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1. Introduction
Consider the “minimum transform’” ®(y) of a function F(z) defined by
(1.1) d(y) = n;in [F(z) — zy].

Then, under certain conditions on F, the essential one being that of convexity,
the inverse relation is simply

(1.2) F(z) = max [®(y) + zy],

that is, ¥ is the “maximum transform’ of ®. We shall refer to transforms of
either type generically as “maximum transforms.”

In this paper we shall show that use of the transform leads to a very natural
treatment of certain control problems.

The pair of relations (1.1), (1.2) is strikingly analogous in form to a Fourier
integral transformation and its inversion. The analogy is more than fortuitous.
Consider a pair of functions F, & linked via the reciprocal Fourier relations

exp [?%] = const. [ exp I:F(x—)c_—ﬂ/:l dr

exp [@] = const. [ exp [‘P(?/)CJ/] dy,

where the integration contours are taken appropriately, one of them at least
leaving the real axis. We suppose that ¢ is a small constant. As ¢ tends towards
zero it is plausible that the integrals in (1.3) can be asymptotically evaluated
by steepest descents, so that the relations (1.3) between F and & will reduce to
relations (1.1) and (1.2).

The significance of this transition will emerge from our heuristic examination
of some rather special cases. We shall consider some control problems in which
there is a random disturbance whose variance is measured by ¢. In some cases
these can be solved by use of Fourier transforms. As ¢ tends to zero and the
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situation reduces to a deterministic one, we shall find that the Fourier treatment
reduces to the previous treatment by use of maximum transforms.

The situation is, of course, quite similar to the familiar transition between
wave optics and geometrical optics, a stationary phase approximation in the
first case leading to a minimum (or more generally a stationary) time path in
the limit of infinitesimally small wavelengths. This seems to be one way in
which “natural extremal principles” arise in the physical world. However, in
the case of the control processes, we have an imposed extremal principle: the
system shall function optimally subject to given physical limitations.

The idea of the maximum transform was described by Bellman and Karush
([1], p. 354). However, it has quite a history. Karlin treats the idea very
thoroughly (under the name of “conjugate functions” [5], chapter 7), attributing
the work largely to Fenchel [3]. However, in a work as classic as Courant and
Hilbert's Methods of Mathematical Physics [2] the idea is quite well developed,
though not fully so (this time under the name of “involutory transformations,”
p. 234) and reference is made to authors as early as Friedrichs [4] and Trefftz [6].
The transformation is, of course, also related to the classic Legendre transfor-
mation.

2. Solution of linear problems by the maximum transform

Consider a linear control problem in discrete time ¢, with state vector z, and
control vector u,, so that
2.1) T = Az + Bu,, t integral.

Typically, one might wish to choose u so as to minimize Y_/=' gi(u;) + f(zr),
that is, so as to minimize some integrated measure of control effort plus a
measure of deviation in x from its desired value at the terminal instant ¢t = 7. If

T-1
22) F, 7= 0 = min [Z o) +sen ],

UZRRLZ =

then we have by the dynamic programming principle

F(z, 0) = f(z)

(2.3) .
F(z, s) = min [gr_,(u) + F(Az + Bu,s — 1)], s=1,2, ---.
Define now
o(y, S) = min [F(x: 8) - ylx]:
@4) #(w) = min [f(e) - ¥'z],

¥(z, t) = min [g(u) — 2'u].

One finds then readily from relations (2.3), (2.4) that
(2.5) B(A’y, 8) = By, s — 1) +¢¥(—B'y, T — 3).
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The first transformation in (2.4) has eliminated the minimizing operation in
relation (2.3) and left us with a purely linear relation, (2.5). If C = (4’)~! exists,
then (2.5) can be solved immediately,

s—1
(2.6) 2y, 8) = L W=BCHy, T = 5+ ) + o(Cy),

with, under appropriate conditions, an inversion
2.7 F(z, s) = max [®(y, s) + y's].
Y

This solution can be adapted also to some cases in which the values of x and u
are constrained (to positive values, for example).

Suppose that the stopping rule, instead of being ¢t = T, is a time independent
one, x € D. If the loss functions g are also time independent, then one can
expect the same of F, so that instead of (2.3), one has

2.8) F(z) prescribed by f(z), (x € D),
2.9) F(z) = min [g(u) + F(Ax + Bu)], (x € D).
If now )

(2.10) P(y) = géig [F(x) — y'z],

then on a ‘“negligible overshoot’’ assumption, we derive an approximate relation
from (2.9)

2.11) ®(y) ~ 2(Cy) + ¥(—B'Cy).

By “negligible overshoot,” we mean that x, € D implies that .41 = Az, + Bu,
lies in or only just out of D. Relation (2.11) does not in itself determine & or F,
and must be supplemented by the boundary condition (2.8).

All these relations have obvious continuous time analogues. If

(2.12) P = % = az + Bu,
(2.13) F, T =1t = min [ ["g(u)dr + flen) ],
t<rsT
then we find that corresponding to (2.5) and (2.11) we have the relations
@.14) B9 4y 2L _ gy,
(2.15) Yo %@ = ¢(—B'y),

where ®/dy is the column vector of first order derivatives. We have written
(2.15), the analogue of (2.11), as an equality rather than as an approximation
because there will presumably be no overshoot into D in case (2.12). The point
requires proof, of course, and raises issues such as the continuity of F at the
boundary of D, the stopping region.
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As is usual in dynamic programming problems, we have put all the emphasis
on the determination of the loss function F. This is a sufficient preliminary,
and generally seems to be a necessary one, to the immediate practical problem
of determining the policy or control function w(z).

3. Some examples

Suppose that the state variable z is a scalar for which
3.1) &= azr+ u,

and that we wish to minimize [ (A + uu?) df under a stopping rule # = z,. That
is, we wish to choose u in (3.1) so as to bring z to the value z, in such a way as
to minimize the integral of N + wu?—a, criterion that gives weight both to time
taken and the amount of ‘“‘control energy”’ employed.

If the future loss at (z, t) is F(z, t), then the dynamic programming equation is

3.2) F;+ min [\ + pu? + (ax + w)F.] = 0,
with boundary condition
(3.3) F(xo, t) = 0.

The subscripts in (3.2) denote partial derivatives. Now, in fact, F will be in-
dependent of ¢, so that (3.2) reduces to

3.4) A+ azF, — %‘Fi =0,
3.5) w= —LF.
2u
Equation (3.4) can in fact be solved subject to condition (3.3); we find
(3.6) F(z) = H(z) — H(x),
where

37  H() = ’é‘ {X? + sgn (X — Xo)[X(X? + 1)V + sinh—! X},

3.8) X = za(u/N)'2

However, in a situation with more variables the equation analogous to the non-
linear relation (3.4) would have been quite intractable. Even in the present case
there is an indeterminacy in the solution of (3.4) (leading to the sgn (X — X,)
term in the solution) which must be resolved by special arguments.

Consider now the use of the minimum transform of ¥. This obeys an equation
(see (2.15))

o) = h — L2
3.9) ayd® (y) = N Y
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of a simple linear form, which can be integrated immediately to give

- Mogy — 22
(3.10) &(y) = const. + - logy Son

Applying the inversion (1.2) to (3.9), we recover solution (3.6). In this case
F(z) can be evaluated explicitly by either method, but in general it is probably
true that the most explicit solution for F would be just the representation (1.2),
with ® a solution of the linear equation (2.15).

A rather more interesting problem is the following one in which control is
restricted by imposing a limit rather than a cost on “fuel.”

Suppose that the state variables are scalars z, w with

(3.11) &= u,
(3.12) = —u,

and that the only cost is a terminal cost at ¢ = T of »x? — 6w. The control u
is to be chosen to minimize this terminal cost subject to the restriction w = 0
for t £ T. That is, w has the interpretation of a “fuel reserve,” and one wishes
to achieve z(T) = 0 as closely as possible, but residual fuel at ¢ = T still has
a value . The case is rather more realistic when, instead of (3.11), we have

(3.13) i=u,

and it can be reduced to the present one by invariance arguments.
Let s = T — t denote ‘“time to go’’ and let the future loss at z, w, s be
F(z, w, s). We have then

(3.14) F(z, w, 0) = va? — 6w,

3.15) F, = min [uF, — u?F,), §>0,
u

so that

(3.16) F,=0, w=20,8>0,
F:

(3.17) F, = Y w>0,8>0.

From (3.16) we find that
(3.18) F(z, 0, s) = va?.

The nonlinear equation (3.17) can in fact be solved subject to boundary condi-
tions (3.14) and (3.18). However, use of the minimum transform again gives
a much more expeditious treatment. Define

(3.19) ®(y, 2, s) = min [F(z, w, 8) — sy + wz].
wzgo

We find, by the same derivation as that of equation (2.15), that

(3.20) &, = M(y, 2),
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where
0  if the minimizing w value in (3.19) is zero,
(321) M ={_yp
’ 4z

The y, 2 values corresponding to w = 0 as minimizing value in (3.19) are those
" maximizing ® + zy for some s, that is, those for which &, = 0. We thus have
either

(3.22) ®, = 0, &, =0,

if the minimizing w value in (3.19) is positive.

or
y2
(3.23) ®, 4+ o 0, ®, > 0.
. We have further from (3.14) and (3.19),
—y? > 5
S (324) ®(y, 2, 0) = { &’ ©=
. —0, z2 <.

" For minimal & we choose the option (3.23) rather than (3.21) for s > 0, and
s0 in general

—yi (1 s\, > 6
(3.25) ¢={4 (v+z> @20
—oo, z2 < 4.

The fact that ® = —« for z < 6 implies that the marginal utility of fuel is
never less than 0, as one would expect.
We shall have then

(3.26) F(z, w, 8) = max [® + zy — wz]
Yz

- ¥ (s _ :|
—n;ax[ m (V+z>+xy wz
220
The maximizing 2z value must certainly be positive, and so given by

3.27) 2= % (i>””,

w

if this. quantity exceeds 8. Thus,
2
(3.28) F = max I:—y— — ly|(ws)2 + xy],
v 4y
if the maximizing y value in (3.28) makes expression (3.27) exceed 6; otherwise,
z=6and
. /s

2
(3.29) F = mf,x [—Z_v T + zy — wa]'
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Now expression (3.28) has its maximum value at

2[r — (ws)''?] if = (ws)'?
(3.30) y =<0 if x| £ (ws)'?,

2v[x + (ws)/?] if z2z —(ws)'?
so that the expression is equal to »[x — sgn (z)(ws)/2]? if |z} > (ws)V/%, zero
otherwise. However, the condition |y| > 26(s/w)'/? implies that one of the solu-
tions (3.30) can be accepted only if

(3.31) vlo — sgn (z)(ws)?|(s/w)""* 2
or
(3.32) lz| = (ws)v2 + g (w/s)1/2;

otherwise, F is determined by (3.29). We thus obtain the final solution

vz — sgn (@)(ws)2]2 if |a] 2 (ws)'* + (6/v)(w/9)"?,
(3.33) F =

v?

1+ /6

These two very different functions can both be verified to be solutions of (3.17),
but the approach taken here is both simpler and more automatic than direct
argument from (3.17). The two regions are respectively those of ‘“fuel shortage”
and “fuel plenty’’; we find that

ow otherwise.

—3 sgn (z)(w/s)"?,
(3.34) U = = VT
0+ Vs

in the two cases, respectively.

A point to be noted is that, whereas the loss function F takes different analytic
forms in different regions, its transform @ does not. It is in the inversion from &
that one discovers the existence of qualitatively different regimes.

4. A stochastic control process

Consider again the process associated with equation (3.1), but let this now be
modified to
(4.1) . t=ax+u-te

where ¢ is a “white noise’’ process with zero mean, whose integral per unit time
has variance c. Such a process is a perfectly proper one when understood in the
context of generalized processes.

Relations (3.2) and (3.4) now become modified to

(4.2) F.+ min [A + pu? + (az + wF.] + 51«",, =0,
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4.3) Nt aF,— LF+ R0,
i 2
If we take
_ _@]
(4.4) J(z) = exp [ o

as independent variable instead of F, then equation (4.3) takes the linear form
4.5) 1o + 2aca], — EJ ~ 0.

This is just the Hermite equation, whose general solution is a linear combination
of two integrals of the form

(4.6) / sexp { —5 [80) + ml

where the contour of integration follows the imaginary y-axis, with an indenta-
tion either to the right or the left of the origin, and ®(y) is the function defined
by equation (3.10). These two integrals are to be combined in such a way that
F(z) is zero and minimal at x = x,. Now, as ¢ tends to zero (and the stochastic
relation (4.1) degenerates to the deterministic one (3.1), it is plausible that the
integrals (4.6) can be evaluated by steepest descents; and we see then that the
integral relation between F and & determined by relations (4.4) and (4.6) will
reduce to the maximum transformation (1.2). That is, the maximum transforma-
tion (and its inverse) arises as a limiting case of a Fourier transformation and
its inverse, corresponding to a “minimum phase’’ evaluation in a transition from
wave to geometric optics.

However, the picture is not always this simple; for example, it does not seem
possible to linearize the stochastic version of equation (3.22),

F2 c
(47) F3=m+ipzz,

by a simple transformation F. In such cases the stochastic problem is presumably
not soluble in terms of linear transforms, and the maximum transform, suc-
cessful in the deterministic limit, must be the limit version of some more general
transformation.

6. The replacement of minimization by a functional integration

Suppose one has the problem of calculating a loss function
(5.1) F(z, ) = min ﬁ T LI#(), 2(r), 7] dr,

where x = z(t), and the integrated loss is minimized with respect to z(r), for
t < 7+ < T. One might replace the analytically awkward minimization by a
functional integration; that is, suppose that F was instead given by
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(5.2) exp (—F/y) = const. f [ dx(r) exp (— ﬁ TLd'r/'y).

Here by the right member we mean the functional integral

. b N T; — Tj .
(5.3) lim | dx; / dxg -« - /de exp [—— > L (——: xj, t +16)],
Now» Yi=1 o

where 8 = (T — t)/N and z, = z. Expression (5.3) may well involve terms in §
which lead to singularities as 8 — 0. These terms are absorbed in the “constant”
in (5.2); the point is that even if expression (5.3) does not tend to a positive
limit as § — 0, the quotient of two such expressions for different x may well do
80, and this is all that is needed.

As v tends to zero in (5.2), one will expect that the value of F given by relation
(5.2) will become identical with that given by (5.1).

Suppose one is dealing with a stochastic dynamic programming problem, so
that integral (5.1) must be averaged in some way. In the modification (5.2) we
can combine this averaging with the functional integration, and so have the
great advantage that both our operations, integration and averaging, are linear.

The validity of the replacement of evaluation (5.1) by (5.2) (or its limit as
v — 0) is not clear, still less are the real life implications of replacing an averaging
of [ Ldr by that of exp (—y~! [ Ldr). Nevertheless, we shall find that an
application of this technique to the two examples we have discussed leads to
explicit and suggestive results, and this may justify some investigation of the
method.

Consider the problem of section 4, the minimization of [ (A + uu?) dr subject
to (2.1) and the stopping rule x = x,. If

(5.4) J(@) = eF@h,

we have
(5.5)  J(@) = const. E / / du(r) exp[—$ / O+ wu?) df],

so that, to within o(8) terms,
1 g 1
(5.6) J&x) = CTIE / du / dx'J(z') exp ~36 [ — z — 8(ax + u)]?

—2o+mn)
Taking Fourier transforms
.7) K@) = [ e#J(z) da,
we find that (5.6) becomes

C

68 K=K —ap) o[ -2 -5+ L) ] +00)

or
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K'®) _ _MN_(c, v
59 “xw =5 (5+3)
and
(5.10) log K(£) = const. — > log £ — (- + 8“) £,

From (5.7), (5.10),

(.11) J(@) = eF@ir = 2—1—m f_” =K (£) d

const. f exp{ — v'[¥ (@) + zyl} dy/y,
where ¥y = ¢v¢ and

(5.12) () = 2logy ~ (; + 2°) v

Note the close resemblance between ¥(y) and the minimum transform &(y)
of (3.10), also between (5.11) and (4.6). In the deterministic case ¢ = 0, we
can go to the limit ¥ — 0 and obtain the correct evaluation of F(z) as the max-
imum transform of ¥(y). The apparent effect of a stochastic element ¢ is to
decrease u to wy/(y + 2uc); it is plain that the value of ¥ must be related to
that of c if sensible results are to be obtained.

Consider the stochastic version of the second problem associated with equa-
tions (3.11) and (3.12)

(5.13) F=ute

W= —u?

the only cost being the terminal one vx2? — 6w at t = T, or s= (T — t) = 0.
Defining

(5.14) J(x, w, §) = eF@waly
(5.15) K¢ 9, 8) = f_: dz L” dw e=t1e ] (z, w, s),
we find, using the same functional integration technique as before, that
2 1
(5.16)  K(& 1, s) = const. (7 — 8/7)~! {exp - [2% + (c ¥ 27:) s]}
so that

(6.17)  J = eF" = const. f [ izt K dt dn

= const. /f (z — 6)~" exp {_% [_%f (% +54 2cs)

+ zy — wz]} dz dw,
where y = v, 2 = .
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The square bracketed expression in the exponent is just the bracketed expres-
sion in relation (3.26), at least in the deterministic case ¢ = 0. The fact that
maximization is restricted to z = 6 in (3.26) now corresponds to the fact that
in the asymptotic evaluation (y — 0) of integral (5.17) one must consider not
only the saddle points of the exponent, but also the pole at z = 6.
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