
A CLASS OF OPTIMAL
STOPPING PROBLEMS

Y. S. CHOW and H. ROBBINS
PURDUE UNIVERSITY and COLUMBIA UNIVERSITY

1. Introduction and summary

Let xi, x2, * * *, be independent random variables uniformly distributed on the
interval [0,1]. We observe them sequentially, and must stop with some xi,
1 < i < oo; the decision whether to stop with any xi must be a function of the
values xi, * * , xi only. (For a general discussion of optimal stopping problems we
refer to [1], [3].) If we stop with xi we lose the amount jaXI, where a > 0 is a
given constant. What is the minimal expected loss we can achieve by the proper
choice of a stopping rule?

Let C denote the class of all possible stopping rules t; then we wish to evaluate
the function
(1) v(a) = inf E(taxj).teGC
If there exists a t in C such that E(taxg) = v(a), we say that t is optimal for that
value of a. Let CN for N > 1 denote the class of all t in C such that P[t < N] = 1;
then C' C C2 C ... C C, and hence, defining

(2) VN(a) = inf E(taxt),
teCN

we have

(3) 2=vl(a) 2 V2(a) 2 .. - Vv(a) 2 O-
We shall show that as N ->,

(4) V,N (C, _2(1 -a)/INl for 0<a<1
(\L~J ) 2/log N for a <1,

from which it follows that

(5) v(a) = 0, for 0 < a <1.

(For a = 0, J. P. Gilbert and F. Mosteller [4] give the expression vN(0)
2/(N + log (N + 1) + 1.767); this case is closely related to a problem of op-
timal selection considered in [2]. It can be shown that NvN(0) T 2 as N -* 00.)
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We shall show, moreover, that

V(a) < for 1 < a < 1.4,
(6) { v(a) =2 for a> 1.5,
and that the relation
(7) lim vN(a) = v(a)

holds for alla> 0. No optimal rule exists for 0 < a < 1 by (5), since E(taxt) > 0
for every t in C. We shall show that an optimal rule does exist for every a > 1;
when v(a) = a the optimal rule is t = 1, but for any a such that 0 < v(a) < -
the optimal rule t is such that Et = oo. The function v(a) is continuous for
all a > 0.

2. Proof of (4)

For any fixed a> 0 and N> 1, set vN+l = Xo and define

(8) st = E{min (jaX,, vN+1)} = J1 min (iax, v' 1) dx (i = N, * , 1).

The constants vt can be computed recursively from (8), and by a familiar argu-
ment it follows that
(9) vN (a) = vl = E(taxt),
where
(10) t = first i> 1 such that ax < tN+.
For the remainder of this section we shall regard N as a fixed positive integer

and a as a fixed constant such that 0 < a < 1; for brevity we shall write vi
for vt'. Then from (8),
(11) vi < E(iaxi) = ia/2, (i = 1 * , N),
so that

(12) Vi+i a < '2 (-1) < 2*2 < 1, (i= 1, *** )

Hence from (8),
(13) vi = i'-X dx + (1 - Vi+i-a)Vi+i

= Vi+1 (i - (i= 1,*** XN- 1).

Noting that vi > 0 for i = 1, * , N, we can rewrite (13) as

(14) - +
1A-+ +

vi vi+1 2ia V*l v11 2ia 2ic(2ia -vi+)
Sumri = 1, * * N , N1

Summing (14) for i N1, * ,N 1 and noting that from (8)
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No,(15) VN = Na

we obtain the formula

(16) 1 2 + N1N 1 + 1 N-1 Vi+1
v-1 Na 2 Z i+2 IZii1 i 1- ia(2ia.vi

We shall show at the end of this section that, setting
1 N-i1 1 N-1i i+(17) IN = YE 1 JN= E i ,

we have as N - oo

(18) jN = O(IN), IN fN -a/2(1 (0 a < 1),
ilog N/2, (a =1)

Relations (4) follow from (9), (16), and (18).
PROOF OF (18). The second part of (18) follows from the relation

1 fNdt
(19) IN J;t
The first part of (18) follows from two lemmas.
LEMMA 1. The following inequality holds:

(20) Vi <
2N;, (i = 1, , N).

PROOF. Equation (20) holds for i = N by (15). Suppose it holds for some
i + 1 = 2, * * *, N; we shall show that it holds for i also.

(a). If 2Na/(N - i) > ia, then by (11),

(21) ia Na 2Na
2 -N-i N-i+1I

(b). If 2Na/(N - i) < ia, then setting

(22) f(x) = x 2(1 i) f(x) 1 i-, for x<ia,

so by (13)

(23) vi = f(vi+i) < f(N ) = N (i - ia(N2Na) -N-i2Na( y -i v --i i(N -i)) N - i + 1'
which completes the proof.
From (12) and (20) we have

(24) JN = 1N-c1 V12i.a N-<l~ 1 )i
2(i41 Vi+ ) < (N - i)i2a

To prove the first part of (18), in view of the second part, it will suffice to show
the following.
LEMMA 2. AsN -Xc,

N-1 1or=(N I-), (0 < a < 1),
(25) Na YE
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PROOF. (a). Assume 0 < a < 1. For any 0 <5 < 1, the left side of (25)
can be written as

[5N] N-1 1
(26) Na

1 [N)+i (N -ii2

<N (N N-1 1 + N(1 - 6)(SN)-2a)

______ i-a 5\ 1-
S)N

i-aNa ( ( 1N+N(1 b)(N)-2a(\N(1 - 6)1- a J\ 2a
Hence,
(27) JNN < 1-.

N-Ni-a - 52a
Since S can be arbitrarily near 1, the left-hand side of (27) must be 0.

(b). Assume a = 1. We have for the left-hand side of (25), settingM = [N/2],
N-1 1 /M N-1 1 M N-1

(28) N 2 = N .E+ NE < 2 i2 + N E i-2
I (N -i)i I +1 (N j)12M+i

< 2 dt + N (N) (-N)2= 0(1).

3. An optimal rule exists for a > 1 and v(a) > 0

Define zn = infi2>, (iaxi). Then for any constant 0 < A < na, we have

(29) P[z. 2 A] = P[iaX, 2 A; i> n] = 1-
Hence,
(30) P [Z[ 2fl ( 2i- >0,
and therefore,
(31) v(a) 2 Ezi > 0.

Next, for any A > 0,

(32) _ P[naXn < Al < F n < r-
1 na~~~~~~~

Hence, by the Borel-Cantelli lemma,
(33) P[lim faXn = cc] = 1.

The existence of an optimal t for a > 1 now follows from lemma 4 of [1].

4. For ac>2, v(a) = 1

We define for i = 1, 2, ** ,and any fixed a> 0,
(34) vi = inf E(tax,),LECi
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where Ci denotes the class of all t E C such that P[t > i] = 1. Then v(a) =
V1 < V2 < *- - . It can be shown [3], although it is not trivial to prove, that in
analogy with (8),
(35) vi = E{mnin (iaX,, v+1)} = min (jaX, vi+±) dx, (i > 1).
It follows that

4a

(36) vi< t' (i > 1).

From now on in this section we shall assume that 1 < a < 3. Then

(37) V+li a <- 1 (i >2).
Hence, as in (13),

(38) vi = vi+1 (1 - 2i )' (i . 2),

and since v1 = v(a) > 0 for a > 1 by (31), we have as in (14),

(39) 1 (i > 2).

Summing (39) for i = n, * , m - 1, we obtain

(40) - vi (2 < n < m).
V, Vrn n,2i

From (29), for any A > 0, we have as m oo,
(41) P[zm 2 A] = I(1 ) 1

m \ t

thus Ezr -+ oo, and since vm > Ezm, it follows that vm :oo. Hence from (40),

(42) (n > 2).
Vn n2ia v __

From (42) and (37) we have for n> 1,

( 1- 1)n 1n1i Vn+ ja

> f10 dt 1
2J+l t- 2(a 1)(n + Ia1)

and hence,

(44) _ < V-+, < 2( 1 ) n + ) a (n 2 1).fl - nla - nfl1\n
We shall now show that v2 > 1 for a = . It will follow from (35) that v, = 2

and that t = 1 is optimal for 3; the same is true a fortiori for any a > .
From (38) we obtain

(45) vi+= a - i2a - 2iav, (i 2 2);
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the + sign being excluded because of (37). Suppose now that v2 < 1 for a = .
Then by (45),

v3 < 23/2 - "'8 - 2.23/2 = 1.3,

(46) V4 < 33/2 - X/27 - 2v/27(1.3) = 1.52,

v6 < 43/2 - x/64 - 16(1.52) = 1.7.
On the other hand, by (44) we have for a = 4,

(47) Vn+i< 1 (n + 1)31/2 1 (6)3/2 11 (n > 5).

Hence, from (42) for a 41,

(48) E= =2i- X)I

50< ' dt 50 1i 100 x/2 1
- 89 J912ta 89a - 1\ W99 3 < 1.7'

contradicting (46). Hence v2 > 1 for a =.

5. If 1 < cz < 1.4, then v(a) <a

By (44) we have for a = ,

(4) V3 < 1.31 < X
and hence by (38), v2 < _(1 - (5/4.2.271/)) < 1. Hence by (35), v1 = v(w) < 2.

For a > 1, an optimal t exists by section 3, and from ([3], theorem 2), a
minimal optimal t is defined by

(50) t = first n > 1 such that x, < Vn+1

Let a be any constant > 1 such that v(a) < . Then P[t > 1] > 0 by (50), and
for a < 3 we have from (44) that

(51) vn< 1 (n+1) <Vn+<< 1 for n 22.

Hence, P[t > N] > 0 for every N > 1, so t is not bounded. In fact, if 1 <a =
(3 - e)/2 for some e > 0, then from (44)

(52) Vnl< ( - e)(n ) < for n >

Hence, if v(a) < , so that P[t > N] > 0 for every N > 1, it follows that for

n > N > and some K > 0,
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(53) P[t>n] (K 1) K-N 1

so that Et = _o P[t > n] = .

We thus have for a > 1: either 0 < v(a) < 2 and Et = °°, or v(a) = 2 and
t 1, where t is optimal for that a. The least value a* such that v(a*) = 2 is
not known to us, but by the results of this and the previous section, it lies
between 1.4 and 1.5.

6. The identification of optimal rules for 1 < a

ForN = 1, 2,* -, define tNby (10). Then tN < tN+l < . Let b; = limN- vA .
Then from (8),

(54) bi= 10 min (iQX, b*+I) dx, (i = 1, 2, ** ).

Define
(55) s = first i > 1 such that iaxi < bj+j if such an i exists,

= oo otherwise.

Then [1] s = limN,.4 tN. Since vfN > vi for each N, b, > vi. Therefore s < t, where
t is an optimal rule defined by (50). We shall now show that s = t by showing that
bi = vi for all i > 1.
From (54) we have

(56) bi < ia/2, (i > 1),

and hence as in (37) and (39), for some io = io(d),
b+li-a < 1, (i > io),

(57) 1 1+ 1 (i > io)

Since bi 2 vi -+ oo as i -- o, we have, as in (42),

(58) E (n > io).

Assume that for some j > 1, bj > vj. Then by (:35) and (54) this inequality
must hold for some i1 2 io (since if j < io and bi, < vi., then b, < vj), and hence
for every i > i. Hence by (42) and (54),

(59) < =-
Vil i=i 2ia - vi+< iEi 2ia - bji+ bj,

a contradiction. Hence bj = vj for all j > 1.
It follows from the above that for 1 < a,

(60) v(a) = vi = bi = lim vI' = lim VN(a).

That this relation holds also for 0 < a < 1 has been shown already.
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7. Continuity of v(a)

From (60), which holds for any a > 0, given e> 0 we can find N = N(oc, E)
so large that

(61) v(a) + 2> ve(a) = E(taxt)

for some t in CN. Hence for a' > a,

(62) v(a) < v(a') < E(ta'xt) < Na' aE(taxt) < N'-a (V(a) + < v(a) + e,

provided that a' - a is sufficiently small. Hence v(a) is continuous on the right
for each a > 0.

Since v(a) is nondecreasing in a for each fixed i > 1, we have by the bounded
or monotone convergence theorem for integrals from (35)

1

(63) vi(a - 0) = lim vi(a - s) = limi min (ia-, Vj+(a - e)) dx
ef0 f J-0O

= fo min (ia, vi+i(a - 0)) dx (i2 1),

and by the remark preceding (42), limnQ v (a - 0) = X for a > 1. Hence, as
in the preceding section, (58) holds with b. replaced by vn(a - 0), and the
argument shows that vn(a - 0) = vn(a). In particular, v.(a -0) = v(a), which
shows that v(a) is continuous on the left for a > 1. Since v(a) = 0 for 0 < a < 1
it follows that v(a) is continuous on the left for each a > 0.
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