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1. Introduction and summary

Let x;, 25, - - - , be independent random variables uniformly distributed on the
interval [0, 1]. We observe them sequentially, and must stop with some z;,
1 £ 7 < «; the decision whether to stop with any z; must be a function of the
values z;, - - - , ; only. (For a general discussion of optimal stopping problems we
refer to [1], [3].) If we stop with xz; we lose the amount 7*x;, where @ > 0 is a
given constant. What is the minimal expected loss we can achieve by the proper
choice of a stopping rule?

Let C denote the class of all possible stopping rules ¢; then we wish to evaluate
the function

1 v(e) = inf E(tez,).
tec
If there exists a ¢ in C such that E(t2z,;) = v(a), we say that ¢ is optimal for that

value of a. Let C¥ for N > 1 denote the class of all £in C' such that P[t < N] = 1;
then C* C C2 C --- C C, and hence, defining

) vW(a) = inf E(i=x,),
tecy
we have
3) 3 =(a) 2 v¥a) 2 -+ 2 v(e) 20.
We shall show that as N — «,
2(1 — a)/Nt= for 0<ax<1
N ~ ’
@) (@) ~12/log N for a= 1,
from which it follows that
5) v(a) = 0, for 0<a<l.

(For a = 0, J. P. Gilbert and F. Mosteller [4] give the expression +¥(0) =~
2/(N + log (N + 1) 4 1.767); this case is closely related to a problem of op-
timal selection considered in [2]. It can be shown that NvV(0) T 2as N — =.)
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We shall show, moreover, that

(6) 0 < v(a) < %, for 1 <a S 1.4,
v(a) = %, for a > 1.5,
and that the relation

©)) Allim W(a) = v(a)

holds for all @ > 0. No optimal rule exists for 0 < a < 1 by (5), since E(t*z,) > 0
for every ¢ in C. We shall show that an optimal rule does exist for every a > 1;
when v(a) = % the optimal rule is ¢ = 1, but for any « such that 0 < v(a) < 3

the optimal rule ¢ is such that Et = . The function »(«) is continuous for
alla > 0.

2. Proof of (4)
For any fixed @« > 0 and N > 1, set v¥+1 =  and define
@) oF = E{min (i*z;, vd1)} = L "min Gz, o) dz G =N, .-, 1)

The constants vY¥ can be computed recursively from (8), and by a familiar argu-
ment it follows that

)] wW(a) = of = E(lex,),
where
(10) t=first ¢>1 suchthat der; < v

For the remainder of this section we shall regard N as a fixed positive integer
and « as a fixed constant such that 0 < a < 1; for brevity we shall write v;
for »{'. Then from (8),

(11) v; < E(iex;) = 1%/2, @=1,---,N),
so that
(12) v,~+1'£—“$%(1'_: )“5%-2a§1, Z=1---,N—1).
Hence from (8),
(13) v; = ﬁ, T ey d + (1 — vit™)vipn

=v.~+1<1—”2—";.*5), G=1,---,N—1).

Noting that v; > 0 fori = 1, --- , N, we can rewrite (13) as
1 .

(14) 1 = 1 + 1 1 Vit

Vg Vip1 27e — Vi1 = v_;; ﬁ‘ 21:"(22"’ — v,~+1)’
=1,..-,N—1).
Summing (14) fors = 1, -+ , N — 1 and noting that from (8)
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Na
(15) iv = ?,
we obtain the formula
1 1¥=11 1N=1 Vit
16 —_—
(16) 01 + Z + T (2 — Ut+1)

We shall show at the end of this section that, setting
1 N-1 l 1 N-1

== 2 == Y
(17) h=3X® W"=3X m@m—u
we haveas N - «
_ VRl -, 0<a<l),
(18) Iv=olly),  In ™10 N/2, (@ = 1).

Relations (4) follow from (9), (16), and (18).
Proor or (18). The second part of (18) follows from the relation

1 [Ydi
(19) INNQ“[ —t—"‘.

The first part of (18) follows from two lemmas.
LemMma 1. The following inequality holds:

N« .
viSmi (/L-—]., ,N).

Proor. ILquation (20) holds for ¢ = N by (15). Suppose it holds for some

1+ 1=2 .-+, N, we shall show that it holds for ¢ also.
(a). If 2N«/(N — ©) > 12, then by (11),

i _ Ne oNe
1) WSS SN i SN—iF1

(b). If 2N=/(N — i) < 1%, then setting

@  f@-z(l-%) r@=-1-%x0 for # < e,
so by (13)

2Na 2Na Na 2Na
@8)  vi=Jlu) Sf(N— z) = N—i(l - i*(N——z‘)) SN—iF T

which completes the proof.
From (12) and (20) we have

1N=t

(20)

(24) Iy = S < Ne Z W=

2 T (2 — vip)
To prove the first part of (18), in view of the second part, it will suffice to show
the following.
LEmMMA 2. As N — oo,
o 1 _ Jo(N'==), 0<a<l),
(25) Ne 2 = = o), (@=1).
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Proor. (a). Assume 0 < a < 1. For any 0 < 6 < 1, the left side of (25)
can be written as

(e Nt 1
@) N (? + [%H) = o=

< Ve (Fm & 3 + N - 86Ny )

~ 1 N _ —2a) o (L= N
Ne (g s + N — 9)oN)) 2
Hence,

— Jn 1—6
(27) bl,l_m Ni—« < T

Since & can be arbitrarily near 1, the left-hand side of (27) must be 0.
(b). Assume a = 1. We have for the left-hand side of (25), setting M = [N /2],

N—-1 1 M N-1 ]_ M ., N1 .o

1 M+1

szﬁ/2ﬂ+ (N)(%) = 0(1).

3. An optimal rule exists for « > 1 and v(a) > 0
Define 2z, = inf;>, (¢*2;). Then for any constant 0 < 4 < n°, we have

(29) Plea > 4] = Pliva 2 430 2 0] = 1 (1- %)
Hence,
1 © 1
(30) P[zlzg]—rll(l—z—ia)>o,
and therefore,
31) v(a) > Ez; > 0.

Next, for any A > 0,
32) % Pl < 4] < ini < .

Hence, by the Borel-Cantelli lemma,
(33) P[lim nex, = o] = 1.

n—ow

The existence of an optimal ¢ for & > 1 now follows from lemma 4 of [1].

4. Fora> 3, v(x) = 3
We define for¢ = 1, 2, -+ , and any fixed « > 0,

(34) v; = inf E(tex,),
teEC;
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where C; denotes the class of all ¢ € C such that P[¢ > ] = 1. Then v(a) =

vy L vg < --- . It can be shown [3], although it is not trivial to prove, that in
analogy with (8),
(35) v; = E{min (i°z:, v:41)} = A ' min (522, viyy) dz, G@>1).
It follows that
(36) u<h G2 1),
From now on in this section we shall assume that 1 < @ < . Then
e LI 1Y 13\ .
37) i < 3 (HH)" <3 (3) =t Q> 2).
Hence, as in (13),
V; .
(38) o = oo (1 — 52 @ >2),
and since v; = v(a) > 0 for @ > 1 by (81), we have as in (14),
1 1 1
L, ;>
(39) V3 Viq1 21 — Vip1 ('L - 2)
Summing (39) for¢ = n, --- , m — 1, we obtain
(40) 11,5 1 | @2<n<m
Vn Um n 2% — vin

From (29), forany A > 0, wehaveasm — «,

(1) Pz A1 =T (1-%) -1,
thus Ez, — «, and since v, > Ezn, it fdllows that v, — . Hence from (40),

1 & 1

— =Y, 2> 2).
2) 0= X% — o w22)

1 e 1 1 1&1l
= oD 2 BFE e, 2
1 /“’ dt 1
> @®_ ,
=2 for1tr 2(a— 1)(n+ 1)
and hence,
a—1 _ v 2(¢x—1)<n+1>‘x >
(44) = S praa ) (n>1).

We shall now show that »» > 1 for « = . It will follow from (35) that v, = %
and that ¢ = 1 is optimal for §; the same is true a fortiori for any o > 3.
From (38) we obtain

(45) Vi = 1% — Ve — 24, (@ =2);
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the + sign being excluded because of (37). Suppose now that ». < 1 fora = §.
Then by (45),

v < 292 — V8 — 2217 = 1.3,
(46) v < 392 — V27 — 2V27(1.3) = 1.52,

vs < 432 — Vg4 — 16(1.52) = 1.7.
On the other hand, by (44) we have for a = 3,

Pnpt 1 n 4+ 1\¥2 l (g)s/z 1_1_,
(47) ns/zsn.*.l( n ) SG 5 S50 (n 2 5).
Hence, from (42) for a = §,
1_a 1 2 1 s L
M8) = g, =X S
vg 5 27 Vit1 5 9ja (1 _ Vin 5 94 (1 —_ l!—)
2@ 100

<80 [dt_50 1 \/2_100 V2 1
- 89 9/2t"—89a—-1 9
contradicting (46). Hence v, > 1 fora = 3.

6. f1 < @ <14, thenv(a) <3
By (44) we have for o = %,
(49) v; < $-3¥5 < §

and hence by (38), v: < $(1 — (5/4.2.2"/%)) < 1. Hence by (35), »» = v(3) < 3.
For a > 1, an optimal ¢ exists by section 3, and from ([3], theorem 2), a
minimal optimal ¢ is defined by

(50) = first n>1 suchthat z, < Unt1,

= pa

Let « be any constant >1 such that »(a) < 3. Then P[t > 1] > 0 by (50), and
for @ < § we have from (44) that

Vng1 1 n+1\? n+1 >
(51) pys Sn-{—l( - )< i <1 for n > 2.

Hence, P[t > N] > 0 for every N > 1, so ¢ is not bounded. In fact,if 1 < a =
(3 — ¢)/2 for some ¢ > 0, then from (44)

Uny1 _ n41 l l—e.
(62) FS(I e)( 7 )Sn’ for n> -

Hence, if v(a) < 3, so that P[¢ > N] > 0 for every N > 1, it follows that for
1—¢
n>N2>

and some K > 0,
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1 1 1 N-1
so that Bt = 3¢ P[t > n] = «.
We thus have for a > 1: either 0 < v(e) < % and Et = «, or v(e) = § and
t = 1, where ¢ is optimal for that «. The least value a* such that v(a*) = % is
not known to us, but by the results of this and the previous section, it lies
between 1.4 and 1.5.

6. The identification of optimal rules for 1 < «

ForN = 1,2, - - - ,define ty by (10). Then ty < tyy1 < -+ . Let b; = limy—w 07'.
Then from (8),

(54) b; = j;l min (s°x, biy) dz, G=1,2-).
Define
(55) s = first ¢ > 1 such that 72x; < b;y, if such an ¢ exists,

= = otherwise.

Then [1] s = limy—« ty. Since oY > v;for each N, b; > v;. Therefore s < ¢, where
t is an optimal rule defined by (50). We shall now show that s = ¢ by showing that
b; =v;foralls > 1.

From (54) we have

(56) b: < 1¢/2, @21,
and hence as in (37) and (39), for some %, = 7(d),
by <1, (@ 2 ),
(57) 11 1 o
= -, > ).
bi bin 20— b @2 %)
Since b; > v; — = as 1 — «, we have, as in (42),
1 @ 1 .
—_—y > ).
(58) b zn: 26 — bipt (n 2 @)

Assume that for some j > 1, b; > v;. Then by (35) and (54) this inequality
must hold for some #; > 4, (since if § < % and b;, < v4, then b; < v;), and hence
for every ¢ > 7,. Hence by (42) and (54),

1 o 1 od 1 1
(59) - = Z < Z = 7

Vi i=n 20 — Vi1 i=h 20 — b by

a contradiction. Hence b; = v; for all j > 1.
It follows from the above that for 1 < e,

(60) (@) = v = by = lim o} = lim ¥¥(a).
N—oow. Now

That this relation holds also for 0 < o < 1 has been shown already.
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7. Continuity of v(«)

From (60), which holds for any « > 0, given ¢ > 0 we can find N = N(a, ¢)
so large that

(61) v(e) +75 2 0¥ (a) = B(tow,)
for some ¢ in C¥. Hence for o/ > ¢,
62) wv(a) <v(d) L E(@“z) < N¥—2E(lex,) < N¥—a (v(a) + %) <v(@) +e

provided that o’ — « is sufficiently small. Hence v(e) is continuous on the right
for each @ > 0. ’

Since v(«) is nondecreasing in « for each fixed ¢ > 1, we have by the bounded
or monotone convergence theorem for integrals from (35)

1
(63) vila —0) = llII(} vila — e) = lina o min (¢, vi{a ~ €) dz

- /0 " min (6%, vi(e — 0)) dz G> 1),

and by the remark preceding (42), lim,—« v.(a¢ — 0) = « for & > 1. Hence, as
in the preceding section, (58) holds with b, replaced by v.(a — 0), and the
argument shows that v,(a — 0) = v.(@). In particular, v,(a — 0) = v(a), which
shows that v(«) is continuous on the left for @ > 1. Since v(a) = 0for0 < a < 1,
it follows that v(e) is continuous on the left for each o > 0.
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