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1. Summary

The paper is concerned with the estimation of the probability that the em-
pirical distribution of n independent, identically distributed random vectors is
contained in a given set of distributions. Sections 1-3 are a survey of some of the
literature on the subject. In section 4 the special case of multinomial distributions
is considered and certain results on the precise order of magnitude of the proba-
bilities in question are obtained.

2. The general problem

Let X1, X2, * * * be a sequence of independent m-dimensional random vectors
with common distribution function (d.f.) F. If we want to obtain general results
on the behavior of the probability that Xn) = (XI, * *, Xn) is contained in a
set A* when n is large, we must impose some restrictions on the class of sets. One
interesting class consists of the sets A* which are symmetric in the sense that if
XW is in A*, then every permutation (Xj,, * * *, Xj1) of the n component vectors
of Xn) is in A*. The restriction to symmetric sets can be motivated by the fact
that under our assumption all perrrutations of Xn) have the same distribution.
Let Fn = Fn ( JX(n)) denote the empirical d.f. of Xn). The empirical distribution
is invariant under permutations of X(n), and for any symmetric set A* there is
at least one set A in the space 9 of m-dimensional d.f.'s such that the events
X(n) e A* and Fn(. IX(n)) E A are equivalent. The latter event will be denoted
by Fn e A for short. Thus when we restrict ourselves to symmetric sets, we may
as well consider the probabilities P{Fn E A}, where A = An may depend on n.
(It is understood that A C 9 is such that the set {x(n)lFn(. Jx(n)) E A} is
measurable.) Since Fn converges to F in a well-known sense (Glivenko-Cantelli
theorem), we may say that P{Fn e An} is the probability of a large deviation of
Fn from F if F is not in An and not "close" to An, implying that P{Fn e An}
approaches 0 as n -> oo. For certain classes of sets An estimates of P{Fn E An}
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(some of which are mentioned below) have been obtained which hold uniformly
for "large" and for "small" deviations.
For any two d.f.'s F and G in 9 let u be some sigma-finite measure which

dominates the two distributions (for instance, d,u = d(F + G)), and let f and g
be the corresponding densities, dF = f d,u, dG = g dM. Define

(1) I(G, F) = f (log (g/f))g dA,
with the usual convention that the integrand is 0 whenever g = 0. (The value of
I(G, F) does not depend on the choice of w.) We have 0 < I(G, F) < 00;
I(G, F) = 0 if and only if G = F; I(G, F) < cc only if F dominates G. Let

(2) I(A, F) = inf I(G, F),
GEA

I(A, F) = +cc if A is empty. Sanov [12] has shown that under certain restric-
tions on A,,,
(3) P{F,, G A,,} = exp {-nI(A,, F) + o(n)}.

If F is discrete and takes only finitely many values, the distribution of F. may
be expressed in terms of a multinomial distribution. In this case the estimate (3),
with o(n) replaced by O(log n), holds under rather mild restrictions on A,, (see
[5] and section 4). In [12] (where only sets A independent of n and one-dimen-
sional distributions F are considered) Sanov obtains (3) for a certain class of
sets A such that P{F,, e A} can be approximated by multinomial probabilities.
Some necessary conditions for (3) to be true are easily noticed. Let 9,n(F)

denote the set of all G c 9 such that nG is integer-valued and fE dF = 0 implies
fE dG = 0 for every open set E C Rm. Then Fn G gn(F) with probability one
and P{Fn c A} = P{F cAA n9,,(F)}. Let S(F) denote the set of all G which
are dominated by F. Then I (A, F) < cc only if A n 9(F) is not empty. Hence,
exp {-nI(A, F)} can be a nontrivial estimate of P{F,, G A} only if both
A nf 9,,(F) and A nf 9(F) are nonempty. If F is discrete, then 9,(F) C 9(F);
if F takes only finitely many values, (3) is always true for A(n) = A. n Gn(F)
(see (48), section 4), and (3) holds if I(A(n, F) - I(An, F) is not too large. If F
is absolutely continuous with respect to Lebesgue measure, then 9n(F) and 9(F)
are disjoint; for (3) to be true and nontrivial, An must, as a minimum require-
ment, contain both values of F. (which are discrete) and d.f.'s which are domi-
nated by F (hence also by the Lebesgue measure).

In the following two sections the approximation (3) will be related to known
results for certain classes of sets, which give more precise estimates of the
probability.

3. Half-spaces
Let so be a real-valued measurable function on Rm, and let

(4) H = H(<p) = {Gffp dG > 0}
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be the set of all G E 9 such that f (p dG is defined and nonnegative. The set H
may be called a half-space in 9. The asymptotic behavior of P{Fn e H) =

P{IE'=, ((Xj) 2 0} has been studied extensively. To relate these results to the
estimate (3), we first prove the following lemma. We shall write G[B] for fB dG
and G[(p E E] for G[{x(p(x) e E}].
LEMMA 1. Let H = {GIf (p dG > 0}, M(t) = f exp (t(p) dF.
(A) We have

(5) I(H, F) = -log inf M(t);
t>0

(B) 0 < I(H, F) < X iff(pdF < 0, F[(p > 0] > 0, M(t) < oofor somet > 0;
(B1) if, in addition, M'(t*-) > 0, where t* = sup {tIM(t) < oo} and M'(t) =

dM(t)/dt, then inft>o M(t) = M(tQ,), where t, > 0 is the unique root of
M'(t) = 0;

(C) I(H, F) = Oif f pdF > 0 or M(t) = oo for all t > 0;
(D) I(H, F) = 00 if F[(p 2 0] = 0.
PROOF. If G H andI(G, F) < oo, then for t > 0,

-I(G, F) < t f (p dG - I(G, F) = f log (exp (tp)fg-')g dA
(6)

< log f exp (t(p)f dju = log M(t)

by Jensen's inequality. Hence, I(H, F) 2 - log inft >o M(t). The equality sign
holds in both inequalities in (6) if f (p dG = 0 and exp (tsp)fg-l = const. a.e. (F).
If M(t) < Xo and M'(t) exists, these conditions are equivalent to dG =
exp (t(p) dF/M(t) and M'(t) = 0. Under the hypothesis of (B), M'(t) exists for
0 < t < t* = sup {tlM(t) < o}, M'(O+) < 0, and M'(t) is increasing. Hence if
M'(t*-) > 0, then the root t, of M'(t) = 0 is unique and positive, and
M(tQ) < 1. This implies (5), (B), and (B1) under the condition of (B1). In
particular, if t* = X and the conditions of (B) hold, then that of (B1) also holds.
Next, under the hypothesis of (B), if F[(p > 0] = 0, then 0 < F[p = 0] < 1,
inf.>o M(t) = M(-c) = F[(p = 0], and the distribution G with G[vp = 0] = 1 is
in H and I(G, F) = -log F[(p = 0]. The remaining case of part (B) is where
t* < oo,M'(t) < Ofort < t*, and F[(p > 0] > 0.Theninft>oM(t) = M(t*) < 1,
and we must show that I(H, F) = -log M(t*). Let MC(t) = f <c exp (t(p) dF,
which is finite for t > 0 and c > co. For c large enough there is a unique number
t(c) > t* such that M'(t(c)) = 0. It is easy to show that t(c) -- t* and M,(t(c))
M(t*) as c -m oo. Let Gc be the d.f. defined by dG, = exp (t(c)5p) dF/Mc(t(c)) for
(p < c, G,[(p > c] = 0. Then G, E H and I(G¢, F) = -log Mc(t(c)) -- -log M(t*)
as c -* 00, so that I(H, F) = -log M(t*). The statements (5), (C), and (D) in
the cases f (p dF > 0 and F[(p > 0] = 0 are easily verified, and the part of (C)
where M(t) = oX for all t > 0 and f (p dF < 0 is handled exactly like the last
case of part (B), completing the proof.
We have the elementary and well-known inequality

(7) P{Fn c H} = P (p(X) 2 o3 < inf M(t)n = exp {-nI(H, F)}
Lj=1 J t>0
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Equality is attained only in the trivial cases F[so < 0] = 1 and F[sp > 0] = 1.
Let H. = H(qp - c) = {GIf v dG > c}, where c is a real number. Then

P{Fn E H.} = P{,=1 *p(Xj) > nc}. If M(t) <0 forO < t < t*, and f SPdF <
c < L'(t*-), where L(t) = log M(t), then, by lemma 1,

(8) I(HC, F) = ct(c) - L(t(c)) = I*(c),
say, where t(c) = t, is defined by L'(t(c)) = c.
A theorem of Cram6r [3] as sharpened by Petrov [8] can be stated as follows.

Suppose that

(9) f pdF=0, F[p O0]>0, M(t) <0 if It| <to

for some to > 0. Then for c = Cn > an-112, (a > 0), c = o(1) as n - oo0, we have

(10) P{ ,o(Xj) > nc} = bn(c) exp {-nI*(c)}(1 + 0(c)),
j=l

where, with l(x) = (27r)-1/2 fX exp (-y2/2) dy,

(11) bn(c) = (1-?(x)) exp (-x2/2), x = n12c/o, a2 = f o dF.

(Usually the theorem is stated in terms of an expansion of I*(an-lI2x) in powers
of n-112x.) Petrov [8] also shows that for any e > 0, equation (10) with 0(c)
replaced by rae holds uniformly for 0 < c < ae, where Irl does not exceed an
absolute constant. (Compare also the earlier paper of Feller [4].)

Bahadur and Rao [1] have obtained an asymptotic expression for the proba-
bility in (10) when c is fixed. It implies that if conditions (9) are satisfied,
then for c fixed, o < c < L'(t*-)

(12) P{ E p(Xj) > nc} X n112 exp {-nI*(c)}.

(The notation an IX' bn means that an and bn are of the same order of magnitude,
that is, an/bn is bounded away from zero and infinity from some n on.)
From (11) it is seen that bn(c) X x-1 IX c-1n-12 if c > an-1/2(a > 0). Hence,

the quoted results imply the following uniform estimate of the order of magnitude
of the probability under consideration. Let a and j# be positive numbers such
that ,B < L'(t*-). If conditions (9) are satisfied, then

(13) P {_E (Xj) > nc}>X c1w112 exp {-nI*(c)}

uniformly for an-1/2 < c < d. This also follows from ([1], inequality (57)).
In the case c -*00, A. V. Nagaev [15] obtained, under certain restrictions on

the (assumed) probability density of p(X1), an asymptotic expression for the
probability in (12), which is identical with the leading term of the expansion
derived in [1] for c fixed.
Lemma 1 shows that exp {-nI(H, F)} does not approximate P{Fn E H}

if M(t) = oo for all t > 0. In this case, S. V. Nagaev [16] showed, under a
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smoothness condition on F,,(x) = P{sp(Xi) < x}, that P{Y=1Po(Xj) nc}
n(l - F,(nc)) if nc increases rapidly enough (see also Linnik [14]), whereas
Petrov [9], extending the results of Linnik [7], obtained asymptotic expressions
for this probability, of the form (10) but with I*(c) replaced by a partial sum of
its expansion in powers of c, under the assumption that nc does not grow too fast.

For certain sets A the results on half-spaces enable us to obtain upper and/or
lower bounds for P{F, e A} of the form (3). If A is any subset of 9,
it follows from the definition of I(A, F) that A C B = {GJI(G, F) > I(A, F)}.
Suppose that 0 < I(A, F) < oo and that there is a Go e A such that
I(Go, F) = I(A, F). If I(G, F) and I(G, Go) are finite, we have I(G, F) =
f log (go/f) dG + I (G, Go), where f = dF/d,u, go = dG/d,u. Hence, the half-space
H = {GIf log (go/f) dG > I(A, F)} is a subset of B, and I(H, F) = I(A, F). In
general, H neither contains nor is contained in A.
Suppose that A contains a half-space H such that I(H, F) = I(A, F). For

example, if A is the union of a family of half-spaces H(p), p e 4 (so that the com-
plement of A is convex), it is easily seen that I(A, F) = inf {I(H(Qp), F), so G (D}.
If the infimum is attained in c1, the stated assumption is satisfied. Then we have
the lower bound P{F. E A} > P{Fn e H}, which, under appropriate conditions,
can be estimated explicitly, as in (10) or (12), where I*(c) = I(A, F). If A is
contained in a half-space H and I(H, F) = I(A, F), we have analogous upper
bounds, including P{Fn e A} < exp {-nI(A, F)}.
Now suppose that the set A is contained in the uniion of a finite number

k = k(n) of half-spaces Hi, i = 1, * , k. Then (using (7))
k k

(14) P{Fn e A} < E P{Fn e Hi} < E exp {-nI(Hi, F)}
i=l i=l

< k exp {-n min I(Hi, F)}.
i

If min I(Hi, F) is close to I(A, F) and k = k(n) is not too large, evenl the crudest
of the three bounds in (14) may be considerably better than the upper bound
implied by (3). The following example serves as an illustration.

Let
(15) A = {GI sup IG(x)-F(x)l > c, < c <1.

The set A is the union of the half-spaces H+ = {GIG(x) - F(x) > c}, HZ =
{GIF(x) - G(x) > c}, x e BRi. Sethuraman [13] has shown that the estimate (3)
holds in the present case with c fixed, and for more general unions of half-spaces.

It follows from lemma 1 by a simple calculation that I(H+, F) = J(F(x), c)
and I(HP, F) = J(1 -F(x), c), where

(16) J(p, c) = (p + c) log ((p + c)/p)
+ (1-p - c) log ((1- p -c)/(1 -p))

if 0 < p < 1- c, J(1 - c, c) = - log (1 - c), J(p, c) = x if p = 0 or p > 1-c.
I shall assume for simplicity that the one-dimensionlal marginal d.f.'s of F are

continuous. Then F(x) takes all values in (0, 1), arid we have
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(17) I(A, F) = min J(p, c) = J(p(c), c) = K(c),
p

say, where p(c) is the unique root in (0, 1 -c) of aJ(p, c)/ap = 0. It is easy to
show that ((1 - c)/2) < p(c) < min (, 1 -c). For K'(c) = dK(c)/dc we find

(18) K'(c) = cp-'(c)[l- p(c)]-' < 4c/(1- c2).
For any x with F(x) = p(c) we have

(19) P{Fn E A} 2 P{Fn e H+} > (n) p(c)r(l -p(c))_,

where r = r(n, c) is the integer defined by r > n(p(c) + c) > r - 1. An ap-
plication of Stirling's formula shows that this lower bound is greater than
C1n-"/2 exp {-nJ(p(c), cn)}, where Cl is a positive constant independent of c
and cn = (r/n) - p(c) = c + 0/n, 0 <0 < 1. Hence it can be shown that for
every E> 0 there is a positive constant C2 which depends only on E such that for
0 < C < 1-,

(20) P{ sup IFn(x)- F(x) I 2 c} > C2n-12 exp {-nK(c)}.
x ER-

Now let k be a positive integer. Since the marginal d.f.'s F(i)(x(i)) of F(x) =
F(x(l), *... , x()) are continuous, there are numbers aj.',
(21) -°° = a't' < a ) < *.. < akt) 1 < ak't = +00,
i = 1, * * , m, such that F(i) (a>°) = j/k for all i, j. If

(22) aLt) 1 < x(i) < a>f) for i = 1, m,m

then

(23) G(x) - F(x) < G(a) - F(a) + m/k,
where a = (ajl', * * , aj,,)), 1 < ji < k, and we have a similar upper bound for
F(x) - G(x). Hence the set A is contained in the union of the 2km half-spaces
{GIG(a) - F(a) > c - m/k}, {GIF(a) - G(a) > c -m/k}, corresponding to the
km values a. If c -m/k > 0, we have for each of these half-spaces H the inequality
I(H, F) > K(c - m/k). Hence, by (14),
(24) P{Fn E A} < 2km exp {-nK(c -m/k)}.
We have K(c - m/k) = K(c) - (m/k)K'(c - Om/k), 0 <0 < 1. With (18) this
implies
(25) K(c - m/k) > K(c) - (m/k)4c/(1 -C2),
(26) P{Fn e A} < 2(k exp {4nc(1 - c2)-lk-l})m exp {-nK(c)}.
If we choose k so that k - 1 < 4nc(1 -C2)-1 < k and take account of the
assumption c > mk-1, we obtain

(27) P{sup IF.(x) - F(x)l > c} < 2em{4cn/(1- c2) + 1}m exp {-nK(c)}
eR-

if 4c2n > m(1-C2).
For c fixed the bound is of order n- exp {- nK(c)}. The power nm can be
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reduced by using the closer bounds in (14). An upper bound of a different form
for the probability in (27) has been obtained by Kiefer and Wolfowitz [6].

4. Sums of independent random vectors

Let sp = ('PI, '--,(pk) be a measurable function from Rm to Rk and consider
the set

(28) A = {Gl f.pdG e D},

where D is a k-dimensional Borel set. Then P{Fn e A} is the probability that
the sum n-1 _- 1 yp(Xj) of n independent, identically distributed random vectors
is contained in the set D. We have

(29) I(A, F) = inf I(A (s), F), A (s) = {GI J p dG = s}-

For t X Rk let M(t) = f exp (t, (p) dF, L(t) = log M(t), where (t, (p) = _I t,jo,.
Let e denote the set of points t E Rk for which M(t) < o. Suppose that the set
e0 of inner points of e is not empty. The derivatives L'i(t) = aL(t)/ati exist in
O0. Let Q10 denote the set of points L'(t) = (LQ(t), * * Lk(t)), t E O0. The follow-
ing lemma, in conjunction with (29), is a partial extension of lemma 1.
LEMMA 2. If s E go, then

(30) I(A(s), F) = (t(s), s) - L(t(s)) = -min [L(t) -(t, s)],

where t(s) satisfies the equation L'(t(s)) = s. Also, I(A (s), F) = I(G,, F), where G.
is the d.f. in A(s) defined by
(31) dG8 = exp {(t(s), (p)} dF/M(t(s)).
PROOF. If G e A(s), we find as in (6) that -I(G, F) < L(t) - (t, s) for all

t E Rk, with equality holding only if

(32) dG = exp {(t, (p)} dF/M(t).
The d.f. G defined by (32) is in A(s) if and only if f j0{exp (t, (p)} dF/M(t) = s
which for t E e0 is equivalent to L'(t) = s. Since s E Q0, there is at least one point
t(s) E 00 which satisfies this equation. The lemma follows. (If the distribution of
the random vector (p(X1) is concentrated on a hyperplane in Rk, the solution t(s)
of L'(t) = s is not unique; but the distribution G, can be shown to be the only
G E A(s) for which I(G, F) = I(A(s), F).)

It is seen from (30) and (31) that if s e i2o, then

(33) dF(x) = exp {-I(A(s), F)- (t(s), (p(x) - s)} dG,(x),
n rn

(34) I1 dF(xj) = exp {-nI(A(s), F) -n(t(s), J p dFn- s)} II dG,(xj).
j=1 j=1

(Here the same notation F. is used for the value Fn(. JX(n)) as for the random
function Fn(. IX(n)).) Hence the distribution of the sum f sP dFn can be sym-
bolically expressed in the form
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(35) fII dF(xj) exp {-nI(A(s), F)} II dG8(xj)

.f dpdF=a ==8 j=1

for values s E gO. Here {f SOdFn = s} is a shortcut notation for {I sodFn- sI < ,
e -X0, and a term which is negligible for e -+ o is suppressed. The integral on the
right is the value at s of the distribution of f SO dFn when the Xi, * * *, Xn have
the common distribution G, in which case s = f 5 dG8 is the expected value of
f so dFn. The higher moments of this distribution are finite, and the known results
on the approximation of the density of a sum of independent random vectors in
the center of the distribution can be used to approximate the density (on the left
in (35)) at points remote from the center. This, in turn, can be used to approxi-
mate P{If < dFn e D} at least for D C Qo. This approach has been used by
Borovkov and Rogozin [2] to derive an asymptotic expansion of the probability
P{f v dFn e Dn} for an extensive class of sets Dn under the assumption that the
distribution of f sp dFn is absolutely continuous with respect to Lebesgue measure
in Rk for some n.
Borovkov and Rogozin make the following assumptions concerning Dn. Let

-On denote the essential infimum relative to k-dimensional Lebesgue measure
of I(A(s), F) for s e D.. (Thus i'n = -I(A, F) where A,n = {GIf v dG e Dn}
and D* differs from Dn by a set of Lebesgue measure 0.) Let ef be a compact
subset of e0 and 4) = {L'(t)It e Of}.
ASSUMPTION (A). For some a > 0, Dnn {sII(A(s), F) < -4n + S} C 4-
ASSUMPTION (B). There is a union U of finitely many half-spaces in Rk such

that

(36) D. n {sII(A(s), F) > -On + 5} C U C {slI(A(s), F) > -On + 2-}

Under these assumptions the leading term of the asymptotic expansion ob-
tained in [2] is

(37) P{|. dFn e Dn} - (27)>kI2nkI2 exp (nipn) fO e-nu P,n(u) du,

where

(38) pn (U) = fDnnr(_fu) I s(s)I/ ds, r(-c) = {sII(A(s), F) =

IF_ (s)I is the determinant of the covariance matrix of So(X1) when X1 has the
distribution G6, and the last integral is extended over the indicated surface.

It should be feasible to obtain an analogous expansion for the case of lattice-
valued random vectors. An extension of the Euler-Maclaurin sum formula to the
case of a function of several variables due to R. Ranga Rao (in a Ph.D. disser-
tation which is unpublished at this writing; compare [10]), would be useful here.
The order of magnitude of the probability P{f p dF. e Dn} for a fairly extensive
class of sets Dn can be determined in a rather simple way, as is shown in section 4
for the multinomial case. Richter [11] derived an estimate of P{If dFn EC D}
for a special class of sets D in the lattice vector case as well as in the absolutely
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continuous case; it is akin to the Cramer-Petrov estimate for the one-dimensional
case but seems to have no simple relation to the Sanov-type estimate (3).
The preceding discussion has an interesting statistical interpretation. Lemma 2

shows that if s e QO, then the infimum I(A (s), F) is attained in the "exponential"
subclass of 9 which consists of the distributions G defined by (32). Suppose that
F = Fe is a member of the class {Fo, 6 G e}, dFe = fe dv, where

(39) fo(x) = exp {(f, (p(x)) -L(0%
v is a sigma-finite measure on the m-dimensional Borel sets, <p a fuinetioin from
Rm to Rk, and e is the set of points 0 E Rk for which exp L(O) = f exp (0, sp) dv
is finite. (If the null vector 0 is in (, which could be assumed with no loss of
generality, then dv = dFo.) Let fe n = fe,,(x(n)) be the density of X(n), so that

(40) fen = exp n{(O, f ,o dFn) - L(+)}.
Here f p dFn is a sufficient statistic and it is natural to restrict attention to sets
A of the form (28). We have f <o dFo = L' (6) for 0 e e0, and
(41) I(F, Fe) = (6' - 6, L'(6')) - L(6') + L(6) = I*(6', 0),
say, for 6' E O0, 0 c ®. From (30) with F = Fe we have I(A(s), Fe) = I*(6', 0),
where s = L'(6').
A maximum likelihood estimator of 0 is a function fn from Rmn into G such that

in(X(n)) maximizes f6,n(x(n)). IffrS dFn E Q2o, then On is a root of L'(0) = r O dFn
and we have
(42) maxfe,n = fOnn = exp n{( ,0, L'(On)) -L(On)e
Hence,

(43) fe n = Am exp {-nI* (On, )}.
Equation (43), which is related to (35), shows that fe,n depends on 0 only

through I*(OJn, 6). Note that the likelihood ratio test for testing the simple
hypothesis 0 = 6' against the alternatives 0 5 6' rejects the hypothesis if
I*(On, 6') exceeds a constant. For the special case where the distribution of
f dFMn is multinomial the author has shown in [5] that the likelihood ratio test
has certain asymptotically optimal properties.

5. Multinomial probabilities

The case where X1 takes only finitely many values can be reduced to the case
where Xi is a vector of k components and takes the k values (1, O, * *, O),
(0, , O, * * *, O), * *. , (0, * * *, 0, 1) with respective probabilities PI, P2, Pk,pk
whose sum is 1. The sum nZ(n) = X1 + *-- + Xn takes the values nz(n) =
(n, nfk), ni 0, ni = n, and we have

k \n-1 k
(44) p{()= () = n! nELli ) PElt n( I)
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say. The distribution function F of Xi and the empirical one, F., are respectively
determined by the vectors p = (pl, * , pk) and Z(n) whose values lie in the
simplex

(45) = {(Xl, ,xk)IxI > O, ,Xk > 0, xi = 1}-
It will be convenient to write I(Z(n), p) for I(F., F), where

k
(46) I(x, p) = L xi log (xi/pi)

i=l
for x and p in U. We have

(47) Pn(Z(n)lp) = Pn(Z(n)jz(n)) exp {-nI(z(n), p)}
which corresponds to equations (35) and (43).
For any set A C Q, let I(A, p) = inf {I(x, p)lx e A} and let AW denote the

set of points z(n) c A. In [5] it is shown that
(48) P{Z(n) E A} = exp {-nI(A(n), p) + O(log n)}

uniformly for A C Q and p E U. Clearly, I(A(n), p) > I(A, p). Hence, if {An} is
a sequence of sets such that

(49) I(An'f, p) < I(An, p) + O(n-1 log n),
then
(50) P{Z(n) e A} nr" exp {-nI(An, p)},

where r. is bounded. Sufficient conditions for (49) to hold are given in the
appendix of [5].
Here we shall consider the determination of the order of magnitude of

p{Z(n) E An}, which amounts to the determination of rn in (50). The point p
will be held fixed with pi > 0 for all i. (The results to be derived hold uniformly
for pi > E, i = 1, * *, k, where e is any fixed positive number.)
LEMMA 3. For every real m there is a number d (which depends only on m and

k) such that uniformly for A C Q2,

(51) p{Z(n) E A} = P{Z(n) E A, I(Z(n), p) < I(A, p) + dn-1 log n}

+ O(nm- exp {-nI(A, p)}).
The lemma follows from (48) with A replaced by {xlI(x, p) > I(A, p) +

dn-I log n} and d suitably chosen.
It should be noted that Z(n) E A implies I(Z(n), p) > I(A, p). Thus if the

remainder term in (51) is negligible, the main contribution to P{Z(n) E A} is
from the intersection of A with a narrow strip surrounding the (convex) set
{xlI(x, p) < I(A, p)}.
Let D, denote the set of all xc Q such that xi > E, i= 1, . ,k. Let for

k (-n/2
(52) II.n (xlIp) == (27rn)-(k-])/2 XI i) exp 1-nI(x, p)}.
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LEMMA 4. For E > 0 fixed we have uniformly for A C Qf

(53) P{Z(t0) e A} = v- IL, (z flp)(1 + O(n-D).
z(")(A

This follows from (47) by applying Stirling's formula to
k

(54) Pn(Z(n)IZ(n)) = (n!/nn) II (n`i/ni!).
i=l

We now approximate the sum in (53) by an integral. To determine the order
of magnitude only, a crude approximation will suffice. Let

Rn(Z(n)) = {(Xl, * kl)lZ(n) < xi < zl" + n-1, i = - 1
(55) An = U Rn(Z(n)).

Z(n) E=A
LEMMA 5. For e> 0 we have uniformly for A C Q,

(56) v ln (zIp)|P n f *.. f Hi,n (xlp) dxil.. dXkl1
Z(n)CA An

PROOF. We have 1 = nk-1 f ... f Rn(z(.,) dx1 ... dxk-1. If (x1, ** ,Xk-1) e
Rn(Z(n)), then I i- 4ff)j < kn-' for i = 1, * , k, where Xk = 1-xi ... Xk-1.
Also, I(x, p) = I(z, p) + 0(maxi xi - zil) uniformly for x and z e Q, These
facts imply the lemma.
Now let f (x) be a function defined on Q,

(57) A(c) = {xlf(x) > c},
and suppose that for every E' > 0 there is a number al(e') such that

(58) If(z) - f(x)I < a,(e')Iz - xI if z c 0', x C 9ft
where Iz - xl = maxi izi- xil. This condition is satisfied if the first partial
derivatives of f exist and are continuous in Oo (the set where xi > 0 for all i). Let

(59) D(c, 6) = {xIf(x) > c, I(x, p) < I(A(c), p) + 6},

(60) D*(c, 6) = {(xl, * * * Xk-1)I(Xly ...* Xk-1, 1 - X1- * * * -Xk-1) e D(c, 6)}

(61) V |(u)= f D(CU)d ... dXk,

and, if the derivative V'(u) = dV,(u)/du exists for 0 < u < 6,

(62) Kn(c, 6) = fo e-nuV'(u) du.

THEOREM 1. Let A (c) be defined by (57), where f satisfies (58) for every E' > 0.
Let -{c,} be a real number sequence and suppose thatfor every a' > 0 there are positive
numbers E, 6, and nO such that D (cn - a'n-1, 6) C i, for n > nO. Then for every real
number m there are positive numbers d and a such that

(63) P{f (Z(n)) > cn}
X- exp {-nI(A(cn), p)} {n(k-1)2Kn(cn- Oan-', 6n + Oan-1) + O(n-m)}

where 101 < 1, Sn = dn-' log n, and it is assumed thatfor each c such that Ic -Cnl <
an-' the derivative V'(u) exists for 0 < u < 6.
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PROOF. From lemmas 3, 4, and 5 we obtain

(64) P{f (Z(n)) > Cnl} n(k-l)12J,,n + O(n-m exp {-nI(A(cn), p}),
where

f f 1~k Xi-1/2(65) Ji,, = J *I J| I xi) exp {-nI(x, p)} dxl ... dXk-1,

(66) D= U R.(z(n))Z(')ED (c,6n)
and S. = dn-' log n. It follows from condition (58), which is also satisfied by
I(-, p), that there is a number a > 0 such that

(67) D*(cn + an-', 5a - an-') C D* C D*(c - an-', an + an-').

Since (II x4)-"12 is bounded in Qf, we obtain Ji,n X-> J2,,n(cn- Oan-, An + Oan-'),
where

(68) J2,n(c, 3) = f ... JD*I(c) exp {-nI(x, p)} dx, ... dxk-i
and 101 < 1. If the derivative V'(u) exists for 0 < u < 6, we can write

(69) J2,n(c, 6) = exp {-nI(A(c), p)} fo e-nuV,(u) du.
The theorem follows.

If we had not suppressed the factor (II x,)-1"2, we would have obtained (63)
with V,(u) replaced by

(70) Vj,,(u) J| **| IjI, xit dxi ... dxk-l.
In this form the first term on the right of (63) is analogous to the right side of
(37). The integer k in (37) is here replaced by k - 1, since the distribution is
(k -1)-dimensional.
To apply theorem 1 we need to determine the order of magnitude of Kn(c., 3,n),

where AnX>1 n-1 log n, so that n-O0 and nn -> oo. If, for instance Vc'(u) X b(cn)ur
uniformly with respect to n as u -* 0+, then

(71) Kn(Cn, An) X, b(cn) fol e-nuur du -, b(c.)n--1.

Concerning the determination of the order of magnitude of V'(u), we observe
the following. Note that I(A (c), p) = 0 if f (p) > c. Assume that f (p) < c. The
continuity condition (58) implies that I(A (c), p) > 0. Let Y denote the set of
points y e A(c) such that I(y, p) = I(A(c), p). Then Y C D(c, 6). The assump-
tion D(c, 6) C Qf, condition (58), and the convexity of I(., p) imply that
f(y) = c if y E Y.

Suppose first that the set A(c) is contained in a half-space H such that
I(H, p) = I(A (c), p). (This is true if the function -f (x) is convex, so that the
set A (c) is convex.) Then the set Y consists of a single point y, and we have

(72) I(x, p) -I(A(c), p) = I(x, p) - I(y, p)
= E (log (yi/pi))(xi- yi) + I(x, y).
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Hence, H = {xl E (log yi/pi) (xi - yi) > 0}, and x e A(c) implies I(x, p) -
I(A(c), p) > I(x, y). Therefore, if x e D(c, 5n), then I(x, y) < &.. Now
I(x, y) = 1Q2(x, y) + O(jx - yl3), where Q2(x, y) = E (xi- yi)2/yi. Hence, if
x E D(c, 5.), then Ix - = O(BI/2), I(x, y) - 1Q2(x, y) = 0(63/2) = o(n-1), and
the inequality

(73) I(x, p) - I(A(c), p) <6An
may be written

(74) E (log (yi/pi))(Xi- yi) + IQ2(x, y) < 6, + o(n 1).
An inspection of the proof of theorem 1 shows that in the present case the
theorem remains true if in the domain of integration D(c, u) of the integral
Vj(u), the left-hand side of (73) is replaced by the left-hand side of (74).
Now suppose further that the partial derivatives f t(x) = af (x)/xzi, f"(x) =

d2f (x)/1axaxj, and the third-order derivatives exist and are continuous in &2. Then

(75) f(x) - c =f(x) -f(y) = _ft(y)(xi- yi) + 'F(x - y) +O(Ix -yl)
uniformly for y e 0, where F(x - y) = E E f"(y) (xi- y1) (xj - yj). Hence, if
x e D(c, 5n), the inequalityf(x) > c may be written as

(76) _ft(y)(xi- yi) + IF(x - y) > rn, r = 0 n

Furthermore, the half-space {xl , ft(y) (xi- yi) > 0} is identical with H. This
implies that y = y(c) satisfies the equations

(77) log (yt/pi) = t(c)fA(y) + s(c), i = 1, *- ,k,
where t(c) > 0 and s(c) are constants, as well as the equations f (y) = c and

_ yi = 1. It follows that under the present assumptions theorem 1 remains true
with Kn(cn, 6n) replaced by Kn(Cn, 6., rn), where

(78) Kn(c, 6, r) = fo e-nuVc,r(u) du

and V.',(u) is the derivative with respect to u of the volume Vc, r(u) of D*(c, r, u),
the set of points (xi, * * *, Xk-l) which satisfy the inequalities

(79) Yft(y)(xi- yi) + IF(x - y) > r,

((80) t(c) Efl(y)(x, - yi) + AQ2(x, y) < U.

If we make the substitution zi = yt-O'2 (xi- yi), i = 1, *--, k, we obtain
Q2(X, y) = Ft=i Z2t, y_ = 0 and

(81) Eft(y)(xi- yi) = (ft(y) - a(c))y2zi = a(c) bizi,
wherea(c) = Eyif'(y), 2(c) = E (f'(y) - a(c))2y,and bi = a-(c)(ft(y) - a(c)).
We have X_ = 1, F_ bi1'2 = 0. Hence we can perform an orthogonal transfor-
mation (z1, * *, Zk) -4 (V1, * Vk), where v1 = _ bizi = a-'(c) E f'(yi)(xi - yi)
and Vk = z = 0, The inequalities (79), (80) are transformed ifltQ
(82) a(c) v1 + 1O(v1, * * Vk-1) > r,
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k-I
(83) t(c)a(c)Vi + , F2vE < U,

t=1

where G(v1, * *, vk-i) is a quadratic form in v1, , vk-i. Thus

(84) Vc,4(u) = C(C)Wc,r(u), Vc',(u) =C(C)WCwr(u)
where C(c) is the modulus of the determinant of the linear transformation
(x1, *- *, xk-1) - (vI, * **, Vk) and We,r(u) is the volume of the set defined by
(82) and (83). In the estimation of W',r(u) we may assume that u = 0(6n) and
r=0(=3/2) = o(n-1).
The replacement of Vc(u) by Vc,r(u) may be possible under conditions different

from those assumed in the two preceding paragraphs. Suppose that c > f (p)
is fixed and that the set Y consists of a finite number s of points. Choose X > 0
so small that the s sets S, = {xI Ix - yl < q}, y e Y, are disjoint. Then for 6
small enough D(c, 6) is contained in the union of the sets Sy. If, for each y E Y,
the surfaces f (x) = c and I(x, y) = I(A (c), p) are not too close in the neighbor-
hood of y, then x e Sy n D(c, 6) will imply Ix - yl = 0(61/2), and we arrive at
analogous conclusions as in the preceding case.

If f (x) = 1 aixi is a linear function, nf (Z(n)) is the sum of n independent
random variables, each of which takes the values a,, * * *, ak with respective
probabilities pi, * * *, pk. The following theorem can be deduced from theorem 1
but is a special case of (13).
THEOREM 2. Let A (c) = {x| Et=- aixi > c}, where al,, * ak are fixed (not

all equal) and t- 1 aipi = 0. Then
k

(85) P __ aiZ(f2 c}> c-ln-12 exp {-nI(A(c), p)}

uniformly for an-1/2 < c < max ai - j3, where a and ,B are arbitrary positive con-
stants.
The next theorem gives an analogous uniform estimate for the distribution of

I(Z(n), p).
THEOREM 3. Let pmin = mini pi and let a and 13 be arbitrary positive constants.

Then

(86) ~~~~pJl(Z(n), p) > c} (n,c) (k-3)/2 -nc

uniformly for an-' < c < - log (1 -pmin) - 3.
PROOF. In this case D(c, 6) = {xlc < I(x, p) < c + 6}. It can be shown

that I(x, p) < - log (1 -pmin) implies xi > 0 for all i. The assumption
c < - log (1 -pmin) -1, > 0, implies D(c, 6) C Q, for some e > 0 if a is
small enough. Let

(87) V(u) = f *-(X <U dx1 ... dxk-1.

We first prove the following lemma. (Clearly we may assume Pk = pmin-)
LEMMA 6. Let Pk = pmin. The derivative V'(u) = dV(u)/du exists, is continu-

ous, and positive for 0 <u < - log (1 - pmin) and V'(u)u(nC12 as u - 0+.
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(Heuristically, as u -O 0, V(u) is approximated by the volume of the ellipsoid
Q2(x, p) < 2u, which is proportional to u(h1)/2.)
We shall write Ik(X, p) for I(x, p) to indicate the number of components of

the arguments x and p, and Vk,p(u) for V(u). For Xk #d 1, let y = (y,, ... , Yk-)
Yi = xi/(1 -Xk); Z = (Z1, Z2) = (1 - Xk, Xk);q = (ql, . * qk-1), qi = pi/(1 - pk);
r = (r1, r2) = (1 - Pk, pk). Then we have the identity
(88) Ik(X, p) = zilk-1(y, q) + 12(z, r).
Hence, we obtain the recurrence relation

(89) Vk,p(u) = f|(z) Z'72Vh(_zq(Z l{U- I2(z, r)}) dzi, k > 3.

Since Pk = Pin < 1- Pk, we have r1> r2. We also have V2,r(u) = b(u) -
a(u) where, for 0 < u < -log (1 - Pmin) = - log r2, a(u) and b(u) are the two
roots of the equation I2((zi, 1 - z1), r) = u, 0 < a(u) < r, < b(u) < 1. Hence,
it is easy to show that the lemma is true for k = 2. From (89) we obtain for
k = 3,

Jb(us) k-3VkI(90) Vk(,p(U)=7{U - I2(z, r)}) dz,.

It now can be shown that the lemma holds for k = 3 and, by induction, that
equation (90) and the lemma are true for any k.
Under the conditions of theorem 1 we have V,(u) = V(c + u) - V(c).

The lemma implies that V'(u) = V'(c + u) (c + u)(k-3)/2 uniformly for
0 < c + u < -log (1 -pmin) - . It follows that uniformly for an-' < c <
-log (1 - Pmin) - (,

(91) Kn(c, S.) fo>f e7nu(C + U)(k-3)/2 du X C(k-3)I2n-1.

This establishes the theorem under the restriction nc > a + a, where a is the
number which appears in (63). That the result holds for nc > a with any a > 0
follows from the well-known fact that 2nI(Z(n), p) has a chi-square limit distri-
bution.

Since A C {xlI(x, p) 2 I(A, p)} for any subset A of Q, theorem 3 immediately
implies the following theorem.
THEOREM 4. If a and (3 are any positive numbers, there is a constant C =

C(a, l,y p) such that for any set A which satisfies
(92) an-' < I(A, p) < -log (1 - pmin) - (,
we have

(93) P{Z(n) c A} < C{nI(A, p)}(k3)/2 exp {-nI(A, p)}.
REMARK. We have max,ea I(x, p) = -log pmin. It seems plausible that the

estimate (86) of theorem 3 holds uniformly for an-' < c < -log Pmin - (. If
so, theorem 4 holds with an analogous modification.
For the functions f(x) = E_ aixi and f(x) = I(x, p) of theorems 2 and 3

the order of magnitude of P{f(Z(n)) 2 c} is expressed in the form crn8
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exp {-nI(A (c), p)} in a wide range of c. That this is not true in general is shown
by the following example. Let
(94) A(c) = {xIQ2(x, p) 2 c}, Q2(x, p) = E (x, -p)2/p,.
Since I(x, p) 1Q2(x, p) + 0(Ix - pl3), Q2(x, p) < c implies I(x, p) =
iQ2(x, p) + 0(c312) as c -- 0. Hence, it follows from theorem 3 that if c = O(n-213)
and nc > a > 0, then P{Q2(Z(n), p) > c} is of the same order of magnitude as
P{I(Z(n), p) > c/2}. We have I(A(c), p) = IC + O(C3I2). By theorem 3 this
implies that
(95) P{Q2(Z(n), p) > c} (nc)(k-3)I2 exp {-nI(A(c), p)}
uniformly for an-l < c <jn-213. On the other hand, if c is bounded away from
0 and from max- Q2(x, p) = pm- 1, it can be deduced from theorem 1 (see the
remarks after the proof of theorem 1 and section 8 of [5]) that

(96) P{Q2(Z(n) p)> c} n'12 exp {-nI(A(c), p)}.
In this case the probability of the set A (c) is of the same order of magnitude

as the probability of any of the half-spaces contained in B = {xjlI(k, p) >
I(A (c), p)} and bounded by the supporting hyperplanes of the convex set
B' = {xlI(x, p) < I(A (c), p)} at the common boundary points y of the sets
A (c) and B. This result holds for a wide class of functions f when c is fixed.
(However, theorem 4 of [12] is inaccurate in the stated generality, as is seen
from theorem 3 above.) An asymptotic expression for P{Q2(Z(n), p) > c} with
c = o(1) as n -Xo has been obtained by Richter [11].
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