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1. Introduction

It has been observed that the Markov process on the boundary of diffusion is
related to the solution of a diffusion equation in a domain D, (alat)u = Au, with
Wentzell's boundary condition, Lu = 0. (Precise definitions of A and L are given
in section 2, (2.1) and (2.3).) In fact, to obtain the solution, it is sufficient to solve
(a - A)u(x) = 0, x e D and (X - L)u(x) = (x), x e OD for sufficiently many
so on the boundary OD, where a > 0 and X > 0 are fixed. This provides a class
of Markov processes on AD ([13], [14]).
A kind of duality between the way of obtaining the diffusion on T7 and the

way of obtaining a process of this class naturally leads to a conjecture that the
Markov process on the boundary is the trace on the boundary of the trajectory
of the diffusion. Moreover, a simple example suggests that this trace is described
by a time scale called the local time on the boundary t(t, w) in such a way that

(1.1) xZ(t, w) = x(t-1(t, w), w),
where x(t) denotes the path function of the diffusion, £(t) denotes the Markov
process on AD, and t-'(t, w) is the right continuous inverse of t [14]. In fact,
K. Sato proved that this is true in the case of reflecting diffusion with sufficient
regularities ([10], [11], [13]). Such a process on the boundary had not been
explicitly discussed because the boundaries of one-dimensional diffusion are too
simple.
However, the concepts of Markov process and local time on the boundary

of a diffusion process can also be considered apart from the setup based on
elliptic operator A and boundary condition L. In fact, a well-known correspond-
ence between excessive functions and additive functionals insures the existence
of a class of additive functionals which increase when and only when x(t, w) is
on the boundary, and we obtain a Markov process x(t, w) on AD by making
use of such a functional as before [8], [12], [13].
From this point of view, a part of the problem Feller solved in one dimension

can be formulated in the following way. Given a diffusion process M on a
domain D3, determine the class of all diffusions whose path functions coincide
with those of M before they arrive at AD, where jumps from the boundary are
permitted. In other words, let Mmin be a diffusion whose path functions vanish
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as soon as they arrive at OD. (Such a process is called a minimal process.)
Then, determine the class of diffusions whose path functions coincide with those
of Mmin before the arrival at OD.
As an approach to the problem, K. Sato [12] proved that a diffusion process

on D is determined by the minimal process and the Markov process on the
boundary, if there are no jumps, from the boundary into D, and if the path stays
on aD for a set of times having Lebesgue measure zero.

Recently, M. Motoo [7], [8] has made a deep analysis of the behavior of
path functions near the boundary, and obtained a result on this problem which
is almost complete, as far as his formulation is concerned. In fact, he decomposed
a given Markov process on D into three factors: the minimal process, the
Markov process on OD, and some quantities which determine the way of leaving
OD for D. He called a pair of the last two factors "a boundary system." More-
over, he found, under certain regularities, a necessary and sufficient condition
that a given process and a given system are the minimal process and the bound-
ary system of a Markov process on D, respectively.
We are going to make a simple survey of these results and describe the Markov

process on the boundary for the purpose of pursuing the problem of determining
all the multidimensional diffusions.
The author expresses his thanks to M. Motoo and K. Sato for their encour-

agement in preparing the manuscript.

2. The diffusion satisfying Wentzell's boundary condition

Consider an elliptic operator

1 N (X)+I(2.1) Au(x) = ., ( ) E d i (aii(x)\a(x) -i (x))+E bi(x) (x)(2.1)Au(x) av'(x) i,T1 'x Ox /9x

+ c(x)u(x), x e T,

where D is a bounded domain in an N-dimensional orientable manifold of class
C- with boundary OD consisting of a finite number of hypersurfaces of class C3.
The aii(x) and bi(x) are contravariant tensors of class C2,k and Cl k respectively.
The matrix {aii(x)} is symmetric and positive definite and a(x) = det (aij(x))-1.
The function c(x) is nonpositive and is in C°,k(T).
The set C(E) is the set of all real-valued continuous functions on E and

Cn(E) is the set of all functions in C(E) which are n-times continuously differen-
tiable in E. The symbols CnJ"(E) denotes the set of all functions in Cn(E),
whose n-th derivatives are uniformly Holder continuous with exponent k in E.

Let X be the smallest closed extension of A in C(D), where A is taken to be
defined on C2(D). (As we see in Wentzell [16] or [13], X actually exists.) A
diffusion process satisfying the equation

(2.2)
a u(t, x) = Au(t, x), x E D,
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is expected to correspond in an almost one-to-one way to a semigroup of non-
negative linear operators {Tt, t > O} on C(TD) which is strongly continuous at
t = 0, such that I T,jI < 1, and has a contraction of X as its generator, if the
process is regular with respect to the topology of TD. (We can drop the strong
continuity at t = 0, if the regularity at the boundary points is not required.) The
path functions of such a process are continuous except for possible jumps from
the boundary points. A. D. Wentzell [16] tried to determine all these semi-
groups and proved that a smooth function u in the domain of the generator of
such a semigroup satisfies a boundary condition of type

Lu(x) = 0, x E AD, where
(2.3) ~ N-1 O2U N-1 au

(2.3) Lu(x) = (a )3(x) (x) + o2i3(x) -t (x)

+ y(x)u(x) + 5(x) lim Au(y) + u.L(x) au (x)

+ UY) _U(X)N-1 OU \,(X vdy)
+I|{u(y)- u(x)- E- (x)( vx(dy).

In this expression {aii(x)} is nonnegative definite, e(x), a(x), -Mg(x) are non-
positive, and v2,(.) is a measure on TD satisfying

(2.4) v.(T) - U) <oo, v({x}) = 0,

fu {2xEf(Y)2 + {N(y)} V (dy) <00

U being an arbitrary neighborhood of x. The set {g(y), 1 < i < N} is a class
of functions in Ca(5) and is a local coordinate system in a neighborhood U, of x
such that ex(y) > 0 for all y E 1), such that AD is characterized by Ut(y) = 0
in U., and that t(y) = 0, (1 < i < N) if and only if y = x in U-. Finally,
(al/n) is the inward-directed normal derivative.
Now, we try to construct the semigroup determined by this boundary condi-

tion by extending a method of W. Feller [1] in one dimension. Let ga(x, y) be
the fundamental solution of
(2.5) (a - A)u(x) = v(x), x c D;

u(x) =0, xe OD.

Define an operator G." on C(D) by

(2.6) GTn0u(X) = ID ga(x, y)u(y)m(dy), u E C(D),

where m(E) is given by fE Va/(x) dxl... dxN for a set E in a local coordinate
neighborhood U of (xl, ... , xN). Then, Gm,," maps C(D) into C(D) and Cotk(1)
into C2(T3), and satisfies (a - 4)Gm,,"u = u, u E C(D). (Detailed properties of
GaT1n, Ha and p(t, x, y) are found in S. Ito [5] and [13].) The operators {Gam"'}
form a resolvent of a semigroup {Ttm"}, which satisfies all the conditions for
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the contraction semigroup of A, except the strong continuity at t = 0, and
{TM1'} corresponds to the diffusion satisfying (2.1), whose particle vanishes as
soon as it arrives at the boundary. For each so e C(OD) and a > 0, the equation

(2.7) ((a-A)u(x) = 0, x eD;
u(x) = (x), x E AD,

has a unique solution u, which is represented by

(2.8) u(x) = Ha)p(x) = faD Ha(x, dy),o(y),

where Ha(x, *) is a measure on AD with total mass at most one.
Now, let Ga be the resolvent of the semigroup under consideration. If Gau

is smooth, we obtain (a - A)(Gau - Gm,"u)(x) = 0 for x E D from

(2.9) (a - A)(Gau - Grn!nu) = 0.
Since Gm"'u vanishes at x E AD, the boundary value of Gau -GQInu is [GaU]aD,
where [V]OD denotes the restriction on aD of v. Hence, we have

(2.10) Gau - G,nu = Ha[Gau] 8D

Applying L on both sides and noting that LGau(x) = 0 at x E AD by assump-
tion, we have

(2.11) LGau - LGm,,"u = -LGm,,"u = LHa[GGu]aD.
If (-LHa1)- exists, we have [Gau]aD = (-LHaf)-(LGm1nU) formally, and hence
Gau = Gm"nu + Ha(-LHa1)-(LGm,11u) by (2.10). This indicates the method of
construction of Ga.
To justify the formal computation above, we make the following assumptions

on L, noting that for any u E C2(D), Lu(x) is well defined at each x E AD:
(L.1) Lu(x) is continuous in x E AD, if u is in C2(T);
(L.2) v.(D) = oo for x E AD, if 6(x) = ,u(x) = 0.

(L.2) is a regularity condition to insure the strong continuity at t = 0. (Compare
with a more general condition in theorem 6 of section 6.) Let Z(L) be a linear
subspace of C(D) such that C2(T) C Z(L) C Uk > o CO,k(TD), consisting of such
u that Lu(x) is continuous in x e AD. Consider L to be defined on Z(L) by
u -- Lu(x), x E dD, and define LHa by p -- (LHa)p = L(Ha.) on

(2.12) TZ(LHa) = f C(aD) IHa.p E Z(L)}.
Noting that LHasp(x) < 0 if G ZTD(LHa) takes a positive maximum at x G AD
by an easy computation, it can be proved that LHa has the smallest closed exten-
sion LHia in C(aD). The operator LGan, , defined by u -÷ (LGm",)u = L(Gmn' u) on
{u G (DD) IGm,'u E Z(L)J, is nonnegative, linear, bounded and it has a dense
domain in C(D). Hence it is extended uniquely to a nonnegative, bounded,
linear operator 7m" on C(D). From equality
(2.13) Hasp- Hpp + (a - )GT"lHpep = 0, v E C(aD),
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which is easily proved, follows

(2.14) LH,p- LTH-p + (a0-,)LGm'nHpp = 0, sp C(dD),

implying that S(LH) does not depend on a> 0. Denoting this common
domain Z(LHa), (a > 0) by X, we have the following theorem.
THEOREM 1. For arbitrarily fixed a > 0 and X > 0, assume that

(2.15) ((a-A)u(x) =O, x e D;
(X - L)u(x) = op(x), x e dD

has a solution u c Z(L) n C2(D) for each s in a dense subset of C(dD) (where
u E C2(D) means that u is twice continuously differentiable in D). Then, for each
a 2 0, LHp is the generator of a semigroup {TP, t > O} on C(OD). The assumption
is equivalent to the assumption that

(2.15') (X -LHa)4 = s

has a solution 4 E Zb for each so in a dense subset of C(dD).
(By "a semigroup on C(D) (or C(dD))," we mean a semigroup of nonnegative

linear operators on C(D) (or C(dD)) which is strongly continuous at t = 0 and
in which the norms of the operators are at most 1.)
We call the semigroup {T } on C(dD) with generator LH,,, the semigroup

on C(dD) of order a, and denote the Green operator by

(2.16) KXO = go e-'tiTasp dt, X> 0.

Moreover, noting that LHal is strictly negative for a > 0 by virtue of (L.2),
we have the following corollary.
COROLLARY. Under the assumption of theorem 1, LHa4 = so has a unique

solution for each (p E C(dD), if a > 0.
Hence, (-LHa)- which we write as Ko, is defined on C(dD). In fact, Koo =

fo fTpo dt converges and it coincides with (-LHa)-1s in this case.
Now, we consider a kind of the closure L of given L. Let t(L) be the set

of all functions in C(D) written in the form
m n

(2.17) u = ,GaYnu, + _ Hp pi, ui C(T)), pj c Z
i=l j=l

and put

mL _-Ug n
(2.18) Lu= ui + EH*0pj.

i=1 j=1

Then, Lu does not depend on the representation (2.17), but only on u by virtue
of the resolvent equation for GV"' and equation (2.13).

PROPOSITION. Suppose that C2,k(D) is contained in Z(L). Let
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Lu = Lu for u E Cl,k(T),
(2.19) LGghInu = LG%i"u for u e C(D),

LHa" = LHaep for so E Z.
Such an operator L is unique.

Moreover, if u e Z(L) satisfies, for some a > 0 and X > 0,

(2.20) ((a-{)u(x) = 0 for x e D,
(X - L)u(x) = 0 for x E AD,

then u 0. Under the condition of theorem 1, this is also true for a > 0 and X = 0.
THEOREM 2. Under the assumption of theorem 1, A restricted to the subspace

{u C TZ(L)[Lu = 0} is the generator of a contraction semigroup on C(D). (We
note that Z(L) is contained in T(A) by definition.) The Green operator Ga of the
semigroup is given by

(2.21) Gau = G7'tu + HaKaoLGJ 8u, u C C(JD).
Hence, the formal computation has been justified, reducing the problem to

the equation of type (X - LHa)6 = sp. The main part of the proof is to derive
that aGGau -- u as a -x,co, which is implied essentially by the condition (L.2).

Finally, we note that the equation of type (2.15) above is reduced to an
integro-differential equation given on the boundary AD by its nature, and that
the solution really exists in some important special cases.
The proof of the reduction and examples are given in [13].

3. The Markov process on the boundary-I

To the semigroup on C(dD) with generator LHa, (a > 0) of section 2, there
corresponds a Markov process on aD with right continuous path functions
which have left limits. We now consider the probabilistic meaning of the process,
which we call the Markov process on the boundary of order a (of the diffusion
on D). As a typical one we take LHO, whose resolvent Kx, (X > 0) is obtained
in the following way. Solve
(3.1) Au(x) = 0, x C D,

( - L)u(x) = p(x), x C dD,
for soC C(dD), and define Kx: p -* Kxso = [u]aD. On the other hand, the resol-
vent Ga of the diffusion on TD is obtained by solving
(3.2) (a -A)u(x) = v(x), x G D

Lu(x) = 0, x eOD
for v C C(D) and defining Ga: v -* Gav = u. Hence, there is an apparent duality
between the operations of obtaining these resolvents. This duality can be
naturally extended to Kg and GX, where KXso is obtained from (a - A)u = 0
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and (X - L)u = p, and GXu from (a - A)v = u and (X - L)v = 0. (Compare
with formula (5.3) of theorem 5.) Since the semigroup corresponding to Ga
describes the motion on D (and hence on TD by continuity), it seems to be
natural that the semigroup corresponding to K? describes the motion on aD,
that is, the trace on the boundary of the trajectory of the diffusion.

This interpretation is easily justified in a very special case by using one-
dimensional local time. Moreover, K. Sato [11] proved that this is also true
for reflecting diffusions in the following way.
Assume that the c(x) occurring in the definition of A always vanishes and

L = (a/ln); that is,
1 N a

X)
N O9uAu(x) = E (aii((x)x) + E bi(x) - (x),

Lu(x) = a u(x), x E AD.

Then, there is a Markov process M = {xt, W, Bt, Px, x E D} on TD with
transition probability

(3.4) P(t, x, E) = JE p(t, x, y)m(dy),

where p(t, x, y) is the fundamental solution of the Cauchy problem for
(a/at)u(x) = Au(x), x E D and (0/0n)u(x) = 0, x E dD. The set W is the space of
all continuous functions w(t) defined on [0, X ) with values in TD. The classes B
and Bt are respectively the smallest Borel fields of subsets of W which make
{x8, 0 < s < oo} and {x,, 0 < s < t} measurable. Here x,(w) = w8. The func-
tion P,(.) is a probability measure on B such that P,(xo(w) = x) = 1 and
Px(xt(w) e E) = P(t, x, E). The process M has the strong Markov property.
We call M the reflecting diffusion determined by A. Define

(3.5) tl(t, w) = -f XD,(x8(w)) ds, p > O

where XDP is the characteristic function of the set Dp = {xld(x, AD) < p}, where
d(x, dD) = infyeOD d(x, y), and d(x, y) is the distance between x and y induced
by {aij(x)}. The number d(x, y) is the infimum of the length of all curves C
in T5, which connect x and y and of class C' piecewise. The length of C is given by

(1 /N dxi(X) dxi(X) 1/2
(3.6) JO 17jy1 aij(x(X)) dzX d dX,

where C is given by C: X e [0, 1] -- x(X) e D. Then, K. Sato proved the follow-
ing theorem.
THEOREM 3. There is a sequence {pn \, O} such that with probability one

tPn(t, w) converges to a nonnegative, continuous additive functional t(t, w) of M,
uniformly on any compact time interval. Further t(t, w) increases when and only
when xt(w) e aD and, with probability one, it increases to Xo as t -. oo. Finally
t(t, w) satisfies
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(3.7) E.(t(t, w) = f0 ds fLD p(s, x, y)fni(dy).

Such an additive functional is unique up to probability 1.
(The symbol mi denotes the surface element on aD induced by {aii(x)}. The

precise definition is given by S. Ito [5] or [13].
We call t(t, w) the local time on the boundary of M. The proof is based on the

technique developed in McKean-Tanaka [6] and on a precise estimation of
p(t, x, y).

Since t(t, w) increases when and only when xt(w) is on dD, we obtain a process
on the boundary by putting x(t, w) = x(t-1(t, w), w), where t-1(t, w) is the right
continuous inverse sup {sjt.(w) < t} of t(t, w). More precisely, let W be the
set of all functions iv defined on [0, oo) taking values in dD, which are right
continuous and have left limits at each t e [0, oo). Let xt(zl) = Wt and denote
by B and Bt the smallest Borel fields which make {Xt, 0 < t < oo} and
{X., 0 < s < t} measurable respectively. Let P. be the probability measure on

(W, B) defined by
(3.8) Pz(B) = Pz(Xt-1(t,W), (w)) belongs to B as a function of t),

B e B, x E OD.
Then, we have theorem 4.
THEOREM 4. The process M = {ft, W, Bt, Px, x e dD} is a strong Markov

process on dD. The transition probability of M induces a semigroup Tt on C(dD)
with generator LHo. The semigroup {TP} and its resolvent operator Kx are given as
follows:

Pt,(x) = Rx(po(xt)) = Ex(Qp(x(t71(t, w), w))),
(3.9) K)sp(x) = fo e-XtP,,p(x) dt = E. (fo e-xt(t.w)#p(xt)t(dt, w))

Hence, the Markov process on the boundary of order zero is the trace on dD
of the diffusion described by the time scale t-'(t, w), completing the justification
of the probabilistic interpretation.
To prove this, we put

(3.10) v(t, x) = E, (f0f e-Xt(8) o(x8)t(ds)) po E C° k(aD)

and prove that v(t, x) satisfies

ad- A + a) v(t, x) = O,

(3.11) (X-d-)v(t,x) = (x),

lim v(t, w) = 0.
t JfO

Then, by a result on differential equations (see sections 2 and 8 of [13]),

(3.12) u(x) = lim E. (f0f e-xt(a)(xs)t(ds))
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exists and satisfies
(a - A)u(x) = 0,

(3.13) (A-dn) u(x) = 'p(x), x E dD,

implying by theorem 1 that there exists a semigroup on C(aD) with generator
LHa for any a > 0, and that u must coincide with K°so.

Moreover, we can construct the diffusion determined by A, and

(3.14) L*u(x) = y(x)u(x) + 6(x) lim Au(y) + M(x) a u(x) = 0,

-y and a e C2'k(aD),
using t(t, w). In fact, by a time change, and killing induced by

2[(t, w) = t + Jft5(x.(w))It(ds, w),
(3.15) t

b(t, w) = ft 1y(x8(w))It(ds, w),

respectively, we obtain the corresponding Green operator G* by

(3.16) G*u(x) = E. (f0 u(xs)eaob(8)i(ds))
The proof relies on a little more general setup for time change and killing and
a computation similar to that in the proof of theorem 4.

4. Markov process on the boundary-II

We have introduced the Markov process and the local time on the boundary
of a diffusion, which is determined by an elliptic operator A and L. But, apart
from this setup, these concepts should be considered also for general diffusion
processes. In fact, for a diffusion process M, for which jumps from boundary
points are permitted, we define Gm," by

(4.1) G.'nu(x) = E. (lffD(W) e-atu(xt(w)) dt)2

where qaD(W) is the time when path w first arrives at dD; that is,
(4.2) aaD(W) = inf {t > Olxt(w) E aD} A P(w),
t(w) being the life time for w. By M we mean a usual Markov process M
{W, Bo, P., x e D U {A}}, with sufficient regularities. The path functions are
assumed to be continuous except for jumps from dD into D and jumps from TD
to the death point A. Also, t(w) is the life time in the usual sense: wt = A, if
t > t(w), and Wt E TD if t < t(w).
Then, {Gam'n} satisfies a resolvent equation and determines a diffusion process

Mmin such that the path functions coincide with those of M before they arrive
at dD, and vanish as soon as they arrive at the boundary. We call Mmin the
minimal process of M. Assume that the transition probability of M induces a
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semigroup {Tt, t > 0} on C(D), and take a strictly positive u E C(T). Then,
ua(x) = Gau(x) -Ga'"u(x) is regularly a-excessive with respect to M. Hence,
there is a unique nonnegative, continuous additive functional tu(t, w) such that

(4.3) ua(x) = E. (JU e_aat-(, w)).

The functional tu(t, w) increases only when xt(w) is on OD. Although tu clearly
depends on the choice of a and u, it can be proved that, for another such pair
a' and u', there is a bounded positive function p on aD such that

(4.4) tt(t, w) = f0 sp(x8(w))t-.'(ds, w),

so(x) being bounded away from zero. Thus, tu is also represented similarly by tu'.
So, denote by T the set of all additive functionals which are equivalent to one
tu in the sense of (4.4). Then, all tu' are contained in T. Moreover, in the special
case of the reflecting diffusion, the local time on the boundary introduced by
theorem 3 is in the class, because we have by an easy computation,

(4.5) t(t, w) = It{(x.(w)) tu(ds, w),

where 4, = (a/On)Gam,' > 0. Hence, it seems natural to call a member t of T a
local time on the boundary of the diffusion M, and
(4.6) X'(W) = xt-1(t,w)(w)
a Markov process on the boundary of the diffusion M. The function t-1(t, w) is
the right continuous inverse of t(t, w) as in section 3.
Of course, the local time and the Markov process on the boundary depends

on the choice of t in T. But, this dependence corresponds exactly to the situation
that in the case of section 2, L is not uniquely determined by the diffusion. In
fact, the boundary condition Lu = 0 and L'u = 0 coincides if L' = o(x)L,
where So(x) is a bounded positive function on AD and is bounded away from
zero.
Now, from this point of view, the problem we considered in section 2 can be

formulated as follows. Given a diffusion process M on D5, determine the class of
all diffusion processes whose path functions coincide with those ofM before they
arrive at the boundary; in other words, determine the class of all diffusion
processes which have the minimal process Mmin in common with M, where
jumps from the boundary are permitted. A formal consideration, combined with
an observation of analytical representation of Ga. in (2.19) suggests that the
behavior of a path function of such a process is determined by three factors:
the behavior before it arrives at OD, the trajectory on OD, and the way of leaving
the boundary into D. If we take this for granted, then the above problem
reduces to find all the Markov processes on the boundary and the ways of
leaving OD which are consistent with the given minimal process Mmin.
As an approach to the problem along this line, K. Sato [12] proved that the

diffusion process M on D3 is determined only by the minimal process Mmin and the
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Markov process on the boundary, if (i) there is no jump into D and (ii) there is no
stay on OD for a set of times with positive Lebesgue measure, that is

(4.7) E. (J*, xOD(x.(w)) ds) = 0,

under certain regularity conditions (which are mainly concerned with the kernel
ga(x, y) of Ga with respect to a certain measure). This is natural in view of the
analytical treatment in section 2. In fact,

(4.8) Gau = G,, u + HaKQLTGZ"u,
where G.'n and Ha are determined by M-in and Ko by the Markov process on
the boundary. Here LG_"' is given by

(4.9) JU:"'u = O(x) lim AGm,nu(y) + ,u(x) dn G."u(x)

+ Gm'nu(y)v (dy),

= -5(x)u(x) + ,u(x) a- Gminu(x) + f Gmu(y) v.(dy)

noting that GVt'u vanishes on OD. Conditions (i) and (ii) correspond to
v-(-) = 0 and 5(x) = 0, respectively. Moreover, we can replace ,u by 1 by
replacing L by some other operator without changing the diffusion. Then, we
can consider LGQln = (O/On)GV'"u, and hence Ga is determined by Mmin and
Ko. Here, we considered (a/On) to be determined by Mmini, since (0/On) is given
by {aii(x)}. Sato proved the result by making use of a time reversion of diffusion
processes, apart from the analytical setup above.
As for the general case, M. Motoo [8] recently obtained a result on this prob-

lem, which is almost complete as far as his formulation is concerned. We make
a survey of his result in the next section.

5. A probabilistic approach by M. Motoo-I

The content of sections 5 and 6 is based on M. Motoo [7], [8]. However,
notations and formulations are slightly modified for our present use. Here, the
domain T3 is assumed only to be a compact metric space. Let M =
(W, Be, P., x E D3 U {A}) be a strong Markov process on TD with right contin-
uous path functions having left limits, and let M be quasi-left continuous: if
{on} is an increasing sequence of Markov times and a = limn- a,,, then
Pz(X, = lim,x Xln 0 <co) = Px(a < Xo). Here, the Markov times and strong
Markov property are defined on the basis of Borel fields F = n BW, Fe =
{AIA e F, A n {a < t} E F*, for any t}, F, = nY Bt, where By and Bt' are the
completion of B and Btwith respect to uP(*) = fl /A(dx)P.(*), being a bounded
positive measure on 13. We take P. to be extended on B. We assume that M
has a reference measure v on D; that is, there is a measure v on TD such that
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u(x) = 0 almost every x with respect to v implies u = 0 for any a-excessive
function u of M. Moreover, we assume that every point of OD is regular to dD
with respect to M; that is, Px(O-aD = 0) = 1 for x e OD. By a Markov process
on D, we understand that the conditions for M above are always satisfied,
unless it is otherwise specifically stated.

Let a* = aaD be the hitting time to aD given by (4.2). We assume that path
function xt(w) is continuous before gaD(W) with P. probability 1. Let M-in =
(Wmin, B,, P Tn x G D U {A}) be the minimal process of M, that is, the process
on D obtained from M by the killing at o- = 0fdD. The Green operator of Mmin
is given by (4.1). The kernel Ha is the hitting measure of M to aD of order a:

(5.1) Ha(x, E) = Ez(e-aexE(xr)),
which is determined by Mmin by the quasi-left continuity of M.
We define t = ti' the local time on the boundary of M for a fixed ao > 0, and

define Markov process on the boundary M by xt(w) = xt-l(t, w) as in section 4.
The semigroup and the Green operator Kx are given by (3.9) also in this case.
Then, Motoo [7], [8] has proved the following.
THEOREM 5. (i) Both M and Mmin are strong Markov processes on dD and D

respectively, and have quasi-left continuity and reference measures.
(ii) Assume that Mmin satisfies the following conditions:
(Mmin.1) Gaj-u e C(D), if u e C(D), and Ha(p E C(D), if so C(dD);

(Mmin.2) Gm.1131 can be extended to fIlau E C(D) for any u E C(D) and a > 0.

Then, resolvent Ga of M is given for u C B(D) by

(5.2) Gau(x) = Gm,nU(X) + HaKO(-B-u + tSfau + ID v(dy)Gjnu(y))(x),

where B(E) is the set of all real-valued bounded measurable functions on E, and
where - S(x) and ,u(x) are nonnegative functions in B(dD), vx(-) is a measure on
D such that 7r(x) = fD Gam, (y)vx(dy) is finite, and -8(x) + ,(x) + 7r(x) = 1,
except the set of points E C dD such that Ex (fo XE(Xt) dt(t, w)) = 0. The op-
erator Ko' is a special case of K> defined by

(5.3) Kxap(x) = E. (fo e-at-xt(t)Xp(xt) dt).

(Similarly, Gx is given by G6u(x) = Ex (f0 e-atXt(t)u(xt) dt), which is considered
to be dual to KM in a certain sense.)

(iii) A system (, 8, Iu, v) called the boundary system is unique in the following
sense. If M and M' are processes satisfying the conditions for M above, and have
boundary systems (A, 8, ,I, v) and (M', 6', ,', v') respectively (more precisely, the
space of path functions and the assigned Borel fields of M and M' are common,
though this is not an essential restriction). Then M = M', if and only if M =

MA', and 8 - 8', ,u- ju' and fDf(y)(vx(dy) - v'(dy)) belongs to the common null
space of the Green kernel of M = M'.
The use of 1a was introduced by K. Sato [12] in a different setup. He con-
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sidered this as a dual notion of Ha on the basis of time reversion. Motoo gives
good probabilistic reasons for the conditions Mmin.2 in [8].
The representation (5.2) exhibits a complete correspondence between the

analytical expression (2.19) in section 2, if we consider

(5.4) fIau(x) = lim 6't,u(y)

as a normal derivative of Gm'ju(y) at x. Here, vx( ) is the restriction to D of v.( )
in section 2. In fact, the mass on OD of v.(-) has nothing to do with integrating
a function of type GQT'u; all the influence of vx(*) on OD is contained in Ko.
In this case the probabilistic meanings of 6, ,, v are clear by the following con-
struction. Here, in order to describe the situation, we sketch an outline of the
proof of (5.2), though it is just an incomplete repetition of a part of Motoo's
work [7], [8].
By an additive functional 1(t, w) of M, we understand a [0, m] valued func-

tion defined on [0, oo] X W, nonnegative, right continuous in t, continuous at
t = ¢, finite for finite t almost surely, Ft-measurable in w for fixed t, and satisfying

(5.5) W(t + s, w) = 9A(t, w) + W(s, wI).
Here w+t is the shifted path in the usual sense w,(s) = w(t + s), for all s. The
functionalff.W given by (f.2)(t, w) = fof(x8) dA(s, w) is also an additive func-
tional for nonnegative f E B(D). For a continuous additive functional W of M,
for which E, (fo e-aI d!R(t)) is finite, there exists a unique additive functional
&L such that

(5.6) E_ (fo' e-1 dfla) = EU (f| e-at d9h(t)).

Motoo called this (L the a-th order sweeping out of 2W. Then, t is the ao-th order
sweeping out of the additive functional

(5.7) t(t, w) = t A i(w) = f|A(w) 1 ds.

Similarly, we define to and ti, as the aio-th order sweeping out of XD t and XaD t.
Then, we have clearly t = to + t1 and XaD * to = 0.
To see the structure of to, consider a Markov time p = p(k) such that

Pz(p > 0) = 1 for x E OD and

(5.8) p < A UD,. A inf{tId(xo, Xt) > k}

where aD, is the hitting time to Dk = {x G Dld(x, dD) > l/k}. Define

(5.9) 1 = ai(k) = OoD, pn = pn(k) = a. + p(w+n),
0n+1 = ±n+1(k) = pn + (W+Z).

Then, we have the following lemma.
LEMMA 1. For a continuous additive functional such that XaD -2 = 0, and an f

in B(D) such that f(xt_) exists and lf(xt) - f(xo)J < l/k if 0 < t < p(k), we have
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(5.10) lim E. E e-aP-(k)f(xp,3(k)_)U,.,I(xp0(k)))

= E, (Jf e-af(xt) d%) for any a, # > 0

where up,%(x) = E. (fo e-t d2l(t)).
Now, consider the set of all discontinuities of t-1(t, w) = r(t, w),

(5.11) T = {s > 01r(s-) < r(s), T(s-) < r}.
Such discontinuities occur because the path function xt(w) = w, leaves OD and
spends time in D for the time interval (r(s -), r(s)), and such leaves are divided
into two classes: one induced by jumps from OD, and one induced by continuous
leave from dD. In fact, if we put

(5.12) Td = {1X7(-)- F X,(.-), S E T},
T, = {,X7(8)- = x( T},

then, by making use of {pn.} we have,
(5.13) {T(S-)S E Td} = {tJxg, e OD, xi e DI;
(5.14) lim E-( e aPX8D(X -)f(xp,-)xD(xP,)h(xP.))

= E. ( e-ar(- )XdD(X(.8-) - )f(Xr(.-)-)XD(XT(8-))h(xa(-_))

(5.15) lim E. , e-ap'XD(xp.-)f(xp.-)h(,)mn(p)

E. eaT(8)f(x,(.-))h(x,(8_)) 17(8) e dt),
wheref, h G B(D) for (5.14) andf, h e C(D) for (5.15).
Now, we use the L6vy system of M introduced by S. Watanabe [15].
LEMMA 2. There exists a pair (P, L) of a continuous additive functional L and

a measure P(x, *) (not necessarily bounded) such that P(x, {x}) = 0 and

(5.16) E.( f(x8_, xJ)) = E.(f0t f P(x., dy)f(x., y) dL(s))^

where f(x, y) e B(T X D) such that f(x, x) = 0. Moreover,

(5.17) E., E e (8)f(x8_, X.)) = E (f" e-(8) fD P(x8, dy)f(x., y) dL),

where 51 is a continuous additive functional and ,q is a Markov time.
Such (P, L), called the Levy system of M, is unique in the sense that Pf-L is

unique up to the equivalence of additive functionals for any such f cited above.
Then, applying lemma 2 to f(x, y) = XaD(x)f(x) XD(y)Ga(lf1(y) in (5.14) and

noting (5.13), we have
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(5.18) lim E. (E e'ZPUX8Df(xP.-)XDh(xP3))

= E, (fo e-atX8D(Xt)f(Xt)P(XDh)(Xt) dL),

where P(f)(x) = fD p(x, dy)f(y). Thus, we have, by lemma 1, (5.14), and (5.15),

(5.19) E, (fO e-atf(xj) dto(t)) = E. (fo' e-atlf(Xi) d(XDJ)ao(t))

= lim E(, e-aPnf(xp._)Gam.'1(xp.)

= lim EZ(E e-aP-f(xp._)(x8D(xp.-) + XD(Xp- ))Ginl(Xpn))

= E. (fo e-atXaD(xt)f(xt)P(XDGaM, 1)(xt) dL)

+ E. (,eaT(f(xTcB_)) f(8) e-a(1t r(8 ) dt, f E C(D).
Since

(5.20) t3(t, w) = X8DP(XDG.i l1)L(t, w)
is clearly a continuous additive functional majorized by to(t, w), the difference
t2(t, w) = tO(t, w) - t3(t, w) is also a continuous additive functional such that

(h eaf(xt)d2t) - E -dtY(5.21) Ez\Joea>(t dt2(t)) =-E ( ,e aTc8)f(xT(8_)) (a) e t'o( /()d)
Hence, there are nonpositive functions -5, ,, 7r in B(OD) such that

(5.22) t1= -at, t2 = ,t, t3 = 7rt, -S+,u + 7r = 1,

where 6, Iu, 7r are determined uniquely except on the set of points E on aD such
that E. (fo XE(Xt) dt) = 0. Define a measure v.(*) by
(5.23) v.(E) = P(xD.Go'1)-'(x)P(x, D n E), E E BD.
Then, by a computation similar to (5.19), and noting that (5.20) and (5.22)
hold, we have

(5.24) limE,EeX(Df(eXaD xp.-)XD-h(xP,)k-*r 1/

= E. (f1 ealf(xt) (fD v.Y(dy)h(y)) dt3(t)),

(5.25) lim E, (E e-zaPXD-f(xp -)h(xp.)Ga1nl(xp.)k-*o= (d

= E. (f7 calf(x1) h(x1) dt2(t)).
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Now, the proof of (5.2) is obtained in the following way:

(5.26) Gafu(x) - G,, u(x) = E (fo e-atu(xt) dt(t))

= Ez (JO e-atu(xt) d(XaDt)) (t) + Ex (Jf e XDt(XDUt)ao(t))
= E. (f| e-atu(xg) dti(t)) + lim Ex e-apnEZPn (fl XDU(Xt) d(t)))

= E. (f. e-atu(xg)(-6(xt)) dt(t) + lim E. (T e-ap-Ga Inu(xpn)'o ~~~~Ik-*o \'1I
Since

(5.27) Gam1u(x,p) = XaD(Xp.-)Ga' u(xp.) + xD(Xp.-)Ga' u(x.)
= XaD(XP,.-)Ga 'U(Xp,) + XD(XP,-)fI1au(xp.).Gman 1(xp),

we have, by (5.22), (5.24), (5.25), (5.26),
(5.28) Gau(X) - Gam"u(x)

= E. (f|I e-at{(-5u)(xt) dt + l2aU(Xt) dt2 + fD vx,(dy)G.T"u(y) dt3),

= HaK° (bu + ijfIau + ID P(dy)G.TDu(y)),
completing the proof.

6. A probabilistic approach by M. Motoo-II

The boundary system (M, 5, ,u, v) of M in section 5 determines the trajectory
of path functions of M on aD and the way of leaving aD into D; therefore it
determines M by (5.2), combined with the minimal process Mmin of M. Motoo
found more detailed properties of the boundary systems, which, except for the
use of the regularity conditions (Mmin.3), (Mmin.4), and (B.5) in theorem 7, com-
bined with the properties in theorem 5, almost characterize the consistency
condition for boundary systems for a given minimal process Mmin.

It can be proved that right-hand sides of

(6.1) ®) f(x) = lim ,B 12a,+0Hf(x)

= lim 13f,1|a+O(x, dy) faD Ha(y, dz)f(x, z)

(6.2) ®of(X) = lim )af(X)
a-0

exist for nonnegative f in B(D X OD) such that f(x, x) = 0 for x e dD, as
monotone limits. We have also

_Haf(X)_ faD Ha(x, dy)f(x, y) x E D.(6.3) @~af(X) =- ) - Gm1l(x)
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Similarly, we have the existence of 0 and the following relations:
(6.4) 0(x) = lim aft a(I - Ho)l(x),

a-x

(6.5) 0(x) =
1 H1 (x) x E D.G~~(x)

The killing functional fl of M is defined by
(6.6) Px( < t) = P.(& < t) = ( (t)),
where t = inf {slX,(,) = Al. Both Px and Ex correspond to M, and (P, L) is the
L6vy system of MA. Then, we have the following result.
THEOREM 6. Under the conditions of theorem 5 for M and Mmin,

(B.1) K'/(AIfaXaD)(X) = fLD KE(x, dy)M(y)(ft.xaD)(y) = 0;

(B.2) Pf fL majorizes (A(gof + vHof) -t as an additive functional for non-
negative f in B(TD X dD) such that f(x, x) = 0;

(B.3) ft. majorizes (Ai0 + v * 0) * t;

(B.4) P. (f {1- 1(i) + vi(D)} dt = oo) = 1 for x e dD, and

E = {x E aDI6(x) + A(x) > 0}.
Statement (B.1) follows from the direct computation of GaXaD. This means

that there is no reflection from pure exit points. To obtain (B.2), we have

(6.7) E f('0 Pf(*.) dL(s)) = z ( E f(8-, X.))
= Ex ( _ f(X1(8.),i Xr(s))), x E OD,

by definition. Then, divide the discontinuities of *t into two classes; one induced
by jumps of path functions of M from aD to OD and the other induced by jumps
from 3D into D and continuous leave from aD. Thus,

(6.8) Ex (,f(x(-)-, xT(s))ea7(8)) = Ex (f| ea'"XJD(Xt)P(XaD*f)(x,) dL(t))

+ E. ( f(x7ca_)_, XT(S))e).
The essential part of the proof lies in

(6.9) E. ( Ff(x1(8)_, XT(S.))(1 -e ( (8) (8)))ea(8)

= E. (f e-atI3(WtaI+Haf + v(G'i+HLf)) dt(t)),
which is derived by a similar computation to (5.26) using (5.14)-(5.15). Then,
by letting o , we have

(6.10) EX(, f(xr(s)-, xT(S))e aT(8) = E. (f0 eat(,Aaf + vHaf)(x,) dt(t)).
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Hence, we have

(6.11) .P (Jo e-a1Pf(x.) dL(s)) Ex (fo e-aLXaD(X1)P(XD-f)(xt) dL(t))

+ Ex (fJ e-a'(Mgaf + vHaf)(xg) dt(t)).
Then, noting that r(s) is a Markov time and satisfies r(s + t) = r(s) + T(t, w1jS)),
we have, by (6.8) and (6.11),

(6.12) Ex (e7 e-a(8)f(x?(s.)., XT(S))_)

= E (fo() e -UXaD(X.) * P(XOD .f) (x.) dL(s))

+ Et (JOt e-as(Agaf + vHaf)(x.) dt(s)).
Now, letting a -+ oo, we obtain

(6.13) B. (fot Pf(x8) dL(s)) = E. (f () XaD P(XaD f) dL)

+ Ez (JO (M@of + vHof)(x8) ds),
which implies (B.2), since f is nonnegative. Statement (B.3) is implied by

(6.14) P?(x < s) = P(, < T((s), x{- E aD, t < mo)

+R. (f8 (M.o+ v.0) dt),

which is proved in a similar way as the proof of (B.2). The second term concerns
killing which is caused by traveling through D, and the first is caused by traveling
on aD. Statement (B.4) assures a kind of regularity of boundary points. In fact,
a little stronger condition "a(x) + ,(x) = 0 implies v.(D) = " is exactly the
condition (L.2) in section 2. The converse of theorems 5 and 6 is formulated as
follows.
THEOREM 7. Let Mmin be a Markov process on D, and let (FA, 6, ,u, v) be a

system, which satisfies the conditions in theorems 5 and 6. Assume that Mmin
satisfies

(Mmin.3) {Th,u, u E C(T)} is dense in C(T);
(Mmin.4) Mmin can be extended to a stopped process MI on D at AD.

Moreover, we assume that the resolvent KR of MA satisfies

(B.5) Kxo E C(dD), if p E C(OD), or if (p = (5 + ,AIa + vG:"t)f for some
fe C(D).

Then, there is a Markov M process on D, whose minimal process is Mmin and
whose boundary system is (4, 5, A, v).

(By a stopped process MI on D we mean a Markov process on T5 as described
at the beginning of section 5 such that P°(xt = x, 0 < t < oo) = 1 for any
x E aD. This condition is easily verified in important cases.
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To prove this, Motoo constructs kernels Ko on the basis of a delicate prob-
abilistic observation and then Ga on C(ZT). This latter is proved to correspond
to the desired Markov process M by making use of the Hille-Yosida theorem.
Condition (Mmin.3) and (Mmin.4) are assumed for the use of Hille-Yosida theorem,
and (Mmin.4) is the regularity condition for Mmin. The essential part of the
consistency condition between Mmin and the boundary system consists of those
in theorems 5 and 6.
As we have seen above, Motoo's result seems to be almost final as far as

his formulation is concerned (excepting the betterment of some regularity
conditions). Hence, the construction of path functions in the sense of Ito-
McKean [4], and the correspondence between the quantities of concrete analysis
are left to be solved.
On the other hand, the case we have considered above corresponds to the

"two regular boundary cases" in one dimension, while nothing remarkable is
known corresponding to the classification of boundary points or boundary condi-
tions for nonregular boundaries. Only the result of Feller [3] in the case of
Markov processes with countable states is at hand. As for this problem, it
seems to be reduced, as Motoo suggests in [8] also, to obtain the exit and
entrance boundaries for given minimal process, and to make suitable identifica-
tion of certain parts of these boundaries, and then to determine the class of all
consistent boundary systems on the boundary thus constructed.
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