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1. Introduction

1.1. Notation and preliminaries. This paper is concerned with the computa-
tion of optimum designs in certain multivariate polynomial regression settings.

Letf = (fy, -+, f) be a vector of k real-valued continuous linearly independ-
ent functions on a compact set X. We shall work in the realm of the approximate
theory discussed in many of the references, wherein a design is a probability
measure ¢ (which can be taken to be discrete) on X. The information matrix
M (%) of the design £ for problems where the regression function is 3% 6.f:(x)
(with 8 = (8, - - -, 6x) unknown and with uncorrelated homoscedastic observa-
tions and quadratic loss considerations of best linear unbiased estimators) has
elements m;(§) = [ ff; d¢. Thus, det M—1(¢) is proportional to the generalized
variance of the best linear estimators of all 8;, We denote by T the space of all
M(£). We shall have occasion to consider the set of all distinct functions of the
form f.f;, © > j, and shall write them as {¢;, 1 < ¢ < p}. We then write u,(§) =
[ ¢: dt. Whether or not some ¢, is a nonzero constant (as it is in our polynomial
examples), we define ¢o(x) = 1 and po = 1.

The main results of this paper characterize, for certain X and f, some designs
£* which are D-optimum; that is, for which

(1.1) det M (&) = m?x det M(¢).
Define, for M (¢) nonsingular, :
d(z, §) = f@)MEf(z)’,

1.2) d(¢¥) = maxd(z, &).
z€eX

The quantity d(z, £) is proportional to the variance of the best linear estimator
of the regression f(z)8’ at x. A result of Kiefer and Wolfowitz [8] is that &*
satisfies (1.1) if and only if it satisfies the G-(global-) optimality criterion

(1.3) d(*) = mfin d@®),
and that (1.1) and (1.3) are satisfied if and only if
(1.4) d(*) = k.

If the support of an optimum design is exactly & points, then ¢ is uniform on
those points. Our main way of finding D- and G-optimum (hereafter simply
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called “‘optimum’’) designs and of verifying their optimality is thus to guess a
£* (perhaps by minimizing det M (£) over some subset of designs depending on
only a few parameters) and then to verify (1.4). We also record here the fact
that all optimum £* have the same M (£*), and that they all satisfy

(1.5) g({zd(z, &) = k}) = L.

It is often the case that there is a compact group G = {g} of transformations
on X, with associated transformations {g} on {f}, and such that d(gz, £) =
d(z, g£). In such a case (see Kiefer [6]), there is G-invariant optimum design £*
(that is, such that £*(gd) = £*(4) for all ¢ and A4), and the function d(:, £*)
and set of (1.5) are G-invariant.

Whereas some of our discussion refers to general X and f, our detailed examples
of sections 2, 3, and 4 all treat problems of polynomial regression in q variables,
of degree < m. Here X is a compact ¢-dimensional Euclidean set whose points
we usually denote by z = (x4, - - - , z,), and the fi(z) are of the form IIj., zi*
where the m; are nonnegative integers with sum < m. It is well known in this
case that

(1.6) k= (’"’ + q>.
q
Moreover, since the f.f; are all the monomials of degree < 2m, we have
2m +
(L7 P= < q q>'
The three examples we shall treat in detail are (in section 4) the unit g-ball
q
(1.8) {x: 22 < 1};
1
(in section 3) the g-cube
(1.9) {z: max |z, < 1};
1<i<q
and (in section 2) the unit simplex, which it is more convenient to represent in
barycentric coordinates x = (xo, z1, * * * , Z,) a8
(1.10) {x: min z; > 0, i T = 1}-
0<i<q 0

These are perhaps the three generalizations which are simplest, most natural,
and of greatest practical importance, of the unit interval (¢ = 1), which is dis-
cussed in section 2. Unfortunately, the simple structure which is present when
¢ = 1 and which is reflected in the elegant results of Guest [3] and Hoel [4] does
not carry over to ¢ > 1, and the results depend strongly on the shape of X; even
in the case of the simplex where at least some analogous results seem to hold,
they cannot be obtained by the same methods. We now indicate how this is
reflected in the geometry of T.

1.2. The geometry of T. The set T' can clearly be regarded as a convex body
in p-dimensional Euclidean space with coordinates u:, 1 < ¢ < p; of course,
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p Z k(k 4+ 1)/2. Write a = (ay, a1, - - - , ap). Let X% am, + ay = 0 be a sup-
porting hyperplane of I' with 3% au; + ao > 0 in I'. Clearly, the supporting
polynomial T'(z; a) = X% a¢.(zr) + ao is nonnegative on X.

(For future reference, the reader should note in connection with the previous
and next paragraphs that, if £* is optimum and v* = M (£*), then ¢* is admissible
and hence v* is a boundary point, and & — d(z, £*) supports T at v*.)

Let vo = M (%) be a boundary point of T. A supporting polynomial 7'(-; a®
which supports T at v, is then > 0 on X and is 0 on the support of &. Thus,
an analysis of what the set of zeros of a T of the above form can be can yield
information about the boundary points of I' (while the extreme points are
clearly a subset of the points corresponding to &’s with one-point support). For
example, in the well-known univariate polynomial case X = [0, 1],k = m + 1,
fi(x) = 21, any such T is a nonnegative polynomial on X of degree < 2m,
which (if not identically zero) therefore has at most m + 1 zeros, at most m of
which are in the interior of X. In this example, moreover, if v = M(§) is an
arbitrary point of T and £®(0) = 1, the line from the boundary point M (£©)
through v passes through another boundary point v = M(¢’), so that v =
MO 4+ (1 — N)E) with 0 < A < 1; thus one concludes that any point of T
can be represented as M (£”) for a ¢’ supported by at most m + 1 points. One
can also characterize the admissible £ easily in this example as the boundary
points with at most m — 1 points of support in the interior of X (Kiefer [5]).

Unfortunately, the examples studied in the present paper (as well as non-
polynomial, and especially non-Chebyshev systems in one dimension) do not
yield such simple analyses. This is clear when one considers the more complex
sets on which a T’ can now vanish. For example, in the case of linear regression
(m = 1) on the square (1.9) with ¢ = 2, any supporting T which is not identically
zero, being quadratic, vanishes either on a subset of the corners of X, or at a
single point of X, or on a line of X. In the latter case we invoke the one-dimen-
sional result to conclude that at most two points are needed to support a £
yielding this M (£); thus, every boundary point of I' is obtainable from a £ sup-
ported either by a subset of the corners or else by at most two other points.
Replacing £© in the argument of the previous paragraph by the measure which
assigns all probability to the point (—1, —1), we conclude that every point of T
can be obtained from a £ which is supported either by a subset of the corners or
else by at most three points of X. If we replace (1.9) by (1.10) with ¢ = 2, we
obtain that at most 3 points rather than 4 are needed. The admissible points
can be characterized similarly, but it is clear that the difficulty of obtaining
such characterizations will be much greater for larger ¢ and m. As for the op-
timum design, it is the uniform distribution on the 3 corners in the case (1.10),
on the 4 corners in the case (1.9), and, for another example, on the 5 corners if
X is a symmetric pentagon. The uniqueness in all three cases can be proved by
the method given in the next paragraph, but in other cases, such as (1.8), there
is no uniqueness. Section 3.3 of [6] characterizes optimum designs for linear
regression on general compact X in ¢ dimensions.
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The increased complexity in higher dimensions is also present in the uniqueness
question: given v = M(£*), when is there no other ¢ with M(¢) = 4? This can
sometimes be answered as follows. Suppose v is a boundary point and that a
supporting polynomial 7T at v has exactly L zeros 2@, z®, --. 2@ on X. Any
¢ with M(¢) = v must be supported by a subset of {z®, .-, z®}, and must
satisfy 2; ¢:(@®) [£#*(@D) — £(x@)] = 0 for 0 < ¢ < p. Hence, if rank {¢.(z"),
0<t<p 1<j< L} =L, then £ is the unique design yielding v. In the
univariate polynomial example of the second paragraph above, each boundary
point v can be proved by this device to be yielded by a unique £*.

The prescription outlined just below (1.4) for verifying optimality, and which
has worked well when ¢ = 1 or m < 2, is difficult to apply in other cases. This
is because k — d(z, £*) can no longer be written as a sum of a small number of
obviously nonnegative simple polynomials, but may instead require a large num-
ber of rational functions for such a representation. The decision procedures
(Tarski, Henkin, and others) for representing or verifying nonnegativity of such
polynomials are unwieldy to implement in these problems. The example of the
simplex (1.10) with ¢ = 2, m = 3, treated in section 2 by direct analysis, il-
lustrates the increased complexity. In other cases we have been unable to obtain
analytical verifications of optimality and have used machine methods to obtain
results which are satisfactory from a practical point of view but which, the-
oretically, only yield statements of results which hold to within a certain ac-
curacy, rather than complete proofs of the exact results.

We end this subsection with a simple observation which is often useful in
optimum design theory for polynomial regression on a g-dimensional set X. If
B is a subset of X such that for some ¢ X ¢ orthogonal matrix A and some
scalar b with |b] > 1, the set bAB = {z: b~'A~x € B} is also a subset of X,
then no design £ supported by B can be optimum. This follows at once upon
defining & by #(C) = ¢(0'4-1C) for C C X and computing det M(¢') =
b* det M (£). In particular, if X is such that re X =arx € X for 0 < a < 1,
then the support of any optimum design must contain at least one point of the
boundary of X. The considerations of this paragraph can be modified in an
obvious way for admissibility questions.

1.3. Number of points needed for an optimum design. An aspect of the geom-
etry of T which is of particular practical importance is the minimum number N
of points such that there is an optimum design supported by N points. (It will
be clear how to modify much of the discussion which follows to treat this ques-
tion for points of T' other than those corresponding to D-optimum designs, but
for brevity we will treat only the latter.) An optimum design will be called
minimal if no proper subset of its support is the support of an optimum design.
We shall see that this property is broader than that of being an optimum design
on N points; the latter will be called absolutely minimal.

Clearly N > k. On the other hand, if there is a matrix B of rank b such that
>°7., bsj¢;(z) is a constant function of z for each 7, then I has dimension < p — b.
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Since the extreme points of T' can be obtained from ¢’s with one-point support,
we obtain the trivial bounds

(1.11) k<N <min(p—-b+ 1k + 1)/2),

where the well-known bound %(k + 1)/2, which is relevant only when p =
k(k + 1)/2 and b = 0, is a consequence of the fact that optimum designs cor-
respond to certain boundary points of T. In the polynomial case we have b = 1
(since 1 is a ¢;) and thus, from (1.6) and (1.7),

(1.12) <m * 9) <N< (2’” + 9)-
q q

Of greater use is the upper bound one can obtain once one knows some optimum
design £*. Let V = {z: d(x, &) = k} (see (1.5)), and let W be the support of
£*. We denote the number of points in these sets by v and w. (When v or w is
infinite, as in the example of the ball (1.8) for ¢ > 2 in section 4, it is easy to
see that (1.14) below still holds, but we shall usually treat the finite case.) Let
U=VorW(and u = v or w). The p + 1 linear equations

(1.13) ZEU $(2)E(@) = me(EY), 0<t=<p

in the unknowns £(z) are consistent (since {£*(z)} is a solution), so that the
dimensionality of the linear set H (say) of solutions of (1.13) is u — h where
h = rank {¢:(z),0 <t < p,z € U}.

Considering H as a set in the u-dimensional space with coordinates &(z),
z € U, we know that £*, with all coordinates nonnegative, is in H, and conclude
easily that H contains a point with all coordinates nonnegative and with at
least h zero coordinates. Hence,

(1.14) N < rank {¢:(x),0 <t < p,z € U}.

(Of course, if U is replaced by X, this becomes the p — b + 1 of (1.11).) We
will illustrate the use of this in the polynomial case (where 1 € {¢.} so that the
domain of ¢ in (1.14) can be taken to be 1 < ¢ < p) in section 3.3, in the case
of quadratic regression on the g-cube (1.9). We can think of such polynomial
applications in terms of finding a matrix C of rank ¢ such that >-7_; c;;¢i(x) =0
on W. We can then conclude that, if Nw is the minimum number of points in
W supporting an optimum design, then (paralleling (1.11))

(1.15) Nw <p—c.
On the other hand, it is obvious from (1.13) that, for U = V or W,
(1.16) Ny =wu ifrank {¢:z),0<t<p,ze U} =u.

It is easy to give examples which illustrate the fact that we can have Ny > N;
that is, that minimality and absolute minimality do not coincide. For example,
in the case m = 1, ¢ = 2 of linear regression on the unit disc (1.8), the discus-
sion of the fourth paragraph of section 1.2 shows that the set of j equally spaced
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points on the boundary is minimal if 7 = 3, 4, or 5, but is absolutely minimal
only when j = 3.

Also, the designs whose optimality is easiest to verify are often ones which
are symmetric, that is, invariant in the sense described below (1.5), and there
is no reason why minimal designs should be of this form. For example, in the
case of the g-cube (1.9) with m = 1, the uniform distribution on the 2¢ corners
is the only optimum design invariant under the symmetries of the ¢g-cube, but
if ¢ is such that there exists a (¢ + 1) X (¢ + 1) Hadamard matrix (for example,
if ¢ + 1 is a power of 2), then it is well known that there is an optimum design
on k = ¢ + 1 corners (namely, the corners of an inscribed regular g-simplex).
This example illustrates another technique for reducing an upper bound on N
or Nw; in sections 3 and 4 we shall see how the use of various known results on
orthogonal arrays and rotatable configurations can be used similarly.

The search for absolutely minimal designs can be described as a programming
problem, of finding a nonnegative solution of (1.13) with U = V, which has a
minimum number of nonzero elements. Analytical or machine methods for
solving this problem would seem important.

2. The simplex

We have mentioned in section 1 that this case (1.10) evidences the most
regular mathematical behavior among ¢-dimensional sets X. In the linear and
quadratic cases it has been known for some time that the simplex exhibits a
behavior (described precisely, below) very much like that present when ¢ = 1.
This phenomenon appears to carry over to cubic and perhaps higher degree
regression, although we have as yet proved only one small fragment of the
conjectured general result, and have machine computations in only two other
cases. To describe these results, let E,. be the set of m 4 1 points supporting
the Guest-Hoel design when ¢ = 1. (Thus, E; = {xo = 0,1};E; = {zo = 0, 3, 1};
Ey = {£g =10, 1 £57%)/2,1}; Ei = {z0 = 0, 3,1, 1 £ (§)"/})/2}; and so on.)

The results in the linear and quadratic cases for general dimension ¢ (Kiefer
[7]) can be summarized by stating that, for degrees m = 1 and 2, the unique
optimum design assigns equal measure to each of the points which is in the E.
of some edge of the ¢g-simplex (when that edge is considered as a 1l-simplex).
We cannot hope for this pattern for m > 2, since the E, points on all edges
will be fewer in number than the k of (1.6). However, one can still conjecture
that one or all of the following are true: (1) there is an optimum design whose
support includes the E, points on all edges (and no other points on edges);
(2) there is an optimum design which assigns equal measure to each of & points;
(3) the optimum design is unique; (4) generalizing the vertex- and edge-sta-
tionarity of (1), for fixed m there are optimum designs for dimension ¢ which
have the same support on the r-dimensional faces of X for ¢ > r; (5) the design
of (4) has points of support only on faces of dimension < min (m — 1, ¢).

What we have succeeded in treating analytically is the case m = 3, ¢ = 2,
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and the details will be found at the end of this section. We have also observed,
by machine search, that (a) the optimum design in the case m = 3, ¢ = 3
appears to give equal weights to the E;-points on edges (including vertices) and
the midpoints of 2-dimensional faces, just as in the cases m = 3, ¢ = 1 or 2;
(b) the optimum design in the case m = 4, ¢ = 2 appears to give equal weights
to the E,-points on edges and to the three points of the form {z; = 0.567, z; = z,}.
One can also prove analytically for m = 3 and general k that, among all designs
which assign equal weights to the vertices, midpoints of 2-dimensional faces,
and points on edges satisfying z; = b = 1 — z;, the choice b = (1 + 51/2)/2
minimizes the generalized variance for each k. (The generalized variance for such
designs for ¢ > 2 is proportional to [v(1 — 2b)1/2]~22(e+D where v = b(1 — b).)
All of the above results conform with the conjectures of the previous paragraph,

If any of the general conjectures are true, they would constitute a deep new
result in the area of multidimensional moment and approximation theory.
Evidently a new approach is needed, perhaps even to verify analytically (b)
and (c) of the previous paragraph. The technique employed for low dimensions
and/or degrees, for example, by Kiefer [7] and Uranisi [11], has been that
described at the end of section 1.2, and the difficulties encountered for larger ¢
or m are as described there. Even in the case m = 3, ¢ = 2 which we now con-
sider, a much more brutal approach is used, and it does not suffice when ¢ = 3.

THEOREM 2.1. Form = 3, ¢ = 2, the unique optimum design £* assigns meas-
ure v to each of the three vertices, the point xo = x1 = x2 = %, and the siz poinls
{:I}h = 0, xi=1— ZT; = (1 + 5_1/2)/2.}.

Proor. We shall show that 10 — d(z, £*) > 0 on X, with equality only at
the ten points supporting £*. Since the function d is the same for all optimum
designs, any optimum design must have this same support, and the weights are
unique since there are 10 points and 10 functions. This yields uniqueness.

It is convenient to consider, in place of the coordinates x;, the coordinates
Bi(—3<B<1,0<t<1) satisfying 3xo =1 —¢3x; =1 — B, 3xa =1+
(8 + 1)t on the portion 0 < x, < x; < 2, of X which, because of the symmetry
of £* is all we need consider. For fixed 8, variation of ¢ from 0 to 1 yields a
segment from center to edge of X. Write L = 82+ 8+ 1 (so that § < L < 3).
A simple computation yields

9 Z.xixj =3 — L

1<J
81 z¥x? =3 — 6(L — 1)t3 + L4,
1<J
21) 729X z¥a? = 3+ 3Lt2 — 21(L — 1)t + 3L2¢*
1 <7

+ 3L(L — 1) + (—L3 + 3L* — 6L + 3)8,
27 Mai=1—Let+ (L~ 16

A straightforward computation of M (£*) and d(z, £*) (for example, in terms of
the functions z;, r:x;, z:x;(x: — z;), and IL; z;, with ¢ < j) yields
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(2.2) 1 —d(x, /10 = 12 X za; — 120 X zix? 4+ 300 3 23x3
Z; P P

1<J 1<)

1 1<j T

From (2.1) and (2.2) we have, writing g(t, L) = 729[1 — d(z, £*)/10]/6,
(2.3) g@t, L) = 131L — 318(L — 1)t — 77L%2 + 449L(L — 1)8
— [50L3 + 102(L — 1)%]e4.
We must show ¢g(t, L) > 0for 0 <t <1, 2 <L < 3. We note that ¢g(1, L) =
2(83 — L)(BL — 6)?, so that the zeros of g on the boundary of X are precisely
the vertex (L = 3) and Es-point L = §.
Writing f(¢, L) = [g(¢, L) — ¢(1, L)]/(1 — ¢), we obtain
(2.4)  f(¢ L) = [50L* — 270L* + 563L — 216]
+ [50L% — 270L% 4 245L + 102]¢
+ [50L® — 847L* + 245L + 102]¢2 + [50L® + 102(L — 1)?]¢
= D(L) + C(L)t + B(L)#* + A(L)t* (say).

We shall show that f > 0for0 < ¢ <1, § < L < 3, and this will complete the
proof.

We have D(3) > 0 and D’(L) = 150L2 — 540L + 563 > 0. Thus,
(2.5) AWL)>0, DIL)>0, 2<L<3.
Also, one sees easily that, for § < L < 1, we have B(L) = 50L% and C(L) > 0.
We conclude that f({, L) > 0for 0 <t <1, £ < L < 1. We divide the region
1 < L < 3 into two parts, the division A being the zero of C(L) in 1 < L <3
(1.6 <A< 1.7).

For A < L < 3, we have C(L) < 0. We shall show the positivity of something
< f, namely,

(2.6) f@t, L) + C(L)(1 — t)%(1 + ) = [100L? — 540L? + 808L — 114]

— 77L%* 4+ [100L® — 168L2 + 41L + 204]¢t

= E(L) — 77L%* + F(L)# (say).
We first note that —23L2? 4+ 132L — 114 is positive at L = 1.6 and L = 3 and,
hence, for A £ L < 3. Therefore,

2.7 0 < 100L(L — 2.6)? — 23L* + 132L — 114 = E(L) — 3L?
< E@L) — 2D 12 _ E(L) + L* min 284 — 77)
27(84)2 0<t<1
< E(L) — TTL2? + 84L%3.
Thus, the expression (2.6) will be proved positive if we show that 0 < F(L) —
84L? = h(L) (say). But an easy computation shows that h(1.6) > 0, h'(1.6) > 0,

and A"(L) > 0 for L > 1.6.
In the region 1 < L < A, we have C(L) > 0, and thus need only show that
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D(L) + B(L)t* + A(L)t* > 0. Because of (2.5), this is immediate if B(L) >0,
so we need only consider the possibility B(L) < 0, in which case

28) D(L) + BL)& + AL)e
= [D(L) + B(L) Juax (& — 8/2)] + [A(L) + B(L)/2]

- [D(L) + BL)/2]+ BIA(L) + B(L)/2] = R(I) + SL)#* (say).

One sees easily that R(L) >0 for 1 £ L <2 and S(L) >0 for L > 1, com-
pleting the proof.

3. Symmetric regions; the cube

The case of the ¢-cube (1.9) exhibits less regularity than either the simplex
or ball. This is seen even in the linear case described in section 1.3, where more
than & points of support may be required (as when ¢ = 2 and the unique op-
timum design is uniform on the 4 corners); and, even more, in the quadratic
case, where optimum designs can be written down explicitly almost immediately
for the ball and simplex, but require at least some consideration for the cube,
regarding weights assigned to the points of the 3¢ array J of points with coor-
dinates 0, 1, — 1. We shall now study this quadratic case in considerable detail.
We begin by characterizing some properties of optimum quadratic designs for
more general symmetric regions. (For general linear regression see Kiefer [6].)

3.1. Quadratic regression on symmetric regions. We introduce some of the
ideas by considering, in the present paragraph, the ¢-cube. The fact that, when
m = 2, the support of every optimum £* is a subset of the 3¢ array J, is easily
seen as follows: d(z, £) for any optimum &* is symmetric under the group of
symmetries of the cube (see discussion just below (1.5)), goes to 4+ with [z],
and is a positive quartic on Euclidean g-space. Writing B for the subset of X
where d(x, £*) = k (so that the support of £* is contained in B), we will show
that the existence of points in B — J leads to a contradiction. Calling vertices,
edges, and so on, the 0-, 1-, -- -, skeleton of X, suppose that 2’ in B — J lies
in the r-skeleton, and hence in the relative interior of some r-cube G of that
skeleton. By symmetry of B, there is another point 2’/ of B — J which is also
in the relative interior of G. The function d attains its maximum on G at z’
and z”/, and hence cannot be a positive quartic on ¢g-space unless it is a constant,
in which case it does not go to +o with |x|.

We turn now to more general symmetric regions X to which we can apply
some similar arguments.

We consider quadratic regression in ¢ variables x;, - -+ , 2, on a symmetric
region X of Euclidean g-space. The meaning of saying X is symmetric is that
X is invariant under permutations (i, - - - , £g) = @a, ** * , Zo,) and is invariant
under sign changes (z1, - -+ , Tg) — (621,  * * , €Tq), &1 = %=1, -+, ¢, = £1. The
discussion just below (1.5) states that there are optimum designs which are
symmetric; also, it implies that the function d(-, £*) for any optimum design £*
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is a symmetric polynomial in the variables z%, - - - , 2%, of degree 2 in these
variables. If we writes = 22 + --- + 22and ¢t = 2t + - .- 4+ z}, then the general
polynomial of this type is

3.1) P(s,t) = as? + bs + ¢ + dt.

The map h: (xy, +-- ,2,) — (@i + --- + 22 21 + --- + z7) maps the region
X to a region X* in the s, ¢ plane. Clearly, d(h~1(s, t), §) = d*((s, £), &) (say) is
well-defined for any symmetric ¢ and any (s, f) in X*. We will be concerned
with an examination of the values of d*(-, £*) at points of X*, for an optimum
£*. We know from (1.4) and (1.6) that, throughout X,

(3.2) d(z, &) — (¢ + D(g+ 2)/2 <0,

the equality holding at points including the support of £ We now show that
there are two possibilities:
(i) the zeros of d*(-, £) — (g + 1)(g + 2)/2 lie entirely on the boundary of X*;

(ii) the coefficient d = 0 in (3.1), so that the polynomial has the form as? +
bs + ¢. (In this case the design is a rotatable design which can be shown to be
optimum for the problem wherein X is replaced by the smallest ball centered
at the origin and containing X, minus the largest open ball contained in its
complement (which subtraction is vacuous if X contains the origin).

To see the validity of this assertion, suppose (sq, &) 1s an interior point of X*
at which P(sy, fo) — (¢ + 1)(g 4+ 2)/2 = 0. In view of (3.2) and continuity of
the map h, (s, f) is a local maximum of the polynomial P. Therefore, the first
partial derivatives vanish at (s, f), so that d = 0 follows. That proves the
assertion.

An analysis of which of (i) and (ii) holds requires more precise knowledge of
X, as we see by contrasting the cases (1.8) and (1.9). Although we already know
from the first paragraph of this subsection that (i) holds for the g-cube (1.9),
we shall continue our analysis for that example along the present lines, both to
illustrate this method which can be applied to other symmetric regions similarly,
and also because we will then use the method for cubic regression on the g-cube.

Thus, we now suppose X is given by (1.9). We will see that X* is a closed
bounded set which may be described in terms of an upper and lower boundary
curve. The upper curve consists of ¢ pieces:

(3.3) {t=(6—d2+i i<s<i+1}, i=0,1--,g— 1.
The lower curve may be described by the single equation
(3.4) {gt = 53,0 < s < g}
This last assertion follows at once by the Cauchy-Schwarz inequality since
(3.5) 2= @4+ D)< gt + -+ 29 = gt
We observe that equality holds in (3.5) if and only if 2} = 2} = --- = 22

To obtain the upper boundary we suppose the value of ¢ = zf + -+ + % is

fixed and seek to minimize s. We may suppose at the start that x; > 2, >
A Z xq 2. 0.
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Consider z, as a function of x; and take partial derivatives with s, « -+ , T4
fixed. This gives dx,/dx; = —x}/x3 and ds/dx, = 2x:(x% — 2})/23. We suppose
here x, > 0. Since the derivative is negative, we decrease s by increasing x; and
decreasing x,, and this preserves the ordering ; > z2 > -+ >z, > 0.

Using this it may be seen that if ¢ = 7 4 8%, 0 < & < 1, is the fixed value of ¢,
then the minimum for s is obtained by takingz; = 2z = -+ =z, = 1, xipn = 9,
Tiga= - 2,=0. Thus s =4+ 8 and £t = ¢ + (s — 7)?, as asserted in (3.3).

This argument shows even more, that the minimum value of s can be ob-
tained from zy, --- ,z,if and only if 2, = 1, --- , 2; = 1 (when ¢ = 7 4 &*).

We now show, using an argument like that of the first paragraph of this sub-
section, that the only possible location of a zero of d*(-, &) (for £* optimum)
on the boundary segment {t = 7 + (s — %)%, 7 < s < 7 + 1}, is at an end point-
The polynomial d*((s, 7 + (s — 7)2), £*) is a quadratic in s for 0 < s <
which, being equal to f(x) M—1(£*)f(z)’ withz; = 22 = --- = z; = 1, 2i1 = sV,
Ziys = +++ = xg = 0, is nonnegative for 0 < s < « and goes to infinity with s,
so that it cannot have a local maximum over the interval ¢ < s <7+ 1 at an
interior point of the latter.

Finally, using the same type of argument, we show that no zero of d*(-, &) — k
can occur interior to the segment {gf = s2,0 < s < ¢}. This is so because
d*((s, s2/q), £*) is a quadratic in s for 0 < s < » which, being equal to
F@)M-1(g)f(x) with 2, = 23 = -+ = 2, = (s/g)V? goes to infinity with s,
and can thus not attain its maximum over 0 < s < ¢ at an interior point of
the latter.

Our discussion has not yet excluded the possibility that the optimal design
is rotatable, that is, that d*((s, t), £*) has the form as? + bs + ¢ for an optimum
£*. Were this the case, then the design would be optimum for X replaced by
the ball K = {z: > {2? < ¢}, since the argument of the previous paragraph
shows that if the optimum £* is rotatable, then d(z, £*) takes on its maximum
value (¢ + 1)(¢ + 2)/2 at the point (1,1, ---, 1) satisfying > {2} = ¢. The
moment matrix M (¢) for an optimal design ¢ on K is uniquely determined and
is known (Kiefer [6]) to put mass at s = 0 and on s = ¢, the moments of
the conditional distribution on s = ¢ being those of the uniform measure on
this surface.

But, in our problem, the design £ must be concentrated in the cube (1.9),
and the only points in common between the cube and the shell s = g are the
corners (=1, ---, £1). It is easily seen that every symmetric £ which is con-
centrated on the corners and at the origin makes [ zit(dx) = [ z3x3£(dx), which
is not the case for the optimum rotatable design on the ball. Hence the optimal
design for quadratic regression on the g-cube cannot be rotatable.

The discussion substantiates what was already known from simpler calcula-
tions in this special case, as indicated earlier. We now bring these ideas to bear
on the problem of cubic regression on the cube. We shall return in sections 3.3
3.5 to quadratic regression and shall consider at length there the possible sup-
porting sets for optimum designs.
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3.2. Cubic regression on the g-cube. We first treat the case ¢ = 2, for the
sake of simplicity and explicitness of numerical results. The function d(-, £*)
for an optimum £* is now a nonnegative polynomial of degree 6 in the variables
23, &2, having the following properties. From (1.4) and (1.6),

(3.6) d(*) < 10;

and d is symmetric in 2, 2, and invariant under sign changes.

It follows that if we write { = 21 + x5 and s = 2% + x} as before, then we
can define d*(-, ¢) for symmetric £ as in the paragraph below (3.1). This will
now be a polynomial of degree 3 in s, ¢, of the form

3.7 P(s,t) = as® + bs® + ¢cs + d + est + ft.

The domain X*, from (3.3) and (3.4) with ¢ = 2, is the closed bounded set whose
boundary consists of the three curves

{s2=t0<Ls<1},
(3.8) {s—1)*+1=1¢1<s<2},
{s?=st,0<s<2}.

We consider first the implication of assuming that for some (sy, f;) interior
to this region d((so, &), £*) = 10. This would be a local maximum interior to
the domain X*, so that P(oc + so, 7 + &) = ac® + b6 + ¢'¢ + d’ + eor + fr
(say), defined in a neighborhood of (s, 7) = (0, 0), would have a local maximum
at (0, 0). We would therefore have ¢ = f = 0, and P(s, {) would be a function
only of s, which is the definition of £* being rotatable. We also note that in this
case we would have

(3.9) P(s,t) = (as + b")(s — sp)2 + 10

with as + b < 0for 0 < s < 2 and with ¢ > 0 (since P — « as s — »).

Thus, if the design is not rotatable, then the polynomial d*(-, £*) can vanish
only on the boundary curves of (3.8). Substitution of any one of the three rela-
tions of (3.8) for ¢ into P(s,t) — 10 gives a cubic in s which does not change
sign. Hence, any root s interior to the interval determined by the substitution
would require the root to be a double root. Therefore, each of the three sections
of boundary in the s, ¢ plane can have at most two points at which the poly-
nomial P — 10 vanishes. Since the boundary of the square X is mapped into
the curve {(s — 1)2+ 1=t 1 < s < 2}, it follows from the final paragraph
of section 1.2 that this curve contains at least one point at which P — 10
vanishes.

We now eliminate the possibility of a rotatable design being optimum. The
theory of optimum designs for polynomial regression on the ball has been
developed by Kiefer [6] and in section 4 of the present paper. An optimum
design £* for the square, if rotatable, would have a d*(-, £*), given by (3.9),
attaining its maximum on the square at the corners (s = { = 2) and satisfying
d*((s, t), £) < 10 on the image under h of the ball K of radius 2'/2. (This image
is bounded by the curves {s2=2{,0<s<2}, {s2=1¢0<s<2}, and
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{s=22<1t<4}.) Hence £ would be optimum for the problem of cubic
regression on K = {z: 2% -+ 23 < 2}, with d(z, £*) attaining its maximum over
K on the two circles s = 2 and s = s,. Thus, sy = 2p?, where p and 1
are the radii of circles where d(z, &) = 10, where £ is optimum for cubic
regression when X is the unit ball of (1.8), to be discussed further in
section 4. Although this £ is not unique, its moments up to those of
order 4 (that is, the elements of M(¢)), and the total masses B8 and
1 — B which it assigns to the circles of radii p and 1, respectively, are unique.
(For the first of these facts, see just above (1.5); for the second, replace £ by
the optimum design £ defined by £/(4) = [ £ (g4)v(dg), where » is the invariant
probability measure on the orthogonal group in two dimensions as in 6], and
use the uniqueness of the masses in such a §’, proved in [6].) Since

fo = (27)~1 cost 8 df = &, we would thus obtain

(3.10) / ziE*(dz) = 4 / 2iE'(dz) = 4 (§) [(1 — B) + »*6].

Since £* is supported within the square (1.9), we also have [ zif*(dz) < 1.
Hence, (3.10) yields

(3.11) =B < @I -5+l <1,

or 8 > %. But (from table 4.1 of section 4) 8 = .3077. We conclude that the
optlmum design cannot be rotatable.

The following maximization problem was solved numerically. Put mass p,/4
at each of (1, 1), (1, —1), (—1, 1) and (—1, —1). Put mass p,/8 at each of the
eight points (41, 4-a) and (:I:a +1),0 < a < 1. Put mass (1 — p — p2)/4 at
each of the four points (b, +b), 0 < b < 1. (In each of the above, the two =+
signs act independently.) Our earlier discussion shows a design of this form to
be a candidate for being optimum (although we did not yet eliminate certain
other forms). The determinant of M (£) was maximized on the Cornell CDC 1604
as a function of the four parameters involved, giving

a = 0.35880,
b = 0.48000,
(3.12)
p1 = 0.36770,
P2 = 0.46100.

For this design &, the quantity d(£) was computed numerically and was found
to be < 10 to five decimal places.

We now leave the case ¢ = 2 to discuss cubic regression on the cube (1.9)
for general ¢ > 3, where an analysis similar to the one just given for ¢ = 2 may
again be carried out. If { is symmetric, d(z, £) is now a sixth degree symmetric
polynomial in zi, - - - , x4, in which any monomial term involving an odd expo-
nent has zero coefficient. We now need three symmetric functions,
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s=at+ -+

(3.13) t=at+ - +a
w=al4 - 42

and define h: X — X* by h(z) = (s, ¢, u). (When ¢ = 2, we do not need u since

2u = 3st — s in that case.) Again d*(-, £) on X* is well-defined for symmetric ¢
by d*(h(z), £) = d(z, ), and now has the form

(3.14) P(s,t,u) = as® + bs? + ¢s + d + est + ft + gu.

If this polynomial has a local maximum in the interior of X*, then one may show
e =f =g =0 as before, and therefore one may conclude that the design is
rotatable. (In fact, this conclusion clearly holds if (1.9) is replaced by an ar-
bitrary compact symmetric ¢g-dimensional set.)

We now extend the argument we used when ¢ = 2, to conclude again that an
optimum design £* cannot be rotatable. Such a £* would, by the same argument
as before, be optimum for cubic regressionon K = {r: 23 + --- + 22 < ¢}. Let
B and 1 — B again denote the total mass assigned to the spheres {3.{xf = p}
and {3_{z? = 1}, by each optimum design for cubic regression on the unit ball
(1.8). The integral of z3, with respect to the uniform probability measure on
{2{ 27 = 1}, is now 3/q(q + 2). Also, just as before, [ z*¢*(dx) < 1. Thus, the
analogue of (3.10) and the second inequality of (3.11) is that, if £* is an optimum
design for K, then

(3.15) ¢*[3/a(g + DA — 8) + 6o*] = [ alg*@z) < L

If one writes down equations from which the parameters of an optimum
rotatable design on (1.8) may be calculated, then one obtains (see section 4,
equation (4.5))

(g+3) g+ 2)(¢+1)
6

(3.16)

_¢Fl  ¢—-De+?2 (g+4qi@—1)
1—8 " 2((1—8)+6p*)  6((1 —8)+Be°)

Since p < 1, we may replace p® by p* and also drop the first term on the right
in (3.16), and may then divide both sides by (g + 1)/6, obtaining
3.17) ¢*+ 5¢ + 6 > [¢* + 59 — 6]/[(1 — B) + Bp’].
Substituting this inequality for 1 — 8 4 Bp* into (3.15) yields
(3.18) 0 > 3q[q* + 5¢ — 6] — (¢ + 2)[¢* + 5¢ + 6]

= 2¢° + 8¢ — 34¢ — 12.
The last polynomial is easily seen to be positive for ¢ > 3. We have thus proved
theorem 3.1.

THEOREM 3.1 For cubic regression on the g-cube (1.9) with ¢ > 2, an optimum
design cannot be rotatable.

+
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Thus, the problem reduces to a study of the nature of the boundary of X*
in the (s, ¢, u)-space and of the solution of the appropriate maximization prob-
lem. We do not attempt to do this in the present paper.

3.3. Optimum symmetric designs for quadratic regression on the g-cube. We
have already given a short proof in the first paragraph of section 3.1, that all
optimum designs for m = 2 on the g-cube (1.9) are supported by a subset of
the 3¢array J. Forj = 0,1, -- -, g, let J7 be the subset of J consisting of those

24— (3) points with exactly j coordinates equal to zero. (Thus, J? consists of

the midpoints of all j-dimensional faces of X.) Kiefer [7] obtained optimum
designs supported by J° U J! U J? when ¢ < 5, showed that this set could not
support an optimum design when ¢ > 6, and described ([7], footnote 5) tke
method, obtained with Farrell, for obtaining optimum designs for each ¢ on the
union of three J#’s and certain subsets of such a union by solving (3.22) below.
This joint work is the subject of the present subsection. Subsequently, Kono [9],
citing this deseription in [7], also showed that optimum symmetric designs for
each ¢ can only be supported by a subset of J, and carried out detailed calcu-
lations for an optimum design on the union of three J7’s when ¢ < 9, obtaining
optimum symmetric designs on J° \J J*! U J9, again by solving equations (3.22)
below, for that choice of the J7’s.

We shall first characterize those sets of the form

3

(3.19) J(G1, o, Js) = ) Jé
which can support a symmetric optimum design. We shall take ji < 72 < 75 (It
can be seen that two J”s cannot suffice when ¢ > 2, by noting that no
can be 0 in the demonstration which follows.) Such a design assigns probability

a;,/297% (j) > 0 to each point of J7(z = 1, 2, 3), where 3.3 a;, = 1. The per-
tinent moments of such a design are computed, as in (4.1) of [7], to be

3
u@) = [alrde) = [ olrde) = ailg ~i)/s,
(3.20)

o) = [ 2l @) = 3 aila — 3@ — i — D/ala — .
Write as in (4.5) of [7],

- (g +3) R
¢ = 4(q + D(g + 22 {@®+3¢+7)
(3.21) + (¢ — 1)[4q2 + 12¢ + 17]v2},
- g+ 3) s R _
Vq = 8(q + 2)3((] 1 {(4q + 8¢% + 11¢ 5)

+ (2¢° + ¢ + 3)[4¢* + 12¢ + 17]3}.
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One computes M~1(£*), as in (4.3) of [7], and then observes, exactly as in [7],
that d(¢*) = k if and only if

(3:22) wE) =U, o) =7V,

To solve these equations for the j; and a;, we may think of plotting in the
(u, v)-plane, for fixed ¢ > 2, the ¢ + 1 points
(3.23) (ujyv) = (g =9/, (@ —Nlg—j—D/glg—1), 0ZL5<Zg,
and the point (U,, V,). Then clearly (3.22) is satisfied for nonnegative j; if and
only if (U,, V,) lies in the triangle with vertices (u;, v;). Even though we shall
not use any such geometric considerations in the demonstration which follows,
they help in understanding the results, and also in undeérstanding what is in-
volved in considering unions of more than three J#’s, which we shall forego.
(We also remark to the reader that the idea of the demonstration which follows,
without such tedious computational details, can be obtained by replacing U,
and V, by their asymptotic values 2 — ¢~ + 3¢2/2 and 1 — 2¢~' 4 5¢2, and
following through the argument for “large ¢”’.)

We first note, replacing [4¢% 4+ 12¢ + 17]'/2 by the smaller value (2¢ + 3),
that it is easy to verify that U, > (¢ — 1)/q¢ > u;,j > 0, from which we conclude
that 71 = 0. Substituting this fact into (3.22) (and using >"% a;, = 1), we obtain

i = [9/72(s — j)H{—(@ = DV, + @g —js — DU, — (g — 5o},

@i = [¢/55(Gs — j)1{(g — DV, — g — jo — DU, + (g — j)}.

For fixed ¢, the expression {(g — 1)V, — (2q —j — DU+ (g — )} = F(j)
(say) is linear and (since U, < 1) decreasing in j. We shall show in the next
two paragraphs that :

(3.25) F(2) >0>F,(3) for ¢ > 5.

It follows then from (3.24) that (3.22) can be satisfied for ¢ > 5 (with positive
a;’s) if and only if

(3.24)

(3.26) 0<j2<3<L7.

The first inequality of (3.25) ean be written as
3.27) g—2>2¢—3)U,— (g — 1)V,
or

(328)  8(g —2)(g+ 2)*g + 1)/(g + 3) > 4¢* + 12¢* + 7¢* — 6¢
— 89 + (2¢* — ¢* — 16¢ + 15)[4¢? + 12¢ + 17]~2,
A direct computation shows that the left side of (3.28) equals
(329)  8{¢*+2¢° —2¢* — 10 — 4 + (2¢ — 49)/(g + 3)}
> 8¢* + 16¢° — 16¢* — 80g — 32.

Using the fact that [4¢®> + 12¢ + 17]V2 < 2¢ + 3 + 4/(2¢ + 3) and that
4(2¢3 — ¢ — 16q + 15)/(2¢ + 3) < 2¢(2¢ — 3), we obtain that the right side
of (3.28) is less than 8¢* 4 16¢® — 24¢2 — 30¢ — 44. This last is less than the
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right side of (3.29) by (¢ — 6)(8¢ + 2), proving (3.28) (and thus (3.27)) for
q 2 6.

The second inequality of (3.25) can be written as
(3.30) ¢—3<@¢—-HU,— (¢ — DV,
or
(331)  8(g—3)g+20%g+ 1)/(g + 3) < 4¢* + 8¢° — T¢* — 32

— 117 4+ (2¢® — 3¢* — 18q + 19)[4¢> + 129 + 17]2,
The left side of (3.31) is

(3.32)  8{¢*+ ¢ —6¢° — 16 — 4 — 12/(¢ + 3)}
< 8¢* 4 8¢* — 48¢% — 128q — 32.

Using the fact that [4¢2 + 12¢ + 17] > 29 4+ 3 -+ 4/(2¢ + 3) — 16/(2¢ + 3)3
and that [4/(2¢ + 3) — 16/(2¢ + 3)3](2¢® — 3¢% — 18¢ + 19) > 4¢2 — 12¢ — 22,
we obtain that the right side of (3.31) is greater than 8¢* 4 8¢* — 48¢% —
60g — 82. The latter is clearly greater than the right side of (3.32), proving
(3.31) and thus (3.30).

In the same manner that (3.26) was proved (or by direct calculation in the
few cases ¢ < 6), one can show that (3.26) is replaced by 0 < 71 < 2 < 7, for
2 < q £ 6. To summarize, then, we have the following theorem.

TueoreM 3.2. The set J(ji, jo, J3) of (3.19) supports a symmetric optimum
design for quadratic regression on the g-cube, if and only if

j1=0, j2=l, 23]339; when 2SQS5,
aA=0, j=1or 2, 3Z<j<gq  when ¢2>6.

We remark that, among the sets J(0, ji, j3) permitted by (3.33), the set
J(0, 1, q) consisting of vertices, midpoints of edges, and center, has the smallest
number of points (2¢2 4+ ¢2¢7! 4+ 1) of any optimum symmetric design. In view
of (1.12), such designs are quite unsatisfactory for large ¢, and in the remainder
of section 3 we shall therefore seek asymmetric designs on fewer points.

The weights a;, for any optimum symmetric design on a set (3.19) permitted
by (3.33) may be obtained from (3.24) and oy = 1 — a;; — ;. For j» = 1,

js = 2, and ¢ < 5, a;,/297% (?) is tabled in [7]; for 52 = 1, s = ¢ < 7, the ¢;

are tabled in [9]. '

3.4. Bounds on N for quadratic regression on the g-cube. We now apply the
considerations of section 1.3 regarding the minimum number N of points needed
to support an optimum design on the g-cube when m = 2. We first note

TraeoREM 3.3. The oplimum design for quadratic regression on the g-cube is
unique if and only if ¢ < 2, in which case the support is J.

Froor. The lack of uniqueness when ¢ > 3 follows from (3.33). The unique-
ness when ¢ = 1 or 2 (the former of which is well known) can be proved by
using (1.16) with U = J; the matrix {¢.(z),2z € J,1 < ¢ < p} is easily seen

(3.33)
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to have rank 3 or 9 in these two cases. (We recall that the subscript value ¢t = 0
need not be included in polynomial regression.)

We next improve the upper bound (q 1— 4) of (1.12) by use of (1.14). We

shall take U = W = J(0, 1, ¢) in the calculation which follows. For z € J(0, 1, @)
(in fact, for z € J), the relations
3

x; = T,
(3.34) af = xf,
T = x5, ]

for 1 <4, j < q are satisfied. These are ¢2 + ¢ linearly independent relations
among the ¢,(1 < ¢ < p). Among the set of ¢, which remain after deleting
those on the right side of (3.34), the relations

(I —2))@? — =2 =0,

@ — 27 —2%) =0,

are satisfied on J(0, 1, ¢) with all subscripts unequal and between 1 and g,
inclusive. (Equalities (3.35) are vacuous if ¢ < 3.) This is so because either all
x7 = 0, or else at most one z7 = 0. The relations (3.35) among the ¢; are not
linearly independent when ¢ > 3, so we must find the dimension of the vector
space spanned by the ¢, To this end, we write L = ¢+ 1, y; = 27 for 1 <
t < ¢q,and yr41 = 1.

For L > 4, let Q be the vector space over the reals of all linear combinations
of the polynomials (y; — y;)(y. — y.) with %, j, r, s distinct integers between 1
and L, inclusive (a subspace of the quadratic polynomials in L variables). We
shall show the following lemma.

LeEMMA 34. For L > 4, we have

(3.36) dim Q = L(L — 3)/2.

Proor. All subscripts in the proof which follows are to be reduced mod L.
We first show that the L(L — 3)/2 special polynomials

(3.37) Wi — Yird) Wirin1 — Yirira),
with all subseripts distinet, span Q. (Note, for example, that j = L is permitted.)
We must show that any polynomial (y; — ¥;)(yr — ¥s) is a linear combination
of these special polynomials. There are two cases to which any other can be
reduced by symmetry.

Case! (1<j<r<s). Then
338) Wi— Y)W —y) = 2 Wirw = Yirur)) Yrav = Yreoa)

0Lu<j—1,0<v<s—r

(3.35)

Case 2 (1 <r <j<s). Use the identity
(339  (Wi— YW —y) = Wi — y)Wi — y) — Wr — ¥)Ws — y2)

to reduce to case 1.
To conclude the proof of (3.36), we need only show that the special pol-
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ynomials (3.37) are linearly independent. To this end, we obtain an appropriate
ordering of the special polynomials, say {g., 1 < a < L(L — 3)/2}, and of the
functions y.y;(Z # j),say {hs, 1 < B < L(L — 1)/2}; then writing g. = > gCashs,
we show that c.. # 0 and ¢,s = 0 for a > B, which proves the desired result.
The g. are, in order, the special polynomials of (3.37) with 7 =1 and j = 0,
1,---,L —1; then, with¢=2and j=0,1,---,L —1;.--,7 = {greatest
integer < (L — 38)/2} and j=0,1,---,L — 1; if L is even, there are then
L/2 additional special polynomials with ¢ = (L —2)/2 and j=0,1, ---,
(L — 2)/2. Note that those functions in the 7th collection of L polynomials (or
of L/2if L is even and 7 = (L — 2)/2) have ¢ as the minimum distance between
subseripts v, 8 which appear in any term y.y; entering with nonzero coefficient
in the special polynomial. Moreover, for fixed 7, these y,y,+: appear in the order
v =1,2, ---, L. Thus, when we order the h; as y;y;q1 forj = 1,2, --- | L and
then y;y;42 for j = 1, -+ -, L, and so on, we see at once that the c,s have the
desired property. This completes the proof of the lemma.

Putting L = ¢ 4+ 1 in (3.36), we conclude that the ¢, on the left side of (3.35)
span a real vector space of dimension (¢ 4+ 1)(¢ — 2)/2 (which is also correct
if ¢ = 2). Adding this to the number ¢% + ¢ of restrictions (3.34), which are

independent of (3.36), and subtracting the result from p = (q 1- 4) and using

(1.14) with {0 <t < p} replaced by {1 < ¢ < p}, we obtain theorem 3.5.
TuEOREM 3.5. For quadratic regression on the g-cube,

(3.40) N < (¢ + 1)(¢* + 9¢* — 10¢ + 48)/24.

3.5. The use of orthogonal arrays to reduce the number of points of support. We
have already mentioned in section 1 how orthogonal arrays of strength 2 are
used classically to reduce the number of points of support for an optimum
design for linear regression on the g-cube. Similar techniques can be employed
in other settings, as we now illustrate for quadratic regression on the g-cube.
We shall consider the following particular scheme of application.

Suppose, for each positive integer r, that we can find a subset A, of the 2r
corners of the r-cube ((1.9) with ¢ = 7), such that the uniform probability meas-
ure on A4, has the same moments of order <4 as the uniform probability meas-
ure on the 27 corners. Suppose A, has n, points. Then, suppose we replace J°
in J(0, 1, ¢) by A, (with ay/n, probability per point); replace the 2¢-! points
of J! with z; = 0 by the n,_; points of the form

z; =0, (xi, Tty X1y ity xq) € Aq—ly

for 1 < 4 < g (with probability a,/gn.; per point); retain J9, with probability
a,. Since only moments of order < 4 are present in M(§), and because of the
way in which zero coordinate values enter into the replacement of J!, we obtain
a design with the same M as the optimum symmetric design on J(0, 1, ¢), and
which is therefore also optimum. It is supported by

(3.41) Ng+ qngs + 1
points.
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The classical construction of such an A, is in terms of an orthogonal array of
strength 4 with 2 levels, that is, an n, X r matrix T, with entries &1 such that
every 4-row submatrix has the property that each of the 16 possible 4-vectors
with entries 21 appears equally often in the submatrix. We then consider the
1, columns of the matrix T'. as the points of A, and clearly obtain the required
moment properties. The reader is referred to such references as [1] for detailed
discussion of orthogonal arrays.

Orthogonal arrays of strength >3 have been considered extensively by Rao,
Bose, Bush, Seiden, and others. The principal method of construction is geomet-
ric. A set C of r points in the finite projective space PG(d — 1, 2) of dimension
d — 1, no 4 of which lie on the same 2-dimensional flat, yields a T, with n, = 29;
for, writing B for the r X d matrix whose rows are the points of C (each of the
d coordinates of such a point being an element of the Galois field GF(2)), and
writing D for the d X 2¢ matrix whose columns are the different d-vectors with
coordinate values in GF(2), one sees easily that BD has the required properties
of T,, except that the elements &1 of 7', are replaced by 0, 1 (of GF(2)) in BD.
(It is not always known when this geometric construction yields the maximum r
for given d.)

For fixed r, Rao’s lower bound on n,, usually given in geometric terms, can
be obtained for general orthogonal arrays T, = {t:;;, 1 < i<, 1<j < n}of
strength 4 with elements 21, as follows. Let 7o be the row vector of n, 1’s; let
7: be the i-th row of T,, and for 1 < < 7 < rlet rig = (tatin, -+ , tindim).

The 1 4+ r + (;) vectors 7o, 71, *** , Tr, T12, * ** , T(r—1)r are easily shown to be
orthogonal, because of the properties of 7.. Hence,
(3.42) n > (2 + 71+ 2)/2.

In the other direction, it is simple to give a geometric construction which
yields an orthogonal array of strength 4 satisfying

(3.43) n, = largest number 2¢ whichis <14 r+ (;) + (;)

For, in PG(d — 1, 2), if we have chosen j points, no 4 of which are coplanar,

there are (‘;) pairs of points each of which determines a line with one point

outside the pair, and (‘;) triples of points, each of which determines a plane

with one point not on the lines just mentioned. Thus, aslong asj 4 ( g) + ( :‘;) <
2¢ — 1 (equal to the number of points in PG(d — 1, 2)), there remains a (5 + 1)st
point which can be chosen without destroying noncoplanarity. Continuing in
this way, we can obtain r points, where r is the smallest integer for which

r+ (;) + (g) > 2¢ — 1. This yields (3.43).
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The reader should have no trouble in writing down analogues of (3.42) and
(3.43) for other Galois fields, and, in fact, for arrays of different strength.

When ¢ is large, the use of (3.41) with (3.43) yields an optimum design on
< ¢*(1 + 0(1))/3 points. This is 0(g*) like p or the bound (3.40), but these last
are both ¢*(1 + o(1))/24. Thus, we do not know whether or not the orthogonal
array approach can, for large g, yield a design with no more points than (3.40),
let alone whether the order ® of (3.43) rather than the order 2 of (3.42) (or
neither) is the best possible as r — «. We do know that there are some small
values of ¢ for which the method of using orthogonal arrays cannot yield a value
of (3.41) which is less than (3.40) or even p. This is a consequence of the fact
({101, [12]) that the minimum possible values of n, for r = 4, 5, 6, 7, 8 are
known to be 16, 32, 32, 64, 64, so that the numbers listed in the last column
of table I below, and which were obtained by using these values in (3.41),

TABLE 1
Points in Achievable
q k P (3.40) J©O,1, ¢ _ Using (3.41)
2 6 15 9 9 9
3 10 35 21 21 21
4 15 70 45 49 49
5 21 126 87 113 113
6 28 210 154 257 225
7 36 330 254 577 289
8 45 495 396 1281 577
9 55 715 590 2817 705
10 66 1001 847 6145 1409
11 78 1365 1179 13313 1537
12 91 1820 1599 28673 1793
13 105 2380 2121 61441 3585
16 153 4845 4454 589825 4353
17 171 5985 5544 1245185 4608
Asymptotic q*/2 q¢4/24 ¢*/24 g2rt < ¢/3
Value

cannot be improved upon by using orthogonal arrays for ¢ < 8. We have also
used the values n, = 128 for 9 < r < 11 and n, = 256 for 12 < r < 17 in this
table. These are the best values obtainable geometrically [12], but it is not yet
known whether a nongeometric construction can yield better orthogonal arrays
in these cases. (For values like ¢ = 10 or 13, where n,_; > n,2, the number
obtained from (3.41) is at its worst compared with p or (3.40); similarly, for
¢g=28,9, 11, 12, and 17, the comparison is more favorable.)

We are indebted to Professor Esther Seiden for several communications con-
cerning the construction of these orthogonal arrays of strength 4.

In view of the unattainability of p or (3.40) for some values ¢ by using the
method of this subsection, it is clear that further study is needed of designs which
have less symmetry. For example, by considering nonuniform measures on smaller
sets than A,, and perhaps subsets of more than three J7’s, one should be able
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to do considerably better. Perhaps one can even reduce the number of points
required from 0(¢g?) to a smaller order such as 0(¢*®). One other obvious attempt
to obtain 0(¢®) is to seek an optimum design with equal mass on each point of
J, plus additional masses on J° and J¢, and thus to replace the ¢ arrays used
with J* in (3.41) by an orthogonal array of strength 4 with three levels, which
is used in place of J (the n, and 1 being present in (3.41) as before). The analogue
of (3.43) for GF(3) shows that this three-level array again requires only 0(g®)
points, so that (3.41) would yield 0(¢®). Unfortunately, one cannot choose
positive probabilities on J°, J, and J? so as to satisfy the analogue of (3.22)
for large q.

4. The g-ball

We now suppose X to be the unit ¢g-ball (1.8). For regression of degree m, a
rough characterization of optimum designs was given by Kiefer [6]): every
optimum £ assigns measure one to (m + 1)/2 spherical shells centered at 0,
where one of these shells is the boundary of X and where 0 counts as % shell.
Some weighted mixture of uniform measures on these shells is optimum (although
other measures with the same first 2m moments are also optimum). The weights
and radii of shells are hard to compute for m > 2; when m = 2, measure
2/(g 4+ 1)(g + 2) is assigned to the origin and the remainder is assigned to the
boundary of X.

Two problems of interest here are (1) to obtain at least approximate informa-
tion on the radii and weights when m > 2, and (2) to obtain discrete measures
on the shells supported by as few points as possible. In most of the remaining
paragraphs of this section we shall indicate the type of treatment of problem (1)
which is possible for m > 2, considering here the example m = 3. Problem (2)
entails considerations related to those of section 3 and also to the extensive
literature on the construction of rotatable designs. It differs from the latter in
its specification of the radii and weights and in its allowing of unequal masses
on points which may not be symmetrically spaced. The implementation of the
resulting optimum designs of the approximate theory for specified sample sizes
by discrete designs which approximate them, will yield nonrotatable designs
which can be expected to involve fewer distinct points and to have better per-
formance characteristics than the rotatable designs which are usually used. The
payment for this in the form of a design matrix which is harder to invert may
be worthwhile with modern computing equipment.

An optimum design £* in the case m = 3 on the g-ball can be described in
terms of two parameters: measure g is spread uniformly on a sphere of radius
p < 1, and measure 1 — S is assigned to the unit sphere (equal to the boundary
of X). For such a design, d(z, £*) depends only on > = 3" z?, say d(z, £*) =
d*(r, £*). The optimum p and B can be found either by solving the two equations

(o, £) = (q ‘g 1) (=k) and 3d*(r, £9)/0rl,, = 0 (see [6]), or else by max-

imizing det M (&) with respect to p and 8. We shall exhibit the second method.
Grouping the functions into four sets as {1, 2%, - -+, 2%}, {z;, 2}, zax?; 7 < j},
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{zx;; 1 < j}, {mwzix;; B < 7 < j}, one sees that the produet of two elements from
different sets has zero integral. Thus, for £ of the specified form, det M (£) can be
evaluated as the product of four determinants; one obtains, with C, denoting a
constant depending on g,

(4.1) log det M (§) = C, + 2qlog p + (g + 1) log [B(1 — B)(1 — p*)?]

+ @20 = Diog 11 - ) + 601

+ %@_D log [(1 — B) + Bp®].

The two equations obtained by setting equal to zero the derivatives with
respect to each of p and B, are not very manageable analytically. (This is also
true of the equations obtained by the other approach mentioned in the previous
paragraph.) These equations, however, can be solved easily by machine, and the
results of this computation on the Cornell Computing Center CDC 1604 are
given in table IT below. We note here that the behavior of the maximizing
values of p, and B3, (say) as ¢ — « are easily discernible from (4.1). A routine
analysis shows that 8, = h¢g™2 + 0(¢7?) and p, = p* + 0(1) where 0 < ¢ <
and 0 < p* < 1 and where h and p* maximize the coefficient of ¢ in (4.1):

=t + (1= p*)/6 =0,

(4.2)
2/p* — 4p*/(1 — p*3) + hp* = 0.

Thus, as ¢ — o,

4.3) Pz~ p* = (312 — 1)/2 = .3660254,
‘ By~ hq~? = 4¢72(1 + 372) = 6.309401¢2.

A finer analysis can be used to produce further terms in an asymptotic expansion.
We digress in this paragraph to derive a result which was used in section 3.2.

The matrix M(¢) may be inverted explicitly for ¢ of the form we have been

considering, the answer being expressed in terms of p, and 8, This allows one
to write an expression for

o (L= B — 1) + By(r? — ()
@H e = T s -
(1 — Br*(1 — 1) + Brpi(r? — p)?
ta 0 = BBl — 1)

n (g+2)(¢—1) rt
2 1 - 6'1) + quz
n (g +4)q(g—1) . .
6 (1 - :Bq) + qu?
Taking r = 1 gives (since d*(1, £*) = k)
(@+D@+2)(g+3) _ q+1 (g +2)g—1
(4.5) 6 =18 T3 =8, + bt

n (g +4)q(g — 1)
6(1 — Bg) + B0}
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Equation (4.5) was used as (3.16) in section 3.2 to show that optimum designs
for cubic regression on the g-cube could not be rotatable.

The following table of numbers for 8, and p, were computed as described above.
(Of course, for ¢ = 1 we have the Guest-Hoel design.)

TABLE TI

q Bq 98, A

1 0.5000 0.500 0.2000

2 0.3077 1.231 0.2657

3 0.2455 2.210 0.2970

4 0.1695 2.712 0.3142

5 0.1241 3.102 0.3249

6 0.09483 3.414 0.3321

7 0.07490 3.670 0.3373

8 0.06068 3.884 0.3412

9 0.05019 4.065 0.3442
10 0.04221 4221 0.3465
10 0.6020 X 10-3 6.020 0.364381
108 0.6279 X 10 6.279 0.365866
10 0.6306 X 10~ 6.306 0.366010
108 0.6309 X 10~ 6.300 0.366024
ao 6.309401 0.3660254

From a practical point of view, what is important for other examples (for
instance, larger m on the ball) is the indication that the use of the limiting
values k and p* for fairly small values of ¢ leads to a value of max, d(z, ) which
is not too large; this aspect deserves further machine study in other contexts.

For m > 4, the same approach can be used, but of course the larger number
of parameters makes the analysis messier, especially if ¢ > 2. We remark that
when m = 4, ¢ = 2, the optimum weights are 5, 0.343912, and 0.589422, at
r2 = 0, 0.460249, and 1, respectively.

In order to construct implementable optimum designs on the unit ball for
any m, we replace the uniform distribution on each spherical shell by a dis-
tribution on a finite subset of the same shell, with the same moments. It will
suffice to consider the shell of radius one. If the measure v assigns mass a to
each of the 2¢ points having coordinates =4=¢~'/2, and mass 8 to each of the 2¢

points (1,0, ---,0), (0, 1, ---,0),---,(0,0, ---, £1), then the values
a = qlqg+ 2)"279, 8 = 1/q(q + 2) satisfy

at+p=1,
(4.6) [ @v(d) = 1/4,

[ satv(da) = 1/alq +2),

[ atv(de) = 3/a(q +2).

Clearly all other moments of order >0 and <4 are zero.
The set of 2¢ points with all coordinates ¢~/ may be replaced by a subset
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which is an orthogonal array of strength 4 consisting of 0(¢?) points, by (3.43).
Thus we know how to construct optimum designs on 0(¢g®) points. As
in section 3.4, if the order of (3.42) were attainable, we could achieve 0(¢g?)
here; and perhaps less symmetric points and weights can also help to achieve
a lower order than 0(g®).

Using this method of construction with orthogonal arrays, and data provided
by E. Seiden and described in section 3.4, we obtain the following table III
giving the number of points of support for ¢ in optimum designs for ¢ = 3,
.-+, 17, when m = 2. There being one point at the origin, we obtain a design on

4.7) : 29+ 1+ n,

points in this case. The values, of course, compare favorably with those of
table I, where the same values of k and p apply.

TABLE III
q 4.7)
3 23
4 25
5 43
6 45
7 ’ 79
8 81
9 147
10 149
11 151
12 281
13 283
14 285
15 287
16 289
17 291

That these designs may not be the best possible, even among designs of quite
symmetric construction, is illustrated by an example of Box and Behnken [2].
Using their construction for ¢ = 7, one obtains a design with 56 points on the
unit sphere plus one at the origin, for a total of 57 points.
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