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1. Introduction and summary

Imagine a spaceship travelling towards a certain planet with predetermined
speed, in a direction which will bring it close to the target after a known period
of time. Observations on the position of the target, relative to the present course,
are made continuously and lead to a gradually improving prediction of the even-
tual miss distance. On the other hand, the fuel available in the spaceship for
making minor changes in the direction of motion, is gradually losing its effective-
ness. This is because the final change of position caused by a small velocity im-
posed perpendicular to the present motion, is roughly proportional to the re-
maining time. Thus we have a control problem which is essentially one of com-
promise between the extremes of using the fuel early and perhaps in the wrong
way, because of poor information; or waiting too long for more precise infor-
mation, so that the fuel becomes ineffective.
The statistical decision problem considered here actually arises from a simpli-

fied formulation of the above question, but one which contains its main features.
We suppose first that the motion of the spaceship relative to its target is confined
to a fixed plane with the target as origin. The horizontal component of velocity
is fixed as unity, so that the time coordinate T < 0, also represents the horizontal
distance to be travelled before the target is passed. It is enough to represent the
vertical components of position and velocity together by Au, the height at which
the present line of motion meets the axis T = 0. However, ,u is unknown, and
must be estimated continuously by observing a certain stochastic process
{W(T); T < 0} whose mean drift is , per unit time.
A second fiction, which will be maintained throughout the present paper, is

that an infinite quantity of fuel is available for adjusting the vertical velocity,
and hence ,u, at a fixed price c per unit change of velocity. Thus at any time T,
an instantaneous velocity increment A, costing cA, will change the unknown
quantity ,u by a known amount AIrT. The problem is to find a control procedure
which minimizes the sum of all fuel costs together with a cost associated with
the final miss. For the most part, we shall assume that this terminal cost is given
by 4k,42. Because of the symmetry of this function, the direction of any control
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applied is always determined by the sign of the current estimate of A. The
important question is how large this estimate must be before it is advantageous
to take some action.

Section 2 is concerned with finding a convenient description of the state of the
system. Under the assumption that the information process {W(T)} is Gaussian
with suitable initial conditions, the posterior distribution of u has the normal
form 91(y, s), where the variance s is a strictly increasing function of -r: ap-
proximately linear. Then by transforming the time parameter, we can conven-
iently regard s as the time to go. The corresponding mean y is determined, after
observing a related stochastic process {Y(s')} during s' > s, simply by y = Y(s).
It turns out that {Y(s); s > 0} is a standard Wiener process in the (-s) scale.
In other words, given any position (y, s), if no controlling action is taken before
s falls to s - 5, then a new position (y + 6Y, s - 5) arises in which SY =
Y(s - 5) - Y(s) has the conditional distribution 91(0, 5).
Both actions and costs are easily translated into the (y, s) coordinate system.

An action is represented by instantaneous change in the value of y, and a shift
Ay in either direction incurs a cost D(s) JAyj, where D(S) is a specified positive
function. The terminal cost, incurred when any position (y, 0) is reached, is
given in general by a function R(y, 0) which is easily evaluated since, at this
final stage u = y is known. In the special case mentioned previously, suitable
changes of scale lead to a standard form in which R(y, 0) = 2y2 and D(S) = 1/S.

Since the pair (y, s) always provides a complete description of the state of
the system, it follows that in seeking an optimal control procedure to minimize
costs, we may restrict attention to policies which depend only on these coordi-
nates. In effect, we must classify each point (y, s) in the half-plane s > 0,
according to whether or not some action is involved when that position arises.
For a discrete time variation of this problem where fuel could be used only at

certain specified times, C. T. Striebel and F. Tung [9] used dynamic program-
ming techniques to show that an optimal procedure can be expressed in terms of
a boundary y(s) as follows: if s corresponds to an allowable action time and
yIY > 9(s), use fuel to go to (sgn y)y(s). Otherwise, do not use fuel.
This result clearly indicates that the solution of the continuous time version

of the problem has the same form. It is now also clear that variations of the
problem with different and possibly asymmetric terminal costs R(y, 0) would
lead to similar solutions. That is, the optimal policy corresponds to an action
region a. If (y, s) is inside the action region, fuel must be instantaneously applied
to bring (y, s) to an appropriate point of the waiting region Q, which is the
complement of a. This characterization is also suggested by results of R. T.
Orford [7] on a related problem.
The optimal boundary curves z4y(s) can be determined, in principle, in terms

of the Bayes risk function R(y, s), which represents the minimum expected cost
incurred when one starts at the point (y, s). The properties of R(y, s) and the
fact that the optimal procedure corresponds to the solution of a Free Boundary
Problem are discussed in section 3. C. T. Striebel [8] independently and previ-
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ously derived the "necessity" of these free boundary conditions in the sense that
conditions are presented under which there is an optimal procedure that satisfies
the free boundary problem. The effect of a policy determined by boundary
curves -4y(s) is to constrain the process {Y(s)} so that its trajectory always lies
within or on the boundary of the region Q. To see how this works, let us con-
sider only the modifications imposed at the upper boundary. Conditional on
Y(so) = yo, for any initial position (yo, so) we define the process
(1.1) M(s8) = max [0, sup (Y(s) -y(s))], (81 < So).

80>8 >8i

This represents the cumulative effect of suppressing the original path below the
curve y(s) and would lead to a position (yr, s1), where yi = Y(s1) - M(si).

It is instructive to regard the policy as the limit of a sequence of restrictions
to discrete time when the corresponding time intervals approach zero. Here each
member of the sequence is defined by a discrete set of values of s and actions,
determined by the critical levels 4ig(s), are allowed only at the specified instants.
Of course, when actions are restricted in this way, the results are suboptimal,
but any discrete time formulation can be considered in its own right. The
relation between the two approaches is illustrated by the fact that sequences of
optimal discrete time policies and the associated risk functions, converge in a
natural way to their continuous counterparts.
The last assertion can be justified by reference to similar results which have

been established for sequential tests of a normal mean [5]: a problem which is in
a certain sense, equivalent to ours. The relevant characteristics of the testing
problem, originally described in [3], are illustrated in the following stopping
problem.

This rather artificial version of the testing problem, where the s-axis forms one
boundary, will be associated with our present control problem. We restrict at-
tention to the quadrant y, s > 0 of the plane. Changes of position within this re-
gion occur exactly as before, according to the process {Y(s)}, but termination
may occur in any one of three ways: (1) if a position (0, s) is reached, the process
stops automatically without cost; (2) similarly, the process must stop at any po-
sition (y, 0), and a cost Rv, (y, 0) is incurred; and (3) in any other position (y, s),
not on either axis, it may be elected to stop and pay a specified amount D(s).
In this problem, the optimal risk function V(y, s) determines the optimal policy

in a very simple way. Any point (y, s) must be assigned to the stopping or action
region if V(y, s) = D(s) and to the continuation region if V(y, s) < D(s). In par-
ticular, the strict inequality indicates that there is a policy which achieves a
definite advantage over the given stopping cost, at the particular position (y, s).

It will be shown in section 4 that V(y, s) and the derivative Rv(y, s) of the
original risk function, restricted to y, s 2 0, are determined by precisely the same
properties and may be identified. Thus, the same curve y(s) defines the optimal
policy for both problems.
With this interpretation of Rv(y, s), the general techniques discussed in [1],

can be applied to find approximations to the unknown boundary. In spite of
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their formal similarity, there is a practical difference betwveen the two problems.
For example, the restriction to y > 0 is unnatural for the original testing problem
and such cost functions as D(s) = 1/s and R,(y, 0) = y would be inappropriate.
It is perhaps more accurate to describe the minimization of V(y, s) as a stopping
problem. Then it is natural to refer to the upper halves of e and Q as the optimal
stopping and continuation regions.

Section 5 is concerned with obtaining specific inner and outer approximations
to the optimal boundary curve y(s), for the above special case. As a consequence,
y(s) is determined within fairly narrow limits for all values of s. In particular, it
is deduced that

(1.2) y(s) = - + 0(s2), (s- 0),

(1.3) y(s) = 81/2 + 0(s-1/2), (S ).

The main object of the remaining sections is to indicate techniques which can
be used to refine these asymptotic bounds. One such refinement shows that
y(s) = 1S2 + ( (s -2+ 0), and this is supplemented by a formal expansion
which gives y(s) = 1/s + -S2 - S85 + 78* - - . For s , we establish that
9(s)s-1/2 - 1 is roughly of the order s-r7, where no = 1.61005.
Our approach throughout is based on comparisons between the given problem

and certain auxiliary stopping problems for which the solution is known. For
example, the treatment of the case s -- 0 is closely related to the solution as
s -X oo of another optimal stopping problem, defined by the stopping cost
d (y, s) =-s for s > 0, and with terminal cost on the s-axis, d(y, 0) = min (y, 0).
In section 6 it is shown that the optimal boundary for this auxiliary problem is
Z(s) = -s + I + o(l) as s -- oo and the corresponding minimum risk is
v(y, s) = y - 1 exp (2y + 2s - 1) + o(l) in the continuation region. This re-
sult is applied to give y(s) = s-' + ls' + o(s2) as s -+ 0. The same ideas moti-
vate the formal expansion for y(s) in section 7.
The refined inner and outer bounds for s -* oc are presented in section 8. We

rely on two facts. In the first place u(y, s) = s-"'2aF{(X + 1)/2, 3, - a2/2} with
a = ys&-12, is a solution of the basic diffusion equation satisfied by V(y, s).
Here F is the confluent hypergeometric function. Second, there is a number
Co = 2no + 2, which is the smallest X > 1 such that u vanishes when a = 1.
In the final section, assumptions slightly different from those of section 2 lead

to a stopping risk of the form D(y, s) = s-1 + a for y > 0, s > 0. In this case, a
formal expansion of the type described in [4], [6], is initiated to show that
1(8)--112 _ (2 log s)1I2 as s -* cc.
From the practical point of view, our assumption that there is an infinite

quantity of fuel available in the spaceship is unsatisfactory. The assumption can
be relaxed at the expense of dealing with a third variable. We have found that
the present approach can still be applied in a fairly straightforward manner. It is
hoped that these developments will be discussed later.
The authors wish to thank J. V. Breakwell for introducing them to this prob-
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lem, and Herman Rubin for the benefit of considerable discussion. In particular,
Rubin pointed out that flo exists and computed its value.

2. Preliminaries

In studying the information process, we may imagine that ,u is a fixed parame-
ter. Any controls are easily taken into account, since they lead to corresponding
translations of 4. We suppose that initially, ,i has a normal prior distribution
denoted by 9t(yo, So), and that the observed process {W(T); To < T < O} has
independent normal increments with mean u& and known variance a2(T) per unit
time. The situation is analogous to one in which a succession of independent
normal observations have a common unknown mean and arbitrary known vari-
ances. In that case, it is not difficult to verify that the posterior distribution is
normal at every stage, and a similar result holds here, where observation takes
place continuously. Thus the information accumulated up to the instant T, can
be summarized in a posterior distribution of the form 91(y, s). Let us consider
briefly how the parameters y(T) and S(T) behave.

It is enough to represent the results W(T'); T < r' < T + 6T, of a very short
period of observation by the final value or equivalently by the total increment
6W. For example, this would certainly be valid for a constant variance function
a2(T') since BW would then constitute a sufficient statistic from the new obser-
vations. We must investigate the joint distribution of ui and 6W, wvhere the
marginal for ,u is given by the pair (y, s). Then by finding the conditional distri-
bution of ,u given 6W, which is the new posterior distribution at T + ST, the
increments by and bs can be evaluated. This calculation leads to the following
equations.

(2.1) 2 = - 2( + O(6T),

(2.2) BY= (6W - y6T) + O(6T).

The first corresponds to a simple differential equation for S(T), and the solution is

du
(2.3) + d(U)s so Jar2U
This determines s as a monotone strictly decreasing function of T. On the other
hand, y changes stochastically. We replace by by 6Y, in order to represent the
increment as a random variable, conditional on the information available at
time r. With this conditioning, 6W can be expressed as

SW = /.6T + afi(6T) 112

= (y + s1/2E2)6T + ffl(6T) 12,

where El, E2 are independent standard normal variates and it follows from (2.2)
and (2.1) that6Y has the distribution (O,-bs). Thus we have a representation
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of the original information process by a derived process {Y(s)}, for which the
decreasing quantity s is a natural index.
Our treatment of the information does not depend on any special character-

istics of the variance function r2(r), but the intended application suggests a
particular function, for which the determination of the Wiener process can be
made more explicit. We are regarding -Tr as the horizontal distance which
remains, and it is reasonable to suppose that any errors in observing the target
will have standard deviations proportional to this distance. In view of this, it
is important to consider the special case where

(2.4) g2(r) = aT2 (r < 0).

Then, relation (2.3) reduces to

(2.5) a= (ro(< T 0),

where the constant b = a/so+ 1/TO. The function S(r) is approximately linear, and
exactly so if so = - aro. It was assumed earlier that the initial information is in
a convenient normal form, and we might pretend further that the corresponding
variance so is such that b = 0. Alternatively, it is not unrealistic to suppose that
both so and -TO are very large and in the limit, again b vanishes. Then we have

(2.6) s = - aT

and s > 0 can be interpreted as the time to go.
The function y(r), and hence the observed path of the process {Y(s); so >

s 2 0}, can be evaluated by solving the stochastic differential equation (2.2).
On substituting the special forms (2.4) and (2.6), it becomes by - (y/r) Ar = -

(1/T) OW. Here there is no difficulty, since W(r) is a.s. continuous and the solution
is

(2.7) T W0U W(U) du.
From now on, we shall treat the control problem entirely in terms of the (y, s)

coordinate system. In general, let D(s) denote the cost of an optional unit change
in the value of y. Any such action results in a corresponding translation of the
whole future path {Y(s'); s > s' > 0}. The terminal cost incurred on arrival
at any point on the y axis is given by R(y, 0).
One further preliminary task remains and this is to normalize the specification

of our main application. When equation (2.6) holds and the price of fuel is c, it
follows from the discussion in section 1, that D (s) =-C/r = ac/s. Also, we have
R(y, 0) = 'ky2. Now consider the transformation

(2.8) Y* = ly, S* = 2S.
By relating the scale changes in this way, we have ensured that the transformed
process {Y*(s*)} is still a standard Wiener process. For example,
(2.9) var (6Y*) = 12 var (5Y) = #2(_ S) = -6A*.
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We can also change the unit of cost by a factor a, so that in the new system the
cost of a shift Ay* is given by

(2.10) D*(s*) Ay* = y Ay = #ry ac 1y
The new terminal cost is

,yk1 *2(2.11) R*(y*, 0) = ky2 =y y

It follows by examining these final coefficients, that if

(2.12) = a-1/3c-13k13, y= a-213c-213k-13,
then D*(s*) = 1/s* and R*(y*, 0) = 2y*2.

In the later sections it will be assumed without loss of generality, that
ac = k = 1, but before we discard the present notation, it is worth mentioning
a consequence of the scale changes. It will be shown that the optimal policy for
the normalized version is determined by a curve y*(s*), such that &*(s*) -+ 1 as
8* -+ o, where &*(S*) = g*(3*)/8*1I2. From the practical point of view, it is
reasonable to consider values for the constants with k/c >> 1, since it may be
relatively important to 'hit' the target. In this case, the optimal boundary y(s)
in the original specification is given approximately by y(s) - s1/2 for every s> 0.
More precisely, for any fixed value of s,
(2.13) &(s) = &i*(sac213(k/C)2I2),
which converges to 1 as k/c -* o, by the asymptotic result just quoted.

3. Properties of the risk function

In this section, we consider the characteristic properties of the Bayes risk
function R(y, s). The actual costs of any procedure must be calculated according
to specified continuous functions D(s) and R(y, 0), where the latter is symmetric
and convex. In general for s > 0, R(y, s) can be defined as the infimum for all
possible control procedures of the total expected cost incurred after starting in
the position (y, s). However, this local definition is not completely satisfactory,
since we are assuming that there is a control procedure, determined by curves
y = ±y(s), which is uniformly optimal for every position. Hence, R(y, s) can
be used alternatively to denote the risk function for a particular (well-behaved)
policy. It will be assumed further, that R(y, s) possesses continuous partial
derivatives RVV and R., except perhaps at points along the boundary curves. A
slightly deficient justification for the heuristic argument will emerge later. Its
proper foundation depends, as we shall see, on the existence of a solution with
the appropriate formal properties, but no such proof will be attempted. Even for
the application we have in mind, it is no easy task to find an explicit solution.
However, the technique of comparing the central problem with similar cases for
which the formal solution is known, and therefore justified, should leave little
room for doubt.
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It is clear that the optimal risk R(y, s) must be symmetric in y and for the
most part, we shall restrict attention to positions with y, s > 0. Consider first,
the value of an action which changes y by an amount Ay. The original risk, ex-
pressed in terms of the new position, is simply D(s) Ay + R(y + Ay, s), and
since the action may or may not be profitable, we have R(y, s) < D(s) [AyJ +
R(y + Ay, s). It follows by letting Ay approach zero through positive and
negative values that in general
(3.1) jRy(y, s) < D(s).
Again, when y > y(s) and the optimal policy prescribes a shift Ay = y(s) -y,
we obtain
(3.2) R(y, s) = R(y(s), s) + D(s) (y -(s)).
The risk function is linear in y throughout the action region, and Ry(y, s) =
±D(s) according to the sign of y. In view of this, the determination of R(y, s)
depends largely on its properties within the continuation region Q and at the
boundary.
We now show that R(y, s) is a solution of the diffusion equation

(3.3) !Ryy = R,) (IYI < 9(s), s > 0).
Let (y, s)EQ and consider the transition to (y + BY, s - 5) after a short period
of length 5. It follows that R(y, s) = E[R(y + BY, s - 5)], apart from the possi-
bility that some action is necessary during the period. Here, we can rely on the
fact that SY is distributed as X(0, 5). Only terms of order 5 will be needed in
evaluating the expectation. By making use of the differentiability assumptions,
it is not difficult to establish the following expansion:
(3.4) R(y, s) = E[R(y, s) + R&(y, s)BY + 'R,,y(y, s)bY2- R.(y, s)S] + o(5),
or equivalently,

(3.5) 0 = Ry(y, s)E(bY) + 'R&y(y, s)E(6Y2)-R(y, s)5 + o(5).
But E(5Y) = 0, E(6Y2) = 6, and since the coefficient of a must vanish, the result
is equation (3.3).

Thus, in order to determine the risk function, we must solve a differential
equation; but the boundary is unknown, and it is not immediately clear what
conditions should be imposed there. Let us assume a priori that R(y, s) itself
must be continuous at the boundary but that its derivatives may have simple
discontinuities. The previous analysis can be adapted for positions on the
boundary curves, but a more sensitive treatment is needed.

Consider a fixed point (yo, so) on the upper boundary curve. We suppose that
y(s) = yo + o(So - s)1/2) as s -* s0-, which is slightly stronger than our
original continuity assumption. After a short period 5, the new position is
(Y(so - 6) - M(so - 5), so - 6), where Y(so) = yo, Y(so - 5) = yo + BY, and
M(so - 5) represents the total action which occurs. It will be enough to retain
terms of order 61/2 in relating the corresponding risks, and hence we can approxi-
mate the distribution of M(so - 5).
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(3.6) M(so - 5) = max [0, sup {Y(s) -(s)
80.8.8>-5

= sup [{Y(s) - Y(so)}- {y(s) -(S)>80280-5

sup {Y(s) - Y(so)} + o(65/2).

It can be shown by symmetry considerations that the main term here has pre-
cisely the same distribution as 16Yj. In particular,
(3.7) E{M(so - 6)} = E{1IYl} + 0(51/2) = 21/2r-1251"2 + o(51/2).
Now let Rv = lim,0t ,R,R(y, so). By (3.2), the corresponding right limit is

I/+ = D(so), since it is approached through t. We note that all the costs incurred
during the period of interest can be evaluated according to D(so), whereas the
final position must lie in Q, so that the corresponding risk involves R-. Then

(3.8)
R(yo, so) = E[M(so - 6)D(so) + R(Y(so - 5) - M(so - 5), so - 5)] + 0(51/2)

D(so)E[M(so - 5)] + E[R(yo, So) + R {BY - M(so - 5)}] + 0( I 2).
On collecting the terms of order 51/2, we are left with

(Rv - D(so))E[M(so - 5)] = 0(1/2),
and it follows that R = D (so). In general, Ry is continuous at the boundary, and
hence R. must be also. In particular,

(3.9) Rv= D, (y = )
It is important to recognize that relations (3.2), (3.3), and (3.8) do not depend

in any way on the optimality of the policy. In fact, all three can be applied to
the risk function for an arbitrary policy with specified boundaries. For the
optimal policy, there is an extra condition which will be useful in locating the
curve y(s): the second derivative Ryy must be continuous at the boundary of Q.
This means that

(3.10) RVV= 0, (y =

To verify this necessary condition for optimality, we again consider a starting
point (yo, so) with yo = y(so). But now, let us modify the optimal policy locally.
No action is permitted during the period so > s > so - 5, but the original pro-
cedure must be resumed at so - 5. The initial risk for the modified policy is
R(5)(yo, so) = E[R(yo + bY, so - 5)]-

In view of (3.9), there will be no terms of order 61/2 here, and the expectation
can be dealt with almost as before, in the derivation of equation (3.3). However,
in this case, the term involving by2 needs special treatment. Let R+ and RV
denote the one-sided second derivatives evaluated at (yo, so) by suitable limiting
operations. We obtain

(3.11) R(l)(yo, so) = R(yo, so) + Ry(yo, so)E(SY) + 'Ry-jE(bY2) - R.(yo, so)5
*+ 2(RU+U-RY )E(bY2; bY > y(so - 5) - P(so)) + o(5).
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Equation (3.3) holds as (y, so) approaches (yo, so) from below, and continuity
ensures that IR-; = R.(yo, so). Also, the restricted expectation can be replaced
by E(bY2; bY > 0) + o(5) and what remains of the expansion is
(3.12) R(11(yo, so) = R(yo, so) + 4(R+V- R-) + o(5).
The modified policy is suboptimal, and hence R(l)(yo, so) 2 R(yo, so) no matter

what the value of B. It follows that R+ . R -. On the other hand, relation (3.2)
indicates that R+ = 0, but conditions (3.1) and (3.9) together imply that
RV > 0. The result is a contradiction unless R+ = R-.
For a given boundary, equations (3.3) and (3.9) determine a solution of the

diffusion equation. In our problem, the boundary is not known, and, hopefully,
the extra boundary condition (3.10) determines the boundary. Equations (3.3),
(3.9), and (3.10) are said to define a free boundary problem, and we have shown
that a well-behaved solution of the optimization problem is a solution of the free
boundary problem. Essentially this result was independently and previously
derived by C. T. Striebel [8]. Somewhat more crucial to our applications are the
conditions discussed in section 4 by which a solution of the free boundary prob-
lem is a solution of the optimality problem.

4. An associated problem

Having established the most useful properties of R(y, s), we shall employ
them in a rather indirect way. In section 1, we introduced another problem with
minimum risk function V(y, s) for positions in the positive quadrant. This prob-
lem is conceptually simpler, because a decision to act is necessarily final and the
corresponding instantaneous cost D(s) can be compared with the expected cost
of continuing. Hence, the appropriate boundary curve y(s) and the two axes
can be treated as absorbing barriers. There is no need to consider the process
{Y(s)} after absorption takes place. Nevertheless, we shall see that the two
problems are equivalent in the sense that the same continuation region is optimal
for both. For the moment, let y(s) represent the optimal policy corresponding to
V(y, s).
The formal properties of V(y, s) are listed below.

(4.1) 2 vv = V., (0 < y < y(s), s > 0),
(4.2) V = D, (y 2 y(s)),

(4.3) Vv = 0, (y = y(s)).
These conditions are analogous to (3.3), (3.9), and (3.10) respectively and can be
derived similarly. Notice, however, that (4.2) is intuitively obvious. As before,
only the last is an optimality condition. In addition, the automatic termination
of the path when either axis is reached, leads to the specified costs,
(4.4) V(0, s) = 0, (s > 0),
(4.5) V(y, 0) = Ry(y, 0), (y > 0).
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We now observe that all these properties are satisfied by the function
Ry(y, s); y, s > 0. Equation (4.1) follows by differentiating (3.3), and the rest
are directly applicable.
From a more fundamental point of view, it is clear that a solution to the as-

sociated problem must provide a solution to the original. If V(y, s) represents
the local minimum expected cost for every position (y, s) in the positive quad-
rant, then the function R(y, s) obtained by setting R,(y, s) = V(y, s) must be
minimal. More precisely,

(4.6) R(y, s) = f|'0 Ry,(y', s) dy' + f8 R8(0, s') ds' + R(0, 0),

l
(4.7) R(y, s) = J V(y', s) dy' + Jo 1V(0, s') ds' + R(0, 0).
Here we use the fact that

(4.8) R.(0, s') = j1?,,(0, s') = Vv(0, s').
Since V,(0, s') = limh ; 0 (l/h) V(h, s'), each of the above integrands is everywhere
minimal and the conclusion follows.

It remains to make sure whether we have specified enough conditions to de-
termine the function V(y, s). In general, the properties (4.1)-(4.5) are not
sufficient, because (4.3) does not fully represent the optimality of the policy.
We shall impose two further optimality conditions in order to ensure that there
is at most one solution. It was remarked earlier that the optimal policy can be
defined by the inequality

(4-9) V < D, (0 < y < ys)

Again, for any position (y, s) and 0 < a < s, consider the suboptimal modified
procedure: continue for a period of length a and then resume the optimal policy.
In particular, for points (y, s) in the optimal stopping region, we have

(4.10) E[V(y + 5Y, s - 5)] > D(s), (y > y(s)).

Strictly speaking, the path should terminate if it crosses the s-axis, but we can
alternatively and equivalently treat the integrand as an odd function of y + 5Y.
The boundary condition (4.3) is a convenient, but very special form of (4.10).
The general condition is needed in order to complete the characterization of
V(y, s).
We have regarded the function V(y, s) as the minimum risk for each separate

position. But it has been assumed that there is a single policy which attains this
minimum everywhere and determines V(y, s). More important; we have assumed
in deriving its formal properties that V(y, s) is suitably differentiable. In order
to justify the approach, let us distinguish temporarily between the extremal and
the formal properties of V(y, s).

In what follows, let V(y, s) denote a risk function which satisfies the formal
conditions (4.1)-(4.5), (4.9)-(4.10), assuming that such a solution exists. Let
V*(y, s) be the infimum over all control procedures, of the risk at the point (y, s).
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Thus, given any position (yo, so) and any EO > 0, there exists a policy with risk
function V(°)(y, s) such that
(4.11) V*(yo, so) < V(°)(yo, so) < V*(yo, so) + Eo.
We now prove that V(y, s) = V*(y, s), which means that the minimization prob-
lem will be properly treated provided that we can find the formal solution.
Although the existence of V(y, s) is in general open to question, it can sometimes
be found explicitly, and we shall rely on this later for certain special cases con-
nected with our main application. The equivalence of the definitions can be
established from the fact that V(y, 0) = V*(y, 0), but since the cost function
D(s): continuous for s > 0, may be unbounded as s -- 0, it is convenient to as-
sume further that
(4.12) sup [V(y, s) - V*(y, s)] - 0 as s -4 0.

v

In practice, this is not difficult to verify, by finding a crude approximation to
V*(y, s). The following argument is based essentially on that given in [2],
section 6.
LEMMA 4.1. If V(y, s) is a risk function which satisfies conditions (4.1)-(4.5),

(4.9)-(4.10) and (4.12), and if V*(y, s) is the minimum risk function, then

V(y, s) = V*(y, s), (y, s > 0).
PROOF. Consider any fixed position (yo, so) with yo, so > 0 and let fo, El, E2 be

arbitrary positive numbers. By (4.11), we can find a policy such that its risk
function satisfies
(4.13) V(0)(yo, so) < V*(yo, So) + Eo.
Now choose si < so, using assumption (4.12), so that for every y > 0,
(4.14) V(y, Si) < V*(y, Si) + El < V(")(y, Si) + El.
The function D(s) is uniformly continuous on the closed interval [s1, so]. Hence
there is a a = (so - sl)/n for some integer n > 0, which ensures that

sup ID(s) - D(s')I < E2,
18a'1 <5

within the interval.
We now restrict attention to the period so > s > si and consider two pro-

cedures in which stopping is permitted only at the instants so = si + n3,
sl + (n - 1)6, * -, si. Automatic stops on the s-axis can be included in this
restriction by extending the appropriate risks as odd functions of y. Let Va(y, s)
represent the optimal discrete procedure determined from the final cost
Va(y, s1) = V(y, si). Similarly, let V°0) (y, s) be the minimum risk when
V11)(y, s1) = V(°)(y, Si). Related to these is the function V(0)(y, s) defined as
follows. We make a slight modification of the stopping cost D(s), but not the
continuous policy associated with V(°)(y, s). Whenever any optional stop occurs,
the cost is determined according to the next discrete instant. Thus D(s) is re-
placed by D(s'), where s' = s1 + kb for some integer k and s > s' > s - S. It
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follows from our choice of 6 that the extra cost can never exceed E2, and hence
(4.15) V+)(yO, SO) < V(1)(yO, SO) + e2.
On the other hand, V'+' (y, s) can be regarded as the risk function for a certain

discrete procedure. The same continuous procedure as before can be applied,
with the provision that stopping actually takes place always at the next discrete
instant. This means that part of the path will be disregarded. Since V^°'(y, s)
represents the minimum risk for the restriction to discrete time, we have

(4.16) VIN(yo, so) < V<+) (yo, so).
The relation between V501 (y, s) and Va(y, s) is a consequence of our choice of

sI. We have Vb(y, s1) < V°0)(y, si) + El, (y > 0). Then Vs(y, si + 6) and
VaO)(y, s1 + 6) can be evaluated in terms of these quantities and the inequality
is preserved. After n repetitions of this technique, we obtain

(4.17) V5(yo, so) < VIN(yo, so) + ei.

Finally, we must make use of the properties of V(y, s) to show that
(4.18) V(yO, so) < Vi(yo, so).
Assume inductively that for some k > 0, V(y, si + k6) < Va(y, sj + k6), (y > 0).
When k = 0, we have equality. In order to extend the result to the case (k + 1),
we note first that
(4.19) Vs(y, si + (k + 1)6)

= min [D(s, + (k + 1)6), E{Va(y + BY, si + k6)}].
If y > y(s, + (k + 1)6), then

(4.20) E{Va(y + 6Y, si + k6)}
> E{V(y + 6Y, si + k6)} > D(si + (k + 1)6)

by (4.10) and hence V(y, si + (k + 1)6) < Vs(y, si + (k + 1)6). A similar
argument shows that

(4.21) V(y', s') < Vs(y', s'), (y' = y(s'); si + (k + 1)6 > s' > si + kO).
To obtain the corresponding inequality for positions (y, si + (k + 1)6) with
0 < y < 9(S, + (k + 1)6), it is enough to show that

V(y, si + (k + 1)6) < E{Vb(y + 6Y, si + k6)},
since condition (4.9) applies. The right-hand side can be evaluated as a conl-
ditional expectation as follows: E{V5(y + 6Y, si + k6)} = E{V8(Y', S')}, where
(Y', S') is the point where the Wiener process through (y, si + (k + 1)6) first
hits the barrier consisting of the curve y(s), the line s = si + k6, and the s-axis.
But V(y, s) is a solution of the diffusion equation in the region lying between
these curves and is sufficiently well behaved (see [2], section 6) to justify a similar
expression, V(y, si + (k + 1)5) = E{V(Y', S')}. Then the required inequality
is valid if V(y', s') < Vs(y', s') at every point of the barrier. But this has already
been verified for the case y' = y(s'), and it certainly holds along the two linear
sections. The induction is now complete and (4.18) follows.
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We conclude from the inequalities (4.13), (4.15)-(4.18) that
(4.23) V(yO, so) < V*(yO, so) + fo + El + E2-
Then, since co, e1, e2 were chosen arbitrarily, we obtain V(yo, so) < V*(yo, so), and
this can only mean equality.

5. Approximations to the optimal boundary

In practice, we hope that conditions (4.1)-(4.5) and (4.9) will be sufficient to
determine V(y, s) and y(s) from the given cost functions D(s) and Ry(y, 0).
However, the methods used here to find approximations to the curve y(s) involve
a reversal of the natural direction of inference. We shall consider various solu-
tions of the diffusion equation and investigate the variations of our minimization
problem, determined from them in such a way that the appropriate properties
hold by definition. The cost functions of these variations might seem irrelevant,
but it is possible to arrange useful comparisons with the given D(s) and Ry(y, 0),
so that a relation between the artificial policy and y(s) can be inferred. In this
connection, it is advantageous to think in terms of V(y, s) rather than the
original risk R(Y, S).
We confine our application of the above techniques to the case when

1(5.1) D(S) = -, Ry(y, 0) = y.

It is interesting that because Ryy(y, 0) = 1 here, the function Ryy(y, s) has a
special interpretation. Conditions (4.1) and (4.3) suggest that for IYI < g(S),
this second derivative represents the probability that the Wiener process escapes
to the y-axis without hitting either boundary curve. Thus, we are attempting to
select y(s) so as to minimize the escape probability for every initial position,
subject to an integral constraint given by (4.2). Much of the analysis which
follows could also be developed from this point of view.
The solutions of the diffusion equation discussed here are all generated by the

relation
(5.2) V(a)(y, s) = E[V(a)(Y(O), 0)jY(s) = y], (y, s 2 0),
with suitably selected functions V(a) (y, 0). The obvious choice indicated by (5.1),
leads to V(M)(y, s) = y. This satisfies equation (4.1) trivially.

If we now set y(1)(8) = 1/s and make the modification V(M)(y, s) = 1/s when
y > l/s, then conditions (4.2), (4.4), and (4.5) are satisfied. It can be shown that
V(')(y, s) is uniquely determined by these four properties, given the boundary
curve y(l)(s), (see [1], section. 4]). Then we may conclude that V(1)(y, s) is the risk
function which corresponds to this boundary. Condition (4.3) does not hold, so
the policy is suboptimal. On the other hand, (4.9) is satisfied, and whenever
y < l/s, we have V(y, s) < V(1)(y, s) < D(S). It follows that

(5.3) y(s) 2 8(1)(s) = 1
S
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We remark that the same risk function V(1)(y, s) also represents a quite differ-
ent discrete procedure. This other policy is optimal when it must be decided to
stop immediately at (y, s), or not at all until one of the axes is reached.
We now consider another solution of the diffusion equation, given by

(5.4) V(2)(y, s) = A (ys-1/2)ys-3/2 where <'(u) = (27r)-1/2eu2/2.
Let the constant A = 1/1n(1), so that V(2)(y, s) = s-' along the curve
y(2) (S) = 81/2. Further, we have
(5.5) V(2)(y, s) = A(p(ys-'2)8-3/2(1- 28-l),

which vanishes when y = s1/2. Hence, if we redefine the risk outside this curve
by V(2)(y, s) = s-', conditions (4.1)-(4.4) and (4.9) are all satisfied. The pro-
cedure specified by the curve y(2)(s) is not optimal for the cost function
R8(y, 0) = y. However, it is a useful policy whenever s > 0, since every path
will be stopped before it reaches the y-axis. The corresponding risk function
satisfies (4.9) and we can obtain an inner approximation just as before:

(5.6) y(s) 2 (2)(S) = 8I/2.

Finally, we note that the special policy determined by (2) (s) would be optimal
if the terminal cost R,(y, 0) had been infinite for all y < 0. This reinforces the
remarks made at the end of section 2.
The inequalities (5.3) and (5.6) together provide a fairly accurate inner ap-

proximation to the whole curve y(s). But in order to show this, we must find
suitable outer approximations. Here, the investigation of special suboptimal
policies is no longer enough. Roughly speaking, we need to consider procedures
which are optimal in situations where the decision maker is encouraged to con-
tinue by a reduction of future costs.
The last example can be modified to produce such a procedure. Let

(5.7) V(3)(y, s) = Ap(y(s + h)-112)y(s + h)-312, (y, s > 0),

where A, h > 0 are parameters of the solution. For any fixed value of h, let us
choose A in such a way that V(3)(y, 0) < y, whenever y > 0. Since

(5.8) V(1)(y, s) = A o(y(s + h)2)(s + h)-2{1 - y2(s + h)-'},
which does not exceed Ao(O)/h312 along the line s = 0, this can be achieved by
setting A = h'1'/1p(O).

Consider the procedure determined by the curve 17(S) = (s + h)"12; s > 0. If
we imagine that the cost functions (5.1) are replaced by

(5.9) V(')((s + h)11', s) = Ap(l)(s + h)-f, V(3)(y, 0) = Ap(yh-12)yh-3/2
respectively, then we have an optimal policy by reference to the lemma of section
4. The risk function V(3)(y, s) can be modified according to (4.2) outside the
continuation region, and then all the conditions (4.1)-(4.5), (4.9) and (4.12) are
satisfied.

It only remains to compare this auxiliary problem with the original. We ob-
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serve that the stopping cost Ase(l)/(s + h) < 1/s, provided that 0 < .s < Sh,
with equality at the instant 8k = h/(Ap(l) - 1).
Now consider the boundary position (ph, Sh) for the optimal policy indexed by

h. According to this constructed policy, the minimum risk attainable under the
specifications (5.9) is V (3)(yh, Sh) = 1/18. But the actual cost incurred by stopping
at any future time s: Sh > s > 0, or at s = 0, is less than that prescribed by (5.1).
It follows that V(9h, Sh) > V ()(ph, Sh) = D(sh), and henceyk >. (sh). Thus, as h
varies, the point (yh, Sh) describes a curve y(3)(s) say, which is an outer approxi-
mation to the required optimal boundary. The form of y(3)(s) is implicit in our
special choice of A, gh(s) and Sh:

8 = e12h(h3/2 -el2_(5.10) y = (s + h)12 (h > el/3)

It is easily verified that s increases through every positive value as h decreases
from oo to ell3. In particular, the following asymptotic formulae can be deduced.

(5.11) y(s) < y(3)(5) = 51/2{f + "el/3s-1 + 0(s-2)}, (soc),

(5.12) y(s) < gl()(s) = el/2s-l{1 + O(S3)}, (s 0).
The first of these, taken with (5.6), shows that

(5.13) y(s) = s'/2{1 + O(s-1)}, (s - ).
However, the second does not match so well with (5.3). Another outer approxi-
mation will be constructed to give a more precise description of the optimal
boundary when s is small.
The following solution of the diffusion equation generates a useful auxiliary

problem.
(5.14) V(4)(y, S) = y - Be,2s/2 sinh (0y), (y, s > 0).
We aim to choose the parameters B, 13> 0 for a particular instant s and by
making the proper comparison, find the level y(4)(s) > y(s), which provides a
best local approximation. But it is more convenient to study the auxiliary
problem first in its general form and then try to pick out a special position where
the comparison is most relevant. We note that
(5.15) V(4)(y, s) = 1 - B,Be2s/2 cosh (y),

(5.16) V(4) (y, S) = - B#2e0'8/2 sinh (3y).
The optimal boundary for the auxiliary problem is determined simply by setting
V(4 (y S) = 0, so that B,B cosh (#y) = e-12
Provided that B is not too large, the corresponding continuation region is

bounded. Let us denote the boundary curve by y7(s) and restrict attention to
positions (y, s) with y7(s) > 0. As before, the risk outside the continuation region
must be determined by applying condition (4.2) with D replaced by an appropri-
ate D(4)(s). In spite of this, the relation V(4)(y, 0) < y remains valid, and it is
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enough to examine the auxiliary stopping cost along the boundary with reference
to (5.1).

Consider the difference V(4)(go(s),s) - -1, as s increases from zero as far as the
instant when y,(s) = 0. The quantity is negative at both ends of the curve, but
it is clear that we can adjust its maximum value by choosing B. Suppose now
that B is selected to make this maximum value zero. A necessary condition is
that the differential along the curve should vanish, and by applying the diffusion
equation, it can be expressed as
(5.17) 0 = V(4)(9#(s), s) dy + {V(4)(g#(s), S) + s-2} ds,

(5.18) 0 =- I V(4X)(Y(8), S) + g-2} ds.

Let (gp, sp) be a point on the curve, at which the maximum is attained. For
this position, the future costs associated with the auxiliary problem are uniformly
less than those given by (5.1), but the present stopping cost is the same. Conse-
quently we have YB > Y(sp).
The above construction implies that the following equations must hold simul-

taneously at the special position (y, s) = (y, sp):
(5.19) V(4)(y, s) = s', V$(y, s) = 0, V(?(y, s) = -2s-2

Fortunately, these three properties are sufficient to define the construction. In
fact, there is no difficulty in eliminating the parameters B and d. We have

Be2l8/2 sinh (0y) = y -
(5.20) B3eft28/2 cosh (0y) = 1,

0Bj2ef'8/2 sinh (13y) = -28-2.

The elimination leads to a relation between y and s, which defines the required
outer approximation g(4)(s) for all values of s:

(5.21) 21/2s-l(y - s-1)/2 - tanh {21/2ys-l(y - s-)-1/2} = 0.

It is a straightforward matter to verify that the expression on the left is a
strictly increasing function of y in the range y > s-' and deduce the existence of
a unique zero at y =-(4)(8).
The effectiveness of the approximation is suggested by simpler formulae which

can be derived from (5.21) for extreme values of s. A limited expansion of the
hyperbolic tangent can be used to show that

(5.22) g(4)(S)= (3)1/2 s112{1 + O(S-312)}, (s - 00).

In this case, according to (5.13), the approximation is too large by a factor () 1/2.
But for small values of s, the result is much more satisfactory. Since tanh (u) < 1
always, equation (5.21) yields the inequality y(4) (s) < 1/s + 182. Then by mak-
ing use of y(1)(s), we obtain

(5.23) -< y(8)< + 1S2, (s > 0).
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In particular, the difference between these two bounds approaches zero rapidly
as s - 0. The above inequality for y(4)(s) leads to a more robust formula by
substituting for y in the second term of (5.21):

(5.24) y(4)(s) - + 12 tanh2 {1 + 2s-3},

which is fairly accurate when s < 1.
The table below contains a summary of our results so far, giving each of the

four approximations for several values of s. The first two functions tabulated are
lower bounds and the others are upper bounds.

TABLE I

8 0.1 0.2 0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.0

9(l) 10.0 5.0 2.0 1.0 0.67 0.50 0.25 0.17 0.13 0.10

y(2) 0.32 0.45 0.71 1.0 1.22 1.41 2.00 2.45 2.83 3.16

g(3) 16.5 8.27 3.43 2.27 2.08 2.08 2.40 2.73 3.07 3.38
D(4) 10.0 5.02 2.13 1.49 1.61 1.80 2.48 3.02 3.48 3.88

Bounds on y(s)

6. An auxiliary problem

The inner and outer bounds on g(s) obtained in the last section, leave the un-
known boundary curve covered by a narrow strip. The table indicates that we
already have a reasonably accurate determination of the optimal policy, for all
values of s > 0. Nevertheless, it is of interest to investigate whether the tech-
niques can be developed further. In what follows, we seek more precise asymp-
totic descriptions of y(s), first as s -> and later as s -m o.

It will be convenient to change the notation slightly and denote the given
stopping and terminal costs together by

D(y, s) =-'(y > 0, s > 0),

(6.1) D(y, 0) = y, (y 2 0),

D(0, s) = 0, (s > 0).

Consider the auxiliary stopping problem for the Wiener process {Y(s), s 2 0}
in the half plane s 2 0, with the following stopping and terminal cost function:

d(y,s) =-s, (s>0),

(6.2) d(y, 0) = 0, (y 2 0),

d(y, 0) = y, (y < 0).
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LEMMA 6.1. As s X-+ , the minimum risk

(6.3) V(Y, s) = y - 2eOy+28- + o(1),
where o(1) is positive and applies uniformly in y. The optimal policy consists of
stopping whenever y > z(s), where -s + I + o(1) < z(s) < -s + 2-

PROOF. We note that v'(y, s) = y - e2y+28-l satisfies the diffusion equation
with boundary conditions

v'(y, s) = -s, for y = -s + 2 s > 0,

(6.4) V(Y, s) = 0, for y = - s + 2X s > 0,

v'(y, 0) = y - 4e2-', for y S=O.

Thus v'(y, s) and z'(s) = -s + 4, represent the solution of a more favorable
problem, since v'(y, 0) < d(y, 0), where it applies. Hence, v(y, s) > v'(y, s) and
(y, s) is a stopping position if y > -s + 2-
The procedure defined by z'(s) is suboptimal for the original problem. For that

problem it yields a risk

(6.5) V"(Y, S) = V'(Y, S) + E' {4e2e( )-' + min (- Y(O), 0) I Y(s) = y},

where E' represents the expectation restricted to those paths which are not
stopped until s = 0. It is easily shown that this term approaches zero uniformly
in y as s -+ oo. Then (6.3) follows, since v(y, s) < v"(y, s). It is also clear that for
any E> 0, when s is sufficiently large, y < - s + 4 - e implies that v(y, s) < - s
and (y, s) is a continuation point.

It remains to show that the optimal stopping set S consists of an interval
[z(s), oo ] for each s. But if (y, s) is in the continuation region, we can easily show
that v(y - A, s) < v(y, s) < -s from a consideration of the policy obtained by
translating S downwards an amount A. The resulting procedure is suboptimal,
but since d(y, 0) is monotone in y, it leads to the desired inequality.
We remark that the lemma was prompted by the fact that a standard Wiener

process {W(t); t > 0} starting at the origin, intersects the line w = a + mt;
a > 0, m > 0, with probability e-2am.

In section 5, we showed that the boundary y(s) of the optimal stopping region
for the spaceship control problem specified by (6.1), satisfies y(s) < S-1 + 1s2 in
general. We can now prove the following theorem.

THEOREM 6.2. If (s -+ 0), then y(s) = S- + 4S2 + o(s2).

PROOF. If no stopping is permitted when 0 < s < So, the problem becomes
one with minimum risk V*(y, s) 2 V(y, s), where V*(y, so) = min (y, s8') for
y > 0. Again, if {Y(s)} is a Wiener process in the (-s) scale, then {aY(s)} is a
Wiener process in the (-a2s) scale. Thus, the above constrained problem may
be transformed by setting
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y= So (y-

(6.6) s*= &M(s - So),
= s(V ),

to the problem with stopping and terminal risk

d*(y*, s*) = so2{(So + sOs*)-- s-1}
= -S* + SS*2- * * (y* > -So , S* > 0),

(6.7) d*(y*, 0) = min (y*, 0), (y* >-so-)
d*(-so-', S*) =-So-', (S* > 0).

This is approximately the auxiliary problem of lemma 6.1, when so is small.
Consider the procedure with risk v*"(y*, s*), which consists of stopping when-

ever y* > -.s* + 2. By comparing (6.7) with (6.2), the difference v* "(y*, s*)-
V"(y*, s*) can be expressed as a sum of two contributions. One is due to paths
which stop along y* = -s* + I for some s* > 0, and the other is due to paths
which stop along y* = -s- . We take the initial s* = s '. Clearly,
(6.8) sup Id* (- s' + 2, s') - d (- s' + 1, s')I = O(so),O<8' <so-'

(6.9) sup Id*(-s-o', s') - V"(-so 3, S')I = o(l).
0 <8' <80-1

It follows that
(6.10) v*"(y*, so-) = v"(y*, so-) + o(l) = v'(y*, so-) + o(l),
and the optimal risk for (6.7),
(6.11) v*(y*, s-1) < v*"(y*, s-l) < d*(y*, so'),
when y* < - s& + E-e and so is sufficiently small. Then, on substituting back
into (6.4), with s = so + 84S* = so + s', we find that V(y, s) < V*(y, s) < s-',
whenever
(6.12) Y < Ssj + sI ( - 1 + I - e) = s + ( - e) S2 + o(S2).
In other words,

(6.13) y (s)> s- +2s 2 + o(s2) (s-0),
which concludes the proof.
The above derivation provides a close upper bound for the optimal risk V(y, s),

near the boundary. Since s* = so1 corresponds to s = so + so, this indicates that
for small values of so, the effect of forbidding any stops between 0 and so, is small
and diminishes rapidly as s increases from so.

7. Formal expansions for small s

In this section we derive the formal expansions for s 0;

(7.1) y(s) = s-1 + 1 2 - 285 + 7S8 +
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(7.2) V(y, s) = y -82e22' {2 + 33(a'- 612)
+ s6(4 - 7' + 65'2-36'3+ 4)+*+*-}'

where 6' = s-2(y - )8-- 4, and y < y(s).
The expansions are motivated by the preceding results, which indicated the

major importance of the boundary y s-S + 4 for large s in the auxiliary
problem (6.2). This in turn points to the relevance of the distribution and mo-
ments of the time T when the Wiener process {W(t), t > O}, starting at the origin,
first intersects the line w = a + mt; a > 0, m > 0. The distribution is known to
have moment generating function E{e"T} = exp {- a(m + Vm .-2X)}. Thus,
in the notation of section 6, the moments of the time required for a path from
(y*, 8*) to hit the line L: y* = -s* + 4, can be expressed in the form e25P(5),
where P(B) is a polynomial in 5 and where
(7.3) 6=-a=y*+s*- 2

One is led to consider solutions of the diffusion equation HX,*y* = H8*, of the
form Hn(y*, s*) = e20u8(5 + s*, s*), where the functions u.(x, t) are polynomial
solutions of the corresponding equation 4uxx = ut:

uo(x, t) = 1,
ul(x, t) = x,

(7.4) U2(x t) = '(x2 + t),
U3(X, t) = 1!(x3 + 3xt),
U4(X, t) = 1!(x4 + 6x2t + 3t2),

and so on. We replace these for convenience by the linear combiinations wn(x, t),
selected so that wn(t, t) = tn. Hence,

w0(x, t) = u0(x, t) = 1,
wJ(x, t) = u1(x, t) = x,

(7.5 W2(X, t) = 2Uf2- Wl = X2 + t- x,

W37(5, t) =6-3W2= x + 3xt- 3X2 - 3t + 3x,
W4(x, t) = 24U4 - 6w3 - 3W2

= x4- 6x3 + 15x2- 15x + 15t - 18xt + 6M2t + 3t2.
Now let

(7.6) Jn(6, s*) = e28W.(b + S*, 8*).
Then we have

wo(5 + 8*, 8*) = 1,

Wi(6 + S*, 8*) = 8* + 5,

(7.7) W2(5 + 8*, 8*) = 8*2 + 5(28* - 1) + 52,
W3(6 + s*, s*) = 8*3 + 5(38*2 - 3s* + 3) + 62(3s* - 3) + 63,
W4(5 + 8*, 8*) = 8*4 + 5(4s*3 - 6*2 + 12s* - 15)

+ 62(68*2 - 12s* + 15) + 53(4s* -6) + 64;
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(7.8)
Jo = e26 = I + 265 + 2462 -aW43+ +.

J, = s* + 6(2s* + 1) + 32(s+2)+3 8*+) + 64 (23s* + 4) + **

J = 8*2 + (28*2 +2s*1)+52(28*2 +4s*1) +53 (8*2+48*)+

J3 = 8* ++ (2*3+ 3s*2-3s* + 3) +52(2s*3+ 6s*2-3s* + 3) +***

J4 = s*4 + 5(28*4 + 4s*-68*2 + 12s*- 15) + * .. ,
and so on. We can easily expand OJh/O9 from (7.8).

For the problem specified by (6.7), we shall consider solutions of the following
form, for the optimal risk and boundary curve.
(7.9) v*(y*, s*) = y*- e28 + co(so)Jo + c1(8o)JI + C2(8o)J2 +

(7.10) M*(s*) =-8* + a + i(8*),
= i(s*)80 + 32(S*)os' + 53(8*)80 + *-

The coefficients c.(so) and b.5(s*) can be selected to approximate the boundary
conditions v*(y*, 8*) = d*(y*, s*) and vv**(*, s*) = 0. We have
(7.11) E2 cC(8o)J.(8, 8*) = S18*2 - 81 *3 + SS*4- *

+ j2 + 283 + 134 +
Oh-~~~~

(7.12) cEc(so) -9- (5, s*) = 28 + 262 + *#3 + *--

We match the coefficients, taking 8o small and treating s* as 0(1). The dom-
inant term on the right of (7.11) is 818*2, which calls for C2 = So. Then the left side
of (7.12) begins with 8(2s*2 + 2s* - 1), and the right side with 8o3281(*), which
implies that bi(s*) = 8*2 + 8* -. By substituting again in (7.11) and carrying
terms of order s0, we find that

(7.13) C4 = -s8, c3 = -3s, cl = s, co = -

Next, a similar comparison for (7.12) shows that
(7.14) 62(8*) = -8*3 + s8*2- 5&* + 7,

and so on. The formal, and so far unjustified, substitution of s* = 0, with the
transformation (6.6), gives
(7.15) 8 = 8o, a(s) = so-' + s82o*(0), V(y, s) = s0 + s2v*(y*, 0),
and finally yields the desired terms of (7.1) and (7.2).
The formal expansions (7.9) and (7.10) seem to be justifiable for the auxiliary

problem, when s* is large. Although the authors have not carried out the neces-
sary details for a proof, it seems to be fairly straightforward. We have treated
8* as 0(1), but clearly the operations would be meaningful for large 8*, provided
that 838*2 -* 0. However, it cannot be expected that the substitution s* = 0 will
yield the solution of the auxiliary problem (6.7). In fact, this substitution does
not yield values for v*(3*, 0) which coincide with d*(y*, 0) = min (y*, 0). On the
other hand, if the expansions (7.9) and (7.10) are meaningful, they should be
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valid for s* = s -'and s* = 2s
- 'say. Thus, one would expect the expansions to

be self-consistent in the sense that different pairs (so, s*) yield approximately the
same results, whenever the corresponding values of s = so + s's* coincide. In-
deed, the initial terms have this consistency property exactly, for all s* > 0.
This fact indicates that there is no effect due to the computationally convenient
substitution s* = 0 and justifies the results (7.1) and (7.2).
The above consistency provides a useful check on the calculations of 31(s*)

and 62(0*). For example, the condition that y = so 1 + s8o'* remains constant
when s = so + S4S* is constant, can be seen to imply that 61(s*) = 8*2 + s* + Ki,
and given K, =-2, that 62(8*) =-S.*3 + s*2-as

8. Refined bounds for s -) X

In this section, we shall establish the following upper and lower bounds for
&(8) = g(s)8-112 as s -+ oo, to improve the results obtained in section 5.
THEOREM 8.1. (i) There is a constant Ko > 0, such that &(8) 2 1 + Kos-1o,

(s -oo), where go = 1.61005.
(ii) If t7 < 77o, there is a constant K, > 0, such that &(s) < 1 + K,s-7, (s -+ 00).
We review a few relevant facts before proceeding to the main argument.

Certain important solutions of the diffusion equation have the form, u(y, s) =
8-X12A(a), C!a = ys-1/2, where Ax(a) satisfies

(8.1) Ax'(a) + aA((a) + XAX(a) = 0.

We observe that AX((a) is a candidate for Ax+,(a). One example for X = 2, which
will be useful, is aco(a). The odd solutions of (8.1) are of special interest. A power
series expansion shows that these can be expressed in terms of the confluent
hypergeometric function as

(8.2) A,((a) = aF( + 1, 3;-2)'
where

(8.3) F(fl zy; w) = I + 0
w + o(B + I ) W2! +...

With this definition, the function A>,(a) is continuous in X and the smallest
value of X > 1, for which Ax,(1) = 0 is Xo = 5.22010. We note also that Ax(a) > 0
for 1 < X < Xo, 0 < a < 1, and A' (1) < 0. Finally, A,(a) is a bounded function
of a.
The proof of (i) involves considering a solution of the diffusion equation of the

form

(8.4) B fg(-129(°)-bsXo/2 Av(a)},

which corresponds to a "less favorable" problem than ours. As a preliminary, we
note that if c > 0 is small enough, the function
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(8.5) Go(c, a) = aCp(a) _-CAx.(a),

which is equal to 1 at a = 1, attains a local maximum Mo(c) near a = 1. In fact,
as c -- 0+, Mo(c) - 1 + 1c2A"(1). This maximum is increasing in c for small
c > 0 and is attained at ao(C) - 1 - 'cA' (1) > 1.
Now take any so > 2 and consider

(8.6) Vo(y, s) = {Mo(cs )s (1) - cs {`A(a-

where fo = 2Xo - 1 = 1.61005. If c > 0 is sufficiently small (not depending
on so), it is easy to see that Do(y, 2) = Vo(y, 2) 2 V(y, 2), at least when
0 < y < 2-1/2ao(cs8'o). Since Go(cs-", 1) = 1 and Mo(cs-") is decreasing in s
for I < s < so, the equation Vo(y, s) = s-I has a solution no(s) = s812&0(s).
Further, &o(s) always lies between 1 and ao(cs "'), and &o(8o) coincides with
aYo(cso X0).
Thus, the curve go(s) determines a procedure for 2 < S < so with risk Vo(y, s)

in the continuation region, for the problem specified by

Do(y, s) = s-', (y > 0, < s < so),
(8.7) Do(O, s) = 0, ( < s < so),

Do (Y, 2) V (y, 2,(° < Y < YO(20

This problem is less favorable than the original and furthermore, VO(y, so) < s8 '

when ysO 1/2 < &O(SO) - 1 - I8s-"'A' (1). This establishes (i) and also shows that
V(y, so) < Vo(y, so).
We shall prove (ii) by comparing the original problem with one for which the

minimum risk is given by a solution of the diffusion equation

(8.8) VA,(y, s) = B {1 a(]) - bs I Aj(a)

with X = 277 + 2 < Xo. It suffices to consider q close to wo, and hence, we may
assume that AX(1) > 0, AA(1) < 0. For small values of c > 0 and a near 1, the
function

(8.9) G(c, a) - A(1)- CA(a)

; 1 - (a - 1)2 - cAx(1) - c(a - 1)AX(1).

Thus Gx(c, a) has a local maximum at

(8.10) ax?(c) - 1 - 'cA'(1) > 1,

and the maximum value

(8.11) MA,(c) - 1 - cAx(1) + 4c2At2(1),
is decreasing in c. Since AA(a) is bounded, c can be kept small enough to ensure
that this is the absolute maximum for a > 0.
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We 1o0W choose B = l/Mx(bso&") in (8.6) so that

(8.12) VA(Y, s) =

For each s, let yx(s) = s1I2&x(s), where &x(s) = acx(bs-7). Thus, provided that bs-
is small, Vx(y, s) and the curve yx(s) satisfy the free boundary conditions and
represent the optimal solution of a stopping problem. If we restrict our attention
to {(y, s), y 2 0, si < s < so}, the appropriate stopping and terminal cost is

Dx(y, s) = Mx(bs"4) 5-< 'i1 (y > 0, 8i < s < so),Mx,(bscj-)
(8.13) Dx(O, s) = 0, (Si < s < so),

Dx(y, si) = Vx(y, Si), (O < y < 9x(sO)).
Assuming for the moment that V, (y, si) < V(y, si), this problem is more favor-
able than the original one. Then

(8.14) V(gx(so), S.) 2 Vx(YA(SO), So) = SO

It follows that (yx(so), so) is in the optimal stopping region for the original prob-
lem, which gives the required inequality (ii).

It remains to verify that b and s, can be selected so that

(8.15) Vx(Y' SO) < V(y, Si), (0 < y < sV'2a\(bsi7v)),
whenever so is sufficiently large. One of the results implicit in section 5 is a lower
bound on the minimum risk: V(3)(y, s) < V(y, s). The function V(3)(y, s) has the
following property as s -* o:

(8.16) sV(3)(asl"2, s) = {9(l) { + o(1)}, (0 . a < 1),
1 + o(1), (a > 1),

where o(l) applies uniformly in
a >

0. We now observe that Ax(a)s(l)/aap(a)
is bounded away from zero in some fixed interval 0 < a < 1 + e. Hence there
is a constant k > 0, not depending on the value of c, such that

(8.17) Gx(c,a) .< c(a) (1 - 2ck), (O < cx < 1 +E).
Thus,

(8.18) SlVx(a5sl2, Sj) < a(a) (1 -2bsi1k), (0 < a < 1 + e).

We can now select b and s1 by first choosing a value for c = bsj1 small enough
to ensure that (8.10) is applicable, with ax(bsl") < 1 + e. Then si can be chosen
large, according to (8.16), So that

(8.19) SIV(')(aSi'2,Si) 2 a<(a) (1 - bs17k).

This inequality, together with (8.18) and the general relation between V(i)(y, s)
and V(y, s), establishes that
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(8.20) Vx(as'2, Si) < V(asi'P, Si) (1 - 2bsl "k) (0 < a < ax(bs)Mx(bs&") (1 - bsi71k) ( ,(s")

Finally, since the last ratio here is <1 and since M (bs&) 1 as so -+ o, the
required inequality (8.15) holds when so is sufficiently large.

9. A formal expansion for a variation of the control problem

The formulation of the spaceship control problem treated so far is based on
assumptions, concerning the rate at which information is collected, which led
to the function D(y, s) = 8-5. We shall indicate how the stopping cost

(9.1) D(y, s) = 8-1 + a, (a > 0),

can arise for two distinct variations of these assumptions and then suggest
formal expansions as s -- X for this modified problem.

First suppose, as in section 2, that information is accumulated at the rate
al-2, where -Tr is the time to go. Then the total information available is
s- = -alT- + a2 and D(y, s) = - a37r. Previously, we assumed that a2 = 0
and made a scale transformation to obtain the stopping cost. If we do not
assume a2 = 0, the transformation leads to the form (9.1).
An alternative assumption is that information is collected at a constant rate

1/a2. Then if Io is the total information to be accumulated by the time r = 0
when the target is reached, the information at time T < 0 is s-1 = Io + -2r < Io.
It turns out that

(9.2) D(y, s) = -a%T1 = a3auI& +
I

(IIO

for s > Io l. Once again, a linear transformation of the y, s and cost coordinates
can be found, which produces the form (9.1) without affecting the basic Wiener
process.

Apparently, the most substantial effect of changing the stopping cost to
s-I + a occurs as s -+ oo. We shall initiate a formal expansion of the type
described in [4], [6], for the asymptotic behavior of the optimal boundary
y(s) = s812&(S).

Let
(9.3) V(y, s) = a - 2a{1 - 4(a)} + E{f(s"1/2(a + Z))},
where a = y5-1/2 and s is the standard normal distribution function. The ex-
pectation is to operate on the Taylor expansion of f(S1"2(a + Z)) about 5112a
with Z distributed as 91(0, 1). Thus, we have the boundary conditions

(9.4) - + a = a - 2a{1 - c1(&)} +f(sI2&) + -8f(2)(s"1/2&)
8 2!

+ .f(4)(s1/2&j) + .

(9-5) aV =O = 2a*a(&) + s112/(2'(81/2&) + 83/2f(3)(s1/2&) +49a Y!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f3("&
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A first approximation to the functions & and f for which the formal expansion
applies, is givenl by

(9.6) &I2(s) = 2 log s + log log s + log (a2/lr),
(9.7) f (x) = 2x-2 log x2.
Further terms can be obtained by the techniques used in [4], [6]. Presumably,
the same argument would apply here; that is, to show that the expansion for
&(s) yields a valid approximation to the optimal boundary as s -÷ 0.

In conclusion, we remark that (9.6) indicates the asymptotic form

(9.8) &(s) - \2logs, (s-o),
which is very different from the previous case, where we obtained & (s) 1 as
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