G. A. Ososkov [12].

It is natural to pose the question of the rapidity of convergence of the sum
to the limiting process. B. I. Grigelionis [10] also obtained very general results
in this area. In a similar vein, for renewal processes which are constructed as
sequences of sums of identically distributed mutually independent random
variables, an expansion has been found in powers of n-' on the basis of Charlier
series of type B [14].

If the beginning time of failure is considered as time of occurrence, in a ran-
dom manner, of a change in the value of the parameter xt, we then arrive at a
classical problem of studying the number of level intersections by a random
process. Yu. K. Belyaev has obtained new results in this area. It turned out
that, under very broad assumptions, the k-th factorial moment of the number
,(A, at) of up-crossings of the continuously differentiable function at by a non-
stationary continuously differentiable random process x, is given by the formula

(11) J(k) = Mn (A, a,) [i1(A, at) - 1] * [X(A, a,) - k + 1]

- Jr I{j1 (t - dt)+Ixti = ati, i = 1 , k}pti...t. (at,,... at*) dt, * * * dtk,

where r = {(tl, * * * tk):ti F' ti, ti G A; i, j = 1, * * *, k}, ±t = (dx,/dt), and
ptl-'.. t, (at,, * , atk) is the value of the probability density of xt,, xt,xe, at the
point (at,, . .. , atk)-

If xt is a Gaussian k-times differentiable stochastic process, then the k-th
factorial moment J(k) is finite. The investigation of the asymptotic behavior of
J(k) when at a T oo and the length of the interval JAI T oo through substitu-
tion of the accompanying Gaussian processes xt obtained from xt by curtailment
of the spectrum, has shown that under very general assumptions, the process
generated by the intersections of a high level by a stationary Gaussian process,
converges to a Poisson process.
A wide range of problems is associated with standbys [15], [16]. By "standby"

we understand any redundancy in the system, such that the system functions
normally even in the case of failure of some of its elements. In a narrower sense,
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standby is understood to be used when several identical units are associated
with certain elements, or parts, of a system in such a way that basic elements
are replaced in sequence in case of failure.
Depending on the states of the standbys prior to insertion in operation,

three kinds of standbys are distinguished: hot, cold, and warm. In the case of
a hot standby, all the elements, fundamental and reserve, are in the same
regime, and consequently, may fail with the same probability. It is also assumed
that the failure of some of the elements does not change the failure probabilities
of the other elements. For a cold standby it is assumed that an element in
reserve does not age and cannot fail. The term warm standby refers to the
intermediate case when the elements in reserve may fail, but with a lower
probability.
The probability of faultless operation of a standby group is expressed by

explicit formulas in these cases; however, many of them are not convenient in
practice. Hence, the problem arises of finding approximate formulas and esti-
mates for the different reliability characteristics of the standby group. Thus, in
the case of a hot standby the mean lifetime T. of a standby group of n elements
is expressed by the formula

(12) Tn = 'o [1 - qn(t)] dt

where q(t) is the probability of failure of one element.
If it is assumed that tangents to the graphs of q(t) and ln (1/1 - q(t)), at

t = T. lie below these graphs, then Tn satisfies the inequality

(13) 0.56 < eF+ <1_ (T.) < +l

n+1 -n+1=n
(C is the Euler constant). It follows that the mean time Tn may be estimated
with sufficient accuracy by means of the formula q(Tn) = n/(n + 1).
For a cold standby the probability of failure of a standby group of n elements

Qn(t) is expressed by using several convolutions. If it is assumed that the ele-
ments are aging, that is, if X(t) = q'(t)/(l - q(t)) increases monotonely, then
one obtains the simple estimate

(14) Qn(t) < 1 - [1 + A(t) + ljA2(t) + * + (n 1)! An (t)]eA(t)

with A(t) = ln (1/1 - q(t)). In particular, this estimate is convenient in that
the right side depends only on the value of the function at the time t.

If the lifetime of the elements in the standby group is subject to an expo-
nential law, the flow of failures of the elements in the group is described in
almost all cases by a pure death process:

(15) Pc(t) = Xk.-.Pk1-(t) - XkPk(t), k = 0, 1, 2, ...

where Pk(t) is the probability that k failures will occur at time t.
A very simple estimate
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(16) 0
* Xk-i tk [1 - X0 + *. + Xk] < P (t) <.

...

Xk-1 tk

may be obtained for the probability Pk(t); from which follows that the approxi-
mate formula

(17) Pk(t) o X1Xi . Xk-1t
kc!

whose relative error does not exceed (X0 + * + Xk/k + 1)t is valid. This
formula is convenient to estimate the reliability of a standby group when the
elements are highly reliable.

In a redundant system we may have standbys for either the individual ele-
ments, or for blocks or for the system as a whole. Reliability of the system
always drops when the unit size of standby is enlarged. Let us note first that
it is sufficient to prove this for the case in which there are two elements and
one standby element for each, and in which the reliability of the standby ele-
ments is generally different from the reliability of the corresponding funda-
mental elements.

Let us compute the reliability of such a group of four elements for two cases:
group standbys and individual standbys. For brevity, we shall limit ourselves
to the case of hot standbys.

Let Ti, Ti, T2, T2 be the random lifetimes of our elements, and let T, and T2
be the random lifetimes of the whole group for the individual and group stand-
bys, respectively. Then
(18) T, = min [max (Ti, i-D, max (T2, T2)],
and
(19) T2 = max [min (T1, T2), min (r,l T2)].
However,

T2 _ max (4, Ti),
(20)

T2 _ max (T2, T2),
and therefore,

(21) T2 _ min [max (ri, Tr), max (T2, T2)].

Hence, the individual standby is always more reliable.
If it is assumed that the lifetime and the repair time of all the elements in

a system are subject to an exponential law, and the elements are independent,
the state of such a system is always described by a homogeneous Markov
process with a finite number of states, where the number of states in the general
case is 2n. Hence, even for a system with a small number of elements, such an
approach to the description of the system operation is useless because of in-
superable computational difficulties. However, in a number of important cases
the transition probabilities are independent of the particular elements which
failed at a given time, but depend only on the number of failing elements.
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Under these conditions the behavior of the system is described by a birth and
death process. The probabilities of states of this process are found from the
system of equations

(22) Pk = Xk-lPk-1 - (Xk + Lk)pk + Ak+lPk+l
where pk(t) is the probability that k elements are out of service at time t.
The following kind of problem often occurs in reliability theory: to find the

probability that our process will never exceed the level m, (m < n), during the
length of time t. Let lIm(t) denote this probability. The following assertions
may be proved by algebraic methods: let

(23) Tm = and Ok = O1
k=O XkOk Al1 2 *lk

then Tm is the mean time to the first excursion to the level (m + 1), under the
condition that the system was in the state at the initial instant (the latter is
inessential, however). Then in order for lim llm(Tmx) = e-x, it is necessary and
sufficient that

(24) lim am = lim E =.=o (J - T8-)O8 0=
k=O XkOk

Here both the level m and the parameters Xk and /k may change arbitrarily in
this passage to the limit, assuming only that am O-0. It can be shown that

(25) sup IHI-(t) - e t/T-1 < C-am.

A rough estimate yields the value C = 10 for C. Thus, the approximate equality
Im(t) e-t/Tt is valid with an error of the order of am.

Corrections which take into account the principal part of the error may be
introduced into this approximate formula. Then we arrive at the new approxi-
mate formula

(26) ttm(t) _- expF (t/Tm)- am(26) Hm(t) L~~ ~~I am]
whose error is of the order of a2.

In classical mathematical statistics the original statistical data have the form
of samples (xI, * * *, XN), all of whose components are mutually independent,
identically distributed random variables. In reliability theory the failure times ti
play the part of statistical data. However, in the majority of cases it turns out
to be advantageous to cease testing long in advance of failure of all the elements.
It is sometimes necessary to lengthen or alternatively, to shorten the test pro-
gram. Hence, the observed random times ti will not form mutually independent
values. Even in the case of single plans, various cases are possible. To distinguish
them we shall use the notation in which the first letter indicates the number of
elements undergoing test. The second letter is b if the failing elements are not
replaced, and B otherwise. The third component of the notation describes the
cutting-off of the test. It is T if the tests are cut off at time T and r if they
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are cut off at the time of the r-th failure. It is (r, T) if the tests are cut off at
the time of either the r-th failure or at time T, when tr > T. Hence, the plan
[N, lb (r, T)] means that N elements are tested, the failures are not replaced, the
tests are cut off at time t* = min (tr, T), where tr is the time of the r-th failure.
Also possible is a plan in which the time of stopping the test is determined by
the value of the total test time S(t) = f' N(s) ds, where N(s) is the number of
elements tested in the time s. Many problems arise in the processing of the
statistical data obtained as a result of testing according to different plans. For
each plan it is necessary to give a method of construction for point and interval
estimates of the parameters and to give criteria for testing the various hy-
potheses.

In conclusion, let us note the problem of constructing confidence bounds for
a function f(O) of unknown values of the parameters 6. The presence of a large
number of unknown components in the vector 6 = (01, * * *, am) is characteristic
of problems of reliability theory. An analysis of the problem of a series-parallel
circuit leads to the necessity of constructing lower confidence limits for the
functioni

(27) R = exp aij Xni.j
i=l j=l

where aij > 0, n,jj are integers, and Xi > 0 are unknown parameters of the
Poissoin variables Pi, for which the values (i = di are known. In this case the
confidence limit is given in conformity with the following theorem.
THEOREM. A lower confidence bound with a coefficient of confidence not less

than - is given by

(28) R = exp max i ](X**WXmG L =ml j = 1

where

(29)
G {

(XI, ...
Ie(xk) -,++)-D 1 ki!I(kl~ xXmEDek+.+xl km.--y

and the set Di consists of all possible sets of integers (k1, * * kin) such that
m ti

(30) E E aij, ki(ki- 1) ... (ki- nij + 1)

t=1 j=1

In the particular case where di < nij, the lower confidence limit is given by the
formula

(31) R = exp max [F ai,j An1i_h(di)]}1 =<i<m Ij=l11
where Aa(d) is the solution of the transcendental equation

(32) L [A. (d)l e-'(d) = a.
kc=O k!
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