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1. Introduction and summary

This paper arose from the problem of proving the asymptotic normality of
linear combinations of order statistics which was first posed by Jung [9]. In the
course of this investigation, several facts of general interest in the study of mo-
ments of order statistics, which either had not been stated or had not been proved
in their most satisfactory form, were established. These are collected in theorems
2.1 and 2.2 of section 2. Briefly we show in theorem 2.1 that any two order sta-
tistics are positively correlated, and in theorem 2.2 we give necessary and suffi-
cient conditions for the existence of moments of quantiles and the convergence
of the suitably normalized moments to those of the appropriate normal distribu-
tion.

Section 3 contains an “invariance principle”’ for order statistics more elemen-
tary than the one given by Héjek [7] but requiring fewer regularity conditions
and adequate for our purposes in section 4. In an as yet unpublished paper,
J. L. Hodges and the author give another application of this prineiple in deriving
the asymptotic distribution of an estimate of location in the one sample problem.

Section 4 contains the principal results of the paper. We consider linear com-
binations of order statistics which do not involve the extreme statistics to a more
significant extent than the sample mean does. For this class of statistics we estab-
lish asymptotic normality and convergence of normalized moments to those of
the appropriate Gaussian distribution.

2. Some properties of moments of order statistics

Let X, - - -, X, be a sample from a population with distribution F and
density f which is continuous and strictly positive on {z|0 < F(z) < 1}. Then
F-1(t) is well-defined and continuous for 0 < ¢ < 1, and for those values of ¢t we
may define ¢(f) = f[F~(t)]. We denote by Z,, < --- < Z, , the order statistics
of the sample.

The following two theorems will be proved in this section.

THEOREM 2.1. Suppose that E(Z%,) + E(Z%,) < . Then,cov (Zin,Z;nx) = 0.

THEOREM 2.2. Suppose that lim,—,. |z|[1 — F(z) + F(—2z)] = 0 for some
e > 0. Then,
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(a) for any natural number k > 0,0 < a < 1, there exists N(k, a, €) such that
E(Z},) existsforan < r < (1 — a)n and n > N(k, a, €). Conversely, if E|Zt,| <
o for some k, n, then for some ¢ > 0, lim;—« |2|(1 + F(—2z) — F(z)) = 0.

(b) Then E[Z,, — F-Y(r/(n + 1))]* = n=%26*(p,)ux + o(n~*/2) uniformly for
an < r < (1 — a)n, n sufficiently large, where (i) p, = (r/n), (i) o%(p.) =
[(r/n)(1 — rv/n)(r/n) ]2, and (iii) px is k-th central moment of the standard normal
distribution.

ReMarg. Theorem 2.1, though useful and interesting, as we shall see in
section 3, seems not to have appeared in the literature previously but was inde-
pendently proved by Lehmann in a work, as yet unpublished, on positive de-
pendance. Theorem 2.2(a) is trivial but seemed worth isolating. Theorem 2.2(b)
has been proved in the literature, under assorted regularity conditions, by several
authors, including Hotelling and Chu [3], Sen [11], [12], and Blom [2]. The last
author obtains better estimates of the error than o(n*/?) under various con-
ditions of differentiability and boundedness on F—! and stipulations of the exact
form of the tails of f. However, under the given minimal assumptions for k = 1,
he shows that the error is 0(n~1/?) which is insufficient for our purposes.

To prove theorem 2.1 we require a lemma stated without proof in Tukey [13].
The elegant simplification of the author’s original proof, which we present below,
is due to Dr. S. S. Jogdeo.

LemMma 2.1. Let X, Y be random variables such that E(X?) + E(Y?) < » and
E(Y|X) is a monotone increasing function of X a.s.; that is, there exists a mono-
tone increasing function s(x), such that s(X) is a version of E(Y|X). Then,
cov(X,7) > 0.

Proor. Let s(z) = E(Y — E(Y)|x). Then since s(z) is monotone increasing
and E(s(X)) = 0, there exists a number ¢ such that s(z) <0 if z < ¢ and
s(z) > 0if z > c. But then, it is easily seen that

2.1) cov (X,Y) = E{XE[Y — E(Y)|X]}
= E[(X — ¢)s(X)] > 0. Q.E.D.
We now prove theorem 2.1. By lemma 2.1 it suffices to show that if 7 < j,
E(Zx »|Z: ) is a continuous monotone increasing function of Z;,. It is well known
that given Z; ., Z;,, is distributed as the (j — ©)-th order statistic of a sample of

n — 1 from a population with density f(z)/(1 — F(Z;.)) for x > Z;, and 0
otherwise. Then, ‘

2.2) E(ZinlZ: )

. 1
= G- 0 (29 [ F1a - F@n + FE o - o

1

by a standard representation of the expected value of an order statistic. (See
Wilks [14], p. 236). Monotonicity of E(Z;.|Z;:.) now follows readily since
(1 — s)t + s is monotone in s for 0 < ¢ < 1. Left and right continuity of
E(Z;.\Z;,) also is a consequence of (2.2), the continuity of F and F-!, and the
dominated convergence theorem. Theorem 2.1 is proved.
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We now proceed to the proof of theorem 2.2(a). The given condition is equiv-
alent to

2.3) limy—0 8Y¢F-1(s) = 0 = lim,—; (1 — 8)VeF-1(s).

Let j be the next largest natural number after 1/e. Then |F-(s)|* <
M*[s(1 — s)]~*. Upon again applying the standard fact that F(Z, ,) has a beta
(r,n — r 4 1) distribution we find that

(2.4) EiZ, .k =r (:L) Ll |F=1(s)|*s™1(1 — §)» ds

1
< Mt (;‘) ﬁ ski-1(1 — g)n—r—ki ds,

Theorem 2.2(a), part 1, now follows upon taking N(k, a, ¢) = [kj/a] + 1 where
[x] is the greatest integer in z.

Conversely, if E|Z, ,* < « for some XA > 0, then lim;—« 2*P[|Z, .| > z] = 0,
which implies that

(2.5) limgse 2 f " P11 — F)~ dF(t) = 0.
Choose ¢, such that F(f,) > 0. Then
@6) [P0 - FE)ydFQ 2 Fow) [ = FO)~ dF©)

—_ n—r+l1
= (l(n = (rxll 1)+ '
We conclude that
2.7 limg e 2V —r+1D(1 — F(z)) = 0,
and similarly,
(2.8) lim; e 2 CHDF(—2) = 0.

Theorem 2.2(a) is proved.

The proof of 2.2(b) proceeds by a series of lemmas.

LemMaA 2.2. Let Uyn < -+ < Up,x be the order statistics of a sample from the
uniform distribution on [0, 1]. Let

2.9) gur(@) = k (’;) P11 — gy, 0<a<l1

denote the density of Uk,.. Let
(2.10) gni(®) = 712, 1(2n~ V2 4+ k(n + 1)7Y).

Then for every o > O there exists v(a) > 0, M(a) > 0 such that gri(z) <
M(a) exp — (r(a)z?) foran <k < (1 — a)n.
Proor. By Stirling’s approximation,

(2.11) k (Z) < Onn 12| —G=1/2(p — k) —l—B)+1/2]

where C is independent of n, k. Let p, = k/n. Then,
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(2.12) gax(z) < Cp¥*(1 — pu)~'2ps ¥(1 — pa)r*
— "Pn = —1/2 —
[""2“+(n+1)] [1‘( /x+<n+1>>] k
for
knl/2 k
(213) (n + 1) < X < n“2 (1 - (n—_'_l))’

Hence, after some simplification we obtain
(2.14) g:,k (2)

it o+ 5 (1 62 )

where e, = n'?p,(n + 1)~tand —k(n + 1) < n V22 < (1 — k(n + 1)7).
Consider the funection
(2.15) 9y, & = M~<(1 + ya=")*~<(1 — yb~1)® exp Ay?/2,
where
(216) 0<Xx<min[(a—¢/(@a+b)?%b/(a+b)?] <],
b>0, a>e>0, M > a/(a — ¢).

Now,
(2.17) Tlogrwd
and from the given restrictions on A, it follows that for —a < y < b,
(8%(y, €)/3y*) < 0. Moreover,

a1l €
(2.18) —Ogaqy(yf )
and from (2.18) we may see that,

d log q(0, €) <0 dlog g(—e, ¢€) >0
ay —_— ) ay —_— b

—@—gla+y)?—=0bb+y?

M= (@—egleat+y) ™ —bb-—y,

(2.19)

since A < 1.

Hence, ¢(y, €) reaches its maximum, whatever be M, for —e¢ < y < 0. We now
show that for the given M, ¢(y,e) < 1, —a < y < b. Remark that log ¢(y, 0) <
0 since log ¢(0, 0) = 0, 3 log ¢(0, 0)/dy = 0. But,

(2.20) élog+(y’é) = —logM — loga=(a + y)
is < 0for M given, —e < y < 0, ¢ > 0, and the inequality follows. We conclude
that (1 + ya=1)*(1 — yb~1)* < Meexp —Ay?/2 for —a <y < b, M and X as
given.

It follows from (2.18) and our preceding remarks that

(2.21) gni(z) < Clpa(l — pa)]~V2M, exp — N2/2(x — ¢,)?
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for —p. <%z — ) < (1 —p,) and M, = pu(p. — v )"! and X\, =
min {p, — 77}, (1 — p.)}. But —n'?p, + ¢, = —n'2k(n + 1), and A\, and
M., can be uniformly bounded away from 0 and « since @ < p, < (1 — «). The
lemma is therefore proved since gy :(x) vanishes off the given range.

Remark. It is well known that n='/%g, (n~V2x + k(n + 1)7!), the density
of n'?[Us,» — k(n + 1)~1], converges to a normal density uniformly on com-
pacts if « < p, < (1 — a). More precisely,

(2.22) SUPa <p, <(1-0) |24(%) — [7(0a)1 Y0 (x/7(pa))|

converges to O uniformly on bounded intervals if 72(p,) = p.(1 — p.), and
o(z) is the normal density (see, for example, Wilks [13], p. 270). It now follows
from our lemma that E(Ui. — k(n 4+ 1)71)" = a2 (p, ) + o(n~"/?) uni-
formly for @ < p, £ (1 — ) since we can, in particular, conclude that
w2 Uy.n — k(n + 1)~ is uniformly integrable for k& in the given range. We
now prove lemma 2.3.

LemMma 2.3.  Let F satisfy the general conditions of this section, and in addition,
suppose that f(x) ts > N > 0 for all x such that 0 < F(z) < 1. Then, the conclusion
of theorem 2.2(b) holds.

Proor. Weremark first that the given conditions imply that {z|0 < F(z) < 1}
is an open interval, and hence X, is bounded and E(Z}.,) exists for every k, r. Let
Uin = F(Z.n). Then Uy, < -+ < U,,, are the order statistics of a sample
from the uniform distribution on [0, 1]. Then, by the mean value theorem,

(2.23) M2 Zyn — F(k(n 4+ 1)™)] = (Uxa)]"Vion,
where Uy, lies between Uy, and k(n + 1)~'and Vi, = 02U, — k(n + 1)71).
Then,
(2.24)  |EW"[Zkn — F7'(k(n + 1)™)] — o"(pa)is|
< sup [[Via| < AU — @)1 7B Vil
+ (P11 : kn AP — [r(pa)]™"

[Vial <4]

f[lxl <4] ve (;&) d:cl
+ %ﬂ" /u:] < (r(;,.)) e

+ AT / le,,,l' dP.
[ Vinl 4]

Since |Vinl < A & |Urn — k(n + 1)7'| < An'2 implies |Ukn — pa] <
An~V2 4 p,n! and since ¢ is uniformly continuous on the interval [8,1 — 8]
strictly contained in [0, 1], we may conclude, using lemma 2.2, that, as n — «,
the first two terms on the right-hand side of the inequality (2.30) go to 0 uni-
formly for a < p, < (1 — a). Again by lemma 2.2 the last term goes to 0 as
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A — oo, uniformly in n, and the third term is evidently o(1) as A — = uniformly
for a < p, < (1 — «). The lemma follows.
We now prove theorem 2.2(b). let 0 < a — §, and let ¢ = F-{a — §),
d = F-1(1 — (a — 9)). Define
() fea(x) = f(x) forc < z < d,
(ii) = f(e) for ¢ — (@ — )[flc)]' Sz < ¢,
(i) = fld) ford < 2 < d + (a — 8)[f(d)]
Define F. 4 to be the distribution with density f. 4, ¥..q to be the corresponding
fea(Fea'). Given our original sample, Xi, ---, X, generates a sample
, X, from f, 4 by defining X, = X;if c < X; <d, X; = THif X; < c,
X:= Tiif X; > d, where {T}, {T#, 1 < ¢ < n are distributed independently
of each other and the X/s according to the uniform distribution on
(d — (@ — O[f©)]™, ¢) and (d, d + (o — 8)[f(d)]?) respectively. Let 2 ,
- < 2. denote the order statisties of {X;}, 1 < ¢ < n. Then, by lemma 2. 3
E(Zk,n — FYk(n + 1)) = n="%(p,) + o(n~7/?) uniformly for o < p, <
(1 — @), since for n sufficiently large

(2.25) Foik(n + 1)) = F-1(k(n + 1))

and Y. q = ¢ if a < p, £ (1 — a). Hence, to prove the theorem, it suffices to
show that n/2E|Z;., — Z .|" — 0 uniformly for & < p, < (1 — a).

Suppose that ¢ < 0, d > 0. The cases where ¢, d have the same sign may be
dealt with similarly. Then

(2.26) Zin = Zial = \Zkin — Zial U Zin < €] + 1[Zen > d])
where I(A) is the indicator function of the event A. We may conclude that
(227)  WPE\Ziw — Ziwl" < wPE[(|Zeal + ) I[Zin < c]]

+ E[(|Zeal + d + (a + LA 1[Zin > d]}.
It therefore suffices to show
(2.28) E(In'2Zy o|"1[Zxn < c]) and E(|n'2Z;, ,|"1[Zin > d]) >0

since it then follows that |c|"E(I[Z:,. < ¢]) — 0. The other term behaves simi-
larly.
By assumption there exists a natural number j such that |[F~l(y)| <
M[y(1 — y)]~. Now,
(2.29) En'2Z, o1 Zy 0 < ¢] = E(n2F YU )| I Uk < a — 8])
S MwPEUky™ (1 — Ui ) "I [Ur < a — 8])

= M’n”?/[ ey k (2) gh=rim1(1 — g)mk=ri d,

Without loss of generality, take r to be a natural number and choose » sufficiently
large so that (@ — 6/2) < (k — rj)/(n — 2rj + 1) for all & > an. Then,
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(2.30) nr/2 / k (;:;) xk—fi—l(l — x)n—k—rj dx
[z <a—38]

nn—1)---(n—2rj+ 1)
k—rj)---k—10Dn—k—r+1)---(n—k+1)

= nr/?

f (k — r9) (Z’ B f}‘]> i1 — ) —2) — =) g,
[z <a—3] -

Now, z < e — §and (k — 7j) = (a — 8/2)(n — 2rj 4+ 1) imply
(2.31) (n—2r)12x — bk — rj)(n — 2rj + 1)) < —(n — 2rj)V/%/2.
Hence, the expression on the right of (2.30) is not larger than

24-2rj *
(2.32) /22 /[K_ (n—2r)%/2) g2 k- rp () A
< Me—Kn=2)(n — 2pj)~12p e/ +2r

where K, M depend only on «, by lemma 2.2 and the well-known approximation
to the tail of the normal distribution (Feller [5], p. 166). The theorem is proved.

ReEmMARK. The hypothesis that f be continuous and positive throughout on
the carrier of F may obviously, if one is interested in the moments of a single
percentile Zm1n, be weakened to f continuous in some neighborhood of F-(«).
Our results thus contain the results of Hotelling and Chu [3] and Sen [11], [12].
Upon putting supplementary conditions on the local behavior of f, we may sim-
ilarly obtain better estimates of the error term thus refining the results of Blom.

3. An invariance principle for the quantile function

We keep the general assumptions of section 2. Let us define a process on
[0, 1] by,

(3.1) Z.(t) = n(Zin — Zo-pa)t + Zia(l — k) + kZG_1yn

on[(k —1)/n,k/n);1 < k < n, where Zt, = Zin — F'(k/(n + 1)) and Z;, =
0, Z,(1) = Znn.

Then, for every n, Z,(t) is a process with continuous sample functions. For each
0 < @ < 8 < 1, there is a natural correspondence between {Z,(t), « <t < 6}
and a probability P, which belongs to the set ®(C[«, 8]) of all probability meas-
ures on the set of all continuous functions on [«, 8] endowed with the uniform
norm and the appropriate Borel field.

Let Q., @ be members of ®(C[a, 8]). Let Q.(t), Q(f) be processes with con-
tinuous sample functions on [e, 8], inducing the measures @,, @ on C[e, 8]. Then
Q. converges to @ in the sense of Prohorov if and only if for every h continuous
and bounded on C[e, 8], £[A(@.(¢))] — L[A(Q(?))]. Hajek [8] has shown that a
necessary and sufficient condition for Prohorov convergence to a Q € ®[Cle, 8]]
is,
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(3.2) &in& lim sup PSups,:efe)it—s <s/@n(s) — @u(t)|> €] = 0

n—rw

for every ¢ > 0, and that,
(3.3) L[Qu(s1), -+, Qulsi)] — £[Q(s1), - -+, Qlsx)]

forall sy, <« , s € [a, B].
For Z,(f) condition (3.2) is readily seen to be equivalent to

(3.4) lbing lim sup P[SUDk.mEfan ik —ml <tn|Zkn — Zmn| = €] = 0.

After obtaining the main theorem of this section we were informed of an un-
published monograph of Hajek [7] in which a more general theorem than ours
is stated under a regularity condition. Since in our simpler situation the regularity
condition is unnecessary and our proof quite short, we felt it worthwhile to in-
clude theorem 3.1. Our original proof has been further simplified by a lemma
aseribed to Rubin [7].

THEOREM 3.1. Let Z,(t) be as above,0 < a < 8 < 1. Then there exists a centered
Gaussian process Z(t) on [, B] with continuous sample functions and covariance
s(1 — /Y (s)¥(t), s < t, such that n*'2Z,(t) converges to Z(t) in the sense of Pro-
horov on [a, 8].

Proor. Let U,(t) = n(Uin — Uk-vu)t + Uil — k) + EUg-1.n on
[(k —1)/n,k/n), 1 <k<n, where = Us=0, UrsF(Zin) —k/(n+ 1),
Un(l) = Znn Let Va(t) = (Ui — Uy ) " (Utk=yn — Ukadt + (Ukn — Ugg—py,n) !
{U(k—l).nUz.n - Uk,nU:‘k—l),n} on[Ug—nyn Urn), 1 <k <n+ 1,where Uyn,n = 1,
Urn+l).n = 0.

Now, V,(t) is essentially a version of the empirical cumulative, and Donsker
[4] has shown that n/2V,(t) converges on [0, 1], in the sense of Prohorov, to a
Gaussian process V(¢) centered at 0 with continuous sample functions and co-
variance s(1 — &) for s < ¢, a process known as the Brownian bridge.

From this follows (Rubin) lemma 3.1.

LemMa 3.1.  The process n'2U,(t) converges in the sense of Prohorov on [0, 1]
to the Brownian bridge.

Proor. Clearly, (3.2) is satisfied in this case. To prove (3.1) remark that,

(3.5) P[supjs— <s 02| Ux(s) — Un(t)] 2 €]
< P[supji—ml <2on 72| Ukn — Unmal > €] for n 26
< P[supji—mi <20 V| Ukn — Unmal > €, maxi <j<nlUsn — k/(n + 1)| < 3]
+ Plmaxi<j<n |Usn — k/(n + 1)| > 8].

Now |k/n — m/n| < 26, |Uxn — k/(n + 1)} £ 8, |Unn— m/(n+ 1)| < §implies
|Ukin — Unma| < 58 for n > 6-1. We conclude that

(3.6)  P[supp—ml <2on 02| Uskn — Uma| = ¢, maxi <j<n |Urn — k/(n + 1)] < 8]
< P[supjs—g <5 B2 Va(s) — Va(t)| > €] —0.

Therefore, to prove the lemma it suffices to show that
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3.7 Plmaxy <k <n |Urn — k/(n + 1)| > €] = 0.
But,
(3.8)  Plmaxick<n |Urn — k/(n + 1)] 2 €]
< 2 PlUia—=Tk/(n+ 1) = €]

na<k<n(l —a)
+ P[maxi <k <an |Urn — k/(n + 1)] > €]
+ P[maxa-an<k<n |[Uen — k/(n 4+ 1)| > €.
Choose « such that a < ¢/2. Then
(3.9) Plmax i<k <an |Uin — k/(n 4+ 1)] > €] < P[Utanin = ¢/2] — 0.

Similarly, P[maxq—am<k<n Uk — k/(n + 1)] > €] — 0 and by lemma 2.2,
(3.10) > Pl{Ukn — k/(n 4+ 1)| > €] < 2nM(a) exp — Kn— 0.

na<k<n(l —a)

In fact, by the Borel-Cantelli lemma, max |Us,, — k/(n 4 1)| converges almost
surely to 0. Lemma 3.1 follows.

We require the following generalization to processes of a well-known theorem
of Slutsky.

LEmMA 3.2. Let {Q.} be a sequence of processes with continuous sample func-
tions on [a, B] which converge in the sense of Prohorov to Q on [a, B]. Let {V,} be a
sequence of processes with continuous sample functions such that
(3.11) Plsupa<i<p |[Va(s) — b(s)| = €] =0

for every e > 0 and a fixed continuous function b(s). Then,
(a) the sequence Q.(s)V .(s) converges in the sense of Prohorov to b(s)Q(s);
(b) the sequence Q.(s) + V.(s) converges to b(s) + Q(s).
Proor. We prove (a); the proof of (b) is similar. It is clear that

(3.12)  L[Va(s)@nlse), - -+, Valse)@n(se)] = L[b(s)Q(s1), - - -, b(sk)Q(s1)]

for all « < s; < B, k finite, by the convergence of @, and V, and the ordinary
Slutsky theorem. It remains to show that V,.Q, satisfies (3.2). Let M,, =
SUPa<t<p |@n(t)], M2, = supa<i<s |Va(t)]. Then by an elementary inequality

(3.13) P[Supa,tE[a.ﬂ].lt—aI <& lQn(s)Vn(s) - Qn(t) Vn(t)l > 5]
< P[supsteraprlt—s <s M1,a|Va(t) — Va(s)| 2 /2]
+ P[supsieiasnic—s <s M2,.|Qn(s) — Q:(1)] = ¢/2].

But by the convergence of @, and V,, there exists M, such that P[M,,, < M,] >
1 —aand P[M;, < M,] > 1 — afor all n. We conclude that

(3.14) Eir% lim sup P[supssciasnit—s <6 M1.a|Valt) — V()| > /2]
< lim lim sup P[Sups¢ciagyit—s <s | Va(t) — Va(s)| > e¢/2M,.] + a.
] n

The lemma, follows by applying a similar argument to the second term of (3.13).
Now, define Z,(f) = F-Y(U,(t) + nt/(n + 1)) — F-'(nt/(n + 1)), a < t < 6.
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By the mean value theorem,
(3.15) n12Z,(t) = WLYa()])~'n"2Ua(t)

where Y,(f) lies between nt/(n + 1) and U,(t) + nt/(n + 1). The process
[¥(Y.(t))]* necessarily possesses continuous sample functions on [a, 8]. From
the convergence of n!/2U,(t) it follows that

(3.16) Plsupo<i<1 |Un(t)| > €] =0

for every ¢ > 0, and therefore, since [¢(z)]~! is uniformly continuous for 0 <
a <z <b<1,that

(3.17) Plsupa<e<s [[W(Ya(0))]7 — O] 2 ] =0

for every ¢ > 0. Hence by lemma 3.2 we obtain that n!/2Z,(t) converges on [a, 8]
to Z()[¥(£)]", a centered Gaussian process with the covariance structure given
in the statement of theorem 3.1. Now, to show that (3.2) holds for n'/2Z,(f), it
suffices to check that (3.4) is satisfied. But Z,(k/n) = Z.(k/n) + Zix. By the
necessity of (3.2),

(3.18) 0= lim(}im SUp P[SUPstlagl it —sl <6 W2 Zn(s) — Za(t)| > €]
3> n
2 lim lim sup P[SUDen <k,m <gnk—m| <on B2 Zkn — Zmal > €],

and the theorem follows.

4. Convergence of linear systematic statistics

Let {ai.} 1 <k <n, n>1 bea double sequence of constants. Form the
statistic Th = Y.%-1 Gk.n Zr.n. Such quantities are known as systematic statistics
and are of use in estimation and testing (cf. Jung [9] and Blom [2]). The con-
vergence of moments of T, and the asymptotic normality of T'» have been in-
vestigated by several writers, including Jung [9], Blom [2], Hajek [7], and more
recently, Gastwirth, Chernoff, and Johns (private communication), [6], and
Govindarajulu [15)] under various regularity conditions.

Our conditions are somewhat simpler, though by no means inclusive. We are
essentially able to deal with all systematic statistics which involve the extremal
statistics to the same extent as the sample mean or less.

Let us define M,(t) = 3 k<nt @x.n. Then M,(¢) is of bounded variation and

(4.1) T — [} Pt/ + 1)) dML(0) = [)7 Za(t) ML (0).

We then have a modification and generalization of a theorem of Hajek [7].

TuEOREM 4.1. Under the general conditions of section 2, suppose that there
exists ¢ > 0 such that az., = 0 for k < am, k > (1 — a)n for all n > N. Suppose
that there exists M(t) of bounded variation in [a, 1 — a] such that M,(t) — M(t)
on a dense set of t, « <t < (1 — @) and that V(M,) < M’ < « for all n where
V(M,) denotes the total variation of M,. Then,
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«2) SE(T, — [} P10 ML (0)] > N, «*(M, F))
where N denotes the normal distribution and
@3) PO F) =2 [ [ s~ OO dM(s) dM ).

Proor. We remark that since M is constant off (¢, 1 — a) and the integrand
is bounded in that interval, by our assumptions ¢2(M, F) < . To prove the
theorem it suffices to show that

1y e ( ﬁ) A dM,.(t)) —o L ' Z() dM(t)),
and that

) ﬁ)l |F-1(t) — F-'(nt/(n + 1))|dM,(t) = o(n~17?),

since by (4.1) it readily follows that [§ Z(t) dM(f) has the desired distribution.
By theorem 3.1 and a theorem of Prohorov ([10], p. 166), relation (1) holds if

(4.4) [ 1w ama) - [ 50 am )

uniformly for equicontinuous, uniformly bounded (compact) sets of continuous
functions f on [, (1 — «)]. But this readily follows from our assumptions upon
using the method of proof of Helly’s theorem. Relation (2) follows trivially since

o 0] < G

for ¢t € [a, (1 — a)] by the mean value theorem and continuity of ¥(t). Theorem
4.1 is proved. The following corollaries are immediate.

CorOLLARY 4.1. If V(M, — M) = o(n~'/%), then theorem 4.1 holds with
[8 F1(t) dM ,(t) replaced by [o F-1(t) dM(2).

CoROLLARY 4.2. If

(4.6) M.,@t) =nt 3 h(kn™),
kn"T<t

(4.5)

that is, @xn = n~h(kn=1), h = 0 on [a, (1 — @)]°, and h is continuously differen-
tiable or, more generally, obeys a Lipschitz condition of order > § on [a, (1 — &)],
then theorem 4.1 holds with [ F~1(t) dM,(t) replaced by [o F~'(t)h(t) dt and
M) = [§ h(s) ds.

Proor. The condition is clearly sufficient to guarantee

4.7) [ a0 = v 3 h(kn-1)
k=1

to equal [3 F-1(t)A(t) dt + o(n=1/2).
Remark. (1) In particular, corollary 4.1 applies if

k/n _
(4.8) G = [ O dt+ o)
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uniformly for en < k < (1 — a)n for some function A(t) in Li([e, (1 — a))).
This provides an alternative system of weights for the estimates considered by
Jung.

(2) Corollary 4.2 establishes the asymptotic normality of the trimmed and
Winsorized means of Tukey (see Bickel [1]).

THEOREM 4.2. Under the conditions of theorem 4.1 if |x|[1 — F(z) + F(—z)]
tends to 0 as © — o« for some ¢ > 0, E(T%) exists eventually for every natural num-
ber k and

(4.9) n+2E(T, — ﬁ) ' F-1(t) ML)k — o2 (M, F)u, as n— .
Proor. By the linearity property of the expectation and (4.1),
1 k
(4.10) E(T,. - ﬁ) F1(3) dM,.(t))

= fa 1-a) L (1-a) E (iljll [Z.(s:) — F—l(s.«)]) iI:Il dM . (s)).

An easy extension of theorem 2.2 implies that

k k
4.11) w11 (2G5 = F-4s9]) > B[ 11 2669 |
uniformly for a < s; < (1 — a). We conclude that

“12) E (T,, - L Tt dM,,(t))" - E[ fa R0 dM(t)]",

and the theorem is proved.

Remark. (1) This establishes convergence of the variance for the trimmed
and Winsorized means as stated in Bickel [1].

(2) Under the conditions of corollaries 4.1 or 4.2, f§ F~'(t) dM,(f) may be
replaced by [§ F~1(t) dM(t). We can now prove the following theorem.

TuEOREM 4.3. Suppose E(X}) < . Let M,(t) defined as before tend to M(t)
on a dense set in [0, 1], V(M,) < « on [0, 1]. Assume, furthermore, that for some
a>0,|o. < M'ntforallk < an, k> (1 — a)n. Then,

(4.13) LnV* (T, — E(T.))] = N(0, ¢%(M, F)).

Proor. We require first the following lemma.
Lemma 4.1. Let X, be a sequence of random variables. Let Y. be another
double sequence of random variables such that,
(1) £(Ymn) = £(Yn) foreachm asn— o,
(i) £(Ym) = £(Y) as m-— o,
(iii) lim supm, lim sup, P[|Xn — Y| 28] =0,
for every & > 0. Then, £(X,) — £(Y).
Proor. First note that
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(4.14)  |P[Yma <z] — P[X, <z
SPYun <z, Xo22]+ PlX, <2 Ynn 2 7]
SPlz—0<Yun<z,Xp22]+PXo<z,2L Ypun<z+4]
+ 2P[|X, — Yam,a|l > 8]
<Plx—38< Vyun <+ 8] + 2P[|Xs — Vil > 0.

Letz, z — 8, z 4+ & be points of continuity of £(Y,,) for all m and of £(Y) as well.
Then,

(4.15) Iim sup, |P{Ymn < ] — P[X, < z]|
SPlz—56<Yn<z+ 6]+ 2limsup, P[|X, — Yal = 5]

Now, take the lim sup as m — «, reducing the second term to 0, the first to
Plx — 6 < Y < z -+ 6], and finally the limit as § — 0. It follows that

(4.16) lim, P[X, < z] = lim, lim, P[Yn. < 2] = P[Y < z].

The lemma is proved.

By theorem 4.2, if U,(f) is the distribution function of the measure which
assigns mass 1/n to i/n, 1 < i < n, then

(4.17)  varn!2 [ﬂ 4= 7 () dU.(8) — 2 /; a=p j; “s(1 — O[] ds dt.
Let A\ = F-1(8), \s = F-1(1 — B). Then,

“.18) 2 ]ﬂ 4=# jﬁ ‘sl — WO dsde =2 [ ﬁ ' F(z)(1 — () do dy

by a change of variable. The latter integral may readily be evaluated. Thus,
(4.19) 2ﬁ?2ﬁfF(x)dxdy - 2>\2f:’F(x) dz — 2/;\T’yd(f)\:lF(x) d:c)

= [Py aF@) + 68 — (1 — BN + 2% [ F@) do,
and

@20) 2 L " F(y) ( L ' F(x) dx) dy = ﬁ “a( ﬁ ' F(@) de)’ = ( [ Fr@ dx)z-

We obtain, therefore, after some simplification,
a-e ft .. =
@2y 2[00 [Vs(l - O (O] ds dt

= [Fear@ + 603 +3) — ([T taF© + p0u+ M)
Since E(X3) < =, it readily follows that as 8 — 0, '

422) 2 fﬂ a=9 fﬂ Ys(1 — O)[Y(s)p(t)]- ds dt — var X,

-2 ﬁ) ! j; o1 — 8)[W(s)g()] dsdt.
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Let a > B» — 0 and define

(4.23) Vi = [0 7 [2at) = BZ(0] dMA(0).
By theorem 4.2, £(Ym..) — £(Y,) as n — «, where Y,, is
(4.24) N o, [ s = 0w (©] dM(s) aM(® |-

Of course, £(Ym) — N(0, ¢*(M, F)) as m — =, where
(4.25)  o*M,F)
< yvar X+ 2 [T [Ls(1 = OO aM(s) a(),
which is finite. Now
(4.26) P Ymn — (T — E(T2))| 2 €] < envar (Yma — Ta)
by Tchebichev’s inequality. But,

(4.27) var (Y, — Th) = | 2 @ n0tn €OV (Zik,ny Zitn)
kAt E[Bmn,(1 ~Bm)nle

< nM"]? 3 coV (Zi,ny Zin)
kL E[Bmn, (1 —Bm)nle

by theorem 2.1. Now it follows that
" _— (1 —Bm)
4.28)  nvar (Yn, — T) < M'nvar (X - fﬁ Z.(1) dU,.(t))

where X is the sample mean. But again, by theorem 2.1,
- 1 —Bm)
4.29)  nvar (X - /a., Za(0) dU,,(t))

< nvar X — nvar /;(l—ﬁ") Z.(t) dUL(®).
We conclude that,
(4.30) lim sup, P[n'2|Ymn — (Tn — E(TW))| > €]
Svar Xy — [0 [F s — 0w ®] ds e

By our previous remarks we see that the requirements of lemma 4.1 are satisfied
and the theorem is proved.

ReEmMark. Theorem 4.3 implies the asymptotic normality of the estimates
considered by Jung,

The following corollary is immediate.

CoROLLARY 4.2. Under the conditions of theorem 4.3, nvar T'n — o*(M, F).

In the general case we can only establish the following corollary.

CoROLLARY 4.3. Under the conditions of theorem 4.3, if n'?V(M, — M) —0
on [0, 1], then,

(4.31) E(Ty) > [ F-1() dM@).
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Proor. Since clearly

4.32) E ( [: = 7.(0) dM,,(t)) -0,

it suffices to show that lim supy, lim sup, |E(Tn, — ¥m..)| — 0 where
(4.33) Pun = [T 2.0 aa) + [T 10 dML ),
But,

(4.34) |B(Ty — Ymu) < n1M" > |E(Z,n)|.

kE[Bmn,(1 —pm)n]e
Define R,(¢) to be the measure assigning mass 1/n to k/n if E(Z;,») = 0, —(1/n)
otherwise, 1 < k < n. Then,

@.35) nt > \E(Zin)| = E [B:‘ =) 7 () dRa(t)

Bnn <k A —~Bm)n
(18w (1 —Bm)
+ [S7 1P dRa - [T 1P e
Now, n 1Y k1 |E(Zks)| S n 13X %-1 E|Zin| = E|Xi|. The corollary follows
from (4.34) and (4.35).

This result is, of course, unsatisfactory since it is precisely as an asymptotically
normal estimate of [§ F-1(t) dM(f) that T, is usually employed. Slightly less
general but more satisfactory is corollary 4.4.

CoroLLARY 4.4. Under the conditions of theorem 4.3, if there exists A such that
f(z) i8 monotone for |x| > A, and n*2V(M, — M) — 0 on [0, 1], then

(4.36) e[ B(T.— [ P aM@)] -0,

and hence n'’2 (T, — [§ F-1(t) dM(t)) has asymplotically an N(0, ¢*(M, F))
distribution.

Proor. Let0 < 8, + & < min (F(—A), 1 — F(A), @). Denote F~'(8» + 8)
by An. Let

(4.37) fu(@) = f(2), £ < M

= f(Am), M L2 <M+ (1= Bu)[fAm) I
Define,

(438) X,(m) = Xi, X,' < )\m,
= T,‘, X:> Am,
where {T:}1<1<n is a sequence of random variables uniform on
(Am, Am + (1 — Bm)[f(Am)]™?) and independent of each other and of the X.. Let
Zyn(m) < +++ < Zyq(m) denote the order statistics of the X;(m). Then, clearly,
(4.39) Y @ n(Zin — Zin(m))
k <Bmn
< nM"(|Z qgumr+1m| + K)Z @guni+1n > M)

where K = max (|Am|, Am + (1 — Ba)[f(Am)]~|). We can show by arguments
similar to those employed in the proof of theorem 2.2 that
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(4.40) nEL 3 (Zkw — Zin(m)]) =0

k<Bmn
for every fixed m. Since
£ 1/2F A —m) A
4.41)  n2E (/ﬁ Za() dM,,(t))
BT (E(Tn) - fﬁ

by the remarks following theorem 4.2, we conclude from our previous remark
that we need only show

1 —Bm

m

") dM () + o(n—l/z)) -0,

(4.42) lim sup lim sup n'/?

L( > niam) — [P dMn(t)><=0

k <Bmn
and a similar proposition for the upper tail.

It clearly suffices to establish that
(4.43) n12 3 |E(Zy.(m) — F1(k/(n + 1))| — 0.

k <Bmn

Let F,, be the distribution of X{™. Then, F,, is cither convex or concave depend-
ing on whether f,, is monotone increasing or decreasing for x < A. Hence, F;! is
concave or convex, and by Jensen’s inequality,

(4.44)  E(Zia(m) — Fi'(k/(n + 1)) = E[F; (Urn)] — Fr'(EUy.»))

has the same sign for all k. But F,'(k/(n + 1)) = F~'(k/(n + 1)) for k < Bnn,
and we conclude that,

(445) w2 T (BZealm)) — F-4/(n + 1))
- =2\ E( Y Zpa(m) — F1(k/(n + 1))].

ke <Bm.n
Now lim sup,, lim sup, n=Y2E[ 3"k <gun (Zi.a(m) — F-Y(k/(n 4+ 1))] = O readily fol-
lows from thecorem 4.2, and the identity

(4.46) E[nY Zia(m)] = f YA di, Q.E.D.
k=1 0

Remark. The condition E(X;) < « clearly suffices for corollaries 4.3 and
44.

Jung [9] and Blom [2] have shown convergence of moments under various
conditions. The condition of Jung in the case of convergence of the mean may be
weakened to ax., = n~! a(k/n) when a has at least two derivatives bounded on
[0, 1]. Corollary 4.2 then holds with the error being 0(n~!) rather than just
o(n='?) as shown in corollary 4.4.

This completes our present study of linear systematic statistics. Clearly, there
are still many open questions. The restriction on M (f) leaves statistics which
involve the extremal order statistics in a more significant fashion than the mean
undealt with. On the other hand, the restriction E(X}) < « seems too restrictive
for systematic statistics involving the extremes to a lesser extent than the mean.
Héjek [7], using his more general invariance principle, states a theorem which
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covers some situations we ecannot deal with. Unfortunately his regularity con-
ditions do not cover the mean itself.

The invariance principle of section 3, simple though it is, has other interesting
applications. In a forthcoming paper J. L. Hodges and the author have applied
it to determine the behavior of

(4.47) I;Led 3[Zk,@n) + Zen-k+13,0m],

an asymptotically nonnormal robust estimate of location, which is much easier
to compute than the Hodges-Lehmann estimate med; <; (X + X;)/2.

O VY

Note added in proof. Results similar to theorem 2.2 (a) and (b) have appeared
in W. Van Zwet, Convex Transformations of Random Variables, Thesis, Amster-
dam, 1964. (In particular, 2.2(a) was noted and a stronger form of 2.2(b) proved
under the assumption that f is continuously differentiable.)
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