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1. Introduction

The infinite-dimensional analogue of the concept of characteristic func-
tion, namely the characteristic functional (ch.f.), was first introduced by
A. N. Kolmogorov as far back as 1935 [31], for the case of distributions in Banach
space. This remained an isolated piece of work for a long time. Only in the last
decade have characteristic functionals again attracted the attention of mathe-
maticians.
Among the works devoted to this subject I shall note here in the first place

those of E. Mourier and R. Fortet (see for instance [14], [15], [32], where further
references are given) and the fundamental investigations of L. Le Cam [1]. The
special case of distributions in Hilbert space is considered in detail, for instance,
in the author's work [22].

Let X be a linear space and let 3 be a locally convex topology in this space,
let X* be the space dual to (X, 5), that is, the linear space whose elements x* are
continuous linear functionals over (X, 5). It is quite natural that the following
two questions occupy a central position in the general theory. In the first place,
when is a nonnegative definite function x(x*) a ch.f. of some CT-additive measure?
Secondly, how can the conditions of weak convergence of distributions be ex-
pressed in terms of ch.f.? The content of this article is, in fact, connected with
these two questions.

Sections 2 and 3 are of auxiliary character. In section 2 are given some facts
about measures in completely regular spaces. Here is introduced the notion of
tightness of the measure, which is one of the fundamental concepts of the whole
theory.

Section 3 contains an enumeration of some needed results from the theory of
locally convex spaces. Particular attention is given to spaces that are the dual
of Fr6chet spaces, since the latter possess many "good" properties from the
point of view of this theory.

In section 4 there is introduced the concept of a weak distribution P in a linear
topological space (X, 5). Roughly speaking, the problem is as follows. In every
"real" distribution in X the linear functionals become random variables and the
joint distribution of any finite number of them
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(1) xl, x2, *..* *x

is a a-additive measure in the n-dimensional Euclidean space. But this can also
hold for some finitely additive P, which are called weak distributions in this
case. We have borrowed the nomenclature from a paper by I. E. Segal [9]
(see also [10]). In a slightly altered form the concept of weak distribution was
used by I. M. Gelfand [19] and by K. It6 [20] in developing the theory of gener-
alized random processes. Moreover, in section 4 the one-to-one correspondence
between weak distributions and nonnegative definite functionals, which are con-
tinuous in all directions, is established.
The two main problems connected with weak distributions, namely conditions

for a-additivity and for the extension to a Baire measure, are discussed in section
5. Here again is seen the fundamental role played by the concept of the tightness
of a measure. One of the fundamental results consists in showing that one can
obtain an analogue of Bochner's theorem (that is, an assertion of the type: the
functional x is a ch.f. of a a-additive distribution if and only if it is nonnegative
definite, is equal to one at zero, and is continuous in a certain topology) in
spaces X = Y*, where the topology in Y is introduced by a system of scalar
products. The theorem of uniqueness is also treated in section 5, namely that
every tight Baire or Borel measure is uniquely defined by its ch.f.

In section 6 problems connected with weak compactness of families of distri-
butions are considered. It is known that in the finite-dimensional case the fol-
lowing three statements are equivalent:

(a) the set {Pa} is relatively compact,
(b) the set {Pa} is tight (for definition see section 6),
(c) the set {xa} of the corresponding ch.f. is equicontinuous at zero.
In the infinite case these equivalences do not hold in general. As a curious

fact we can mention the following. In a separable Hilbert space, where (a) and
(b) are equivalent, there exists no locally convex topology with the property that
the equicontinuity in it of {x,} is equivalent to the relative compactness of {Pa}.
However, the equivalence of (b) and (c) is preserved in spaces X = Y*, wvhere
Y is a nuclear space.

I have not considered the possible applications of the method. I doubt that
the problem of summing independent random elements with values in linear
spaces will play as important a role as the corresponding problem for independent
random variables. As a nontrivial example we can note the analysis of empirical
distributions (see for example [33]), the addition of "rare sequences of events" (in
the sense of [34], [35]) and the study of "random curves" constructed from sums
of independent random variables (see [22]). I also note that at the present time
there is a strong development of the technique of calculation with moments and
semi-invariants of infinite-dimensional distributions (see for example [36]).
The present paper was influenced essentially by the investigations on the

theory of measure in topological spaces which were systematized by Varadarajan
[2] and by the work of Le Cam [1].
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I wish to thank A. N. Kolmogorov for a number of comments and
V. V. Sazonov for numerous discussions of the problems under consideration.

2. Measures in topological spaces

For the purposes of this paper it will be sufficient to consider completely
regular topological spaces.

Let X be a set of points and S a class of open subsets of X such that (X, 5)
is a completely regular topological space. We introduce the notation
e is the set of all real functions that are continuous and bounded over all X;
6B is the smallest a-algebra with respect to which all f C C are measurable

(that is, the a-algebra of Baire sets);
& is a a-algebra generated by the class S of open sets (that is, the a-algebra

of Borel sets).
By a measure we shall understand in what follows a finite nonnegative u-addi-

tive set function, defined over some algebra (or u-algebra) of subsets of X.
In studying measures in topological spaces it is expedient from many points of

view to restrict ourselves to measures with domain of definition M, that is, to
the so-called Baire measures, while strengthening the condition of u-additivity
by replacing it by the condition of tightness (see [1], [2], and [3]).

DEFINITION 1. The measure ,u defined over the subalgebra 8 of the u-algebra M
is called tight if it satisfies the following two conditions.

(1) For every E C 8

(2) ,.(E) = inf ,u(G),
ECGECE

where G is anz open set of X.
(2) For every e > 0, there exists a compact K = Ke suich that

(3) sup ,i(E) < c.
E3ECx\K

For the sake of brevity we shall sometimes call such compacts e-compacts for A'
REMARK 1. If 8 = (B, then the property (1) is automatically satisfied (see

for example [6] or [2], theorem 2.7.1).
REMARK 2. Let 8 be a subalgebra of & and j. a real nonnegative finite and

finitely additive set function defined over 8. We shall say that ,u is tight if it
satisfies conditions (1) and (2) of definition 1. It is not hard to show that in this
case ,u is u-additive over 8 and that its extension over 8(8), the u-algebra gener-
ated by 8, is a tight measure in the sense of definition 1.
The consideration of tight measures only avoids a number of pathological

cases and in this sense is quite analogous to the limitation to perfect measures
proposed in monograph [4]. One should note that the properties of tightness of
a measure and its perfection are closely connected (see [5]). On the one hand,
every tight measure in the sense of definition 1 is perfect; on the other hand, for
instance, in metric spaces of not too high a power, every perfect Borel measure
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is tight (this will be the case when the space does not contain a system of non-
intersecting open sets of cardinality greater than the power of the continuum).
Tight measures possess the property of extension which can be expressed as
THEOREM 1. Every tight measure 4 having the property that the open sets of g

form an open basis of the space can be uniquely extended to a tight Borel measure A.
The extension is achievyed by the formulas

(1) A(G) =sup ,u(0),
OCG

where G E( and 0 E 8 are open sets.
(2) A (B) = inf A(G),

GDB
for every B E &. Here it is sufficient to assume that (X, 3) is regular.

It follows from this theorem, in particular, that in a completely regular space
every tight Baire measure can be uniquely extended into a tight Borel measure.
The last assertion can be founid, for instance, in [6] and, for compacts, in [7].
The theorem about the extension of Baire measures to Borel measures enables

us, among other things, to define the probability of continuity of sample func-
tions of random processes and allied events by a method which differs from the
one used by J. L. Doob [27], [21] (see [8] and [12]).

3. Some remarks about linear spaces
Let (X, 3) be a real linear locally convex Hausdorff space (for brevity we shall

say simply a locally convex space). The continuous linear functionals over
(X, 3) form a linear space X* = X*. It is known that a locally convex space is
completely regular and therefore all the consideratiolns of section 2 are applicable
to it.

In what follows we shall always understand by "topology" a locally con vex
separated topology. Together with the topology 3 we shall also consider other
topologies 3', satisfying the condition X* = X* . To avoid amiibiguity we shall
talk in that case of 3'-Baire sets, 3'-tight measures, and(l so forth.
Every finite subset

(4) X = = (WI, X2*, .

of elements of X* defines a mapping

(5) 7rA X Xl*(X), X2*(X), * ,Xn*(X)},
of the space X into the n-dimensional EIuclidean space Rn. A subset of the set
X of the form
(6) A = 7rxnl(A,,),
where n is a natural number and A,, is any n-dimensional Borel set, will be called
cylindrical. The algebra formed by the cylindrical sets will be denoted by C.
This algebra is the union of all the a-algebras c£l- generated by the "strips"

n
(7) n {x:-c < aj < x*(x) < bj < }.

j = 1
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In addition to the a-algebras 6B and 63 of section 2 we also have the a-algebra
S generated by a. It is obvious that

(8) (i C 2C C6 .
We denote as usual by g n K the class of sets of the form S n K, S E S. We
shall need a lemma due to V. V. Sazonov
LEMMA 1. Let K,, be an increasing sequence of compacts in X and let

C = Un'= K,. Then

(9) Bnc=c Ac.
PROOF. We denote by C' the subset of e composed of all S-measurable func-

tions. It is obvious that e' is an algebra which separates points and contains
constants. Let K be a compact in X, let ('K be the set of restrictions to K of
the functions in e'. Then by the Stone-Weierstrass theorem ([29], chapter 1),
the uniform closure of CK coincides with the algebra CK of all continuous func-
tions on K. All the functions of eCK and therefore all those of eK are measurable
with respect to 2 n K. Since & is a a-algebra generated by the sets

(10) Z = {x:f(x) = 0, f EC}

and Z n K E s n K, then 3 n K C S n K. Taking into consideration that
the inverse inclusion always holds we have 8 n K =£ n K.

Let now K,, be the compacts satisfying the conditions of the lemma. Let

(11) A = Bn c, Be (B.
For every natural number n we can find an L. Ee £ such that B n Kn = L. n Kn.
Then

(12) A = ( n
u

Lk) n (u Kn()E n C,
n=l k>n n=1

which remained to be proved.
In many examples encountered in this paper, X will be the dual of a Frechet

space. Therefore we give below the definition and the needed properties of these
spaces. The proofs can be found in [28], [30], and [23].
A Fr6chet space (Y, 3C) is a complete metrizable locally convex space. In the

dual space X we consider three topologies, the weak topology 3, the compact
topology 3c, and the bounded topology 3b. In the topology 3, a basis for the
neighborhoods of zero is given by the sets

n

(13) U,,...n(0) = A) {x: lx(yj)I < e},
j=1

in the topology 3. by the sets

(14) V.,K(O) = {x: sup Ix(y)j < e},

where K is an arbitrary compact in Y, and in the topology 3b by the sets
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(15) W8,A(0) = {x: SUp X(Y)I < e},
vA

where A is an arbitrary bounded set in Y.
(1) It is always true that 3s C 3J. The equality is possible only in the case of

a finite dimensional Y.
It is always true that 3, C 3b. The equality holds only in the case when Y is a

Montel space (a Fr4chet space is called a Montel space if its closed bounded sets
are compact).

(2) The topologies induced by 38 and 3, on 3a-compacts coincide. In particular
the compacts in these topologies are the same.

(3) The spaces with the topologies 3, and 3, are hemicompact, that is,
(a) there exists a sequence of compacts C. such that every compact C C X

lies in one of the C,; in particular,

(16) X= U C,.
n=1

The space X with topology 3, is a k-space, that is,
(1) the set is closed if and only if its intersection with the compacts is closed.

This terminology is taken from [1].
(4) The space dual to (X, 3.) and to (X, 3,) is the space Y itself.
From lemma 1 and property (3a) it follows that
(5) The classes of Baire sets in the topologies 3. and 3, coincide with S.
(6) In the case of separable (Y, 3C) the classes of Borel sets in the topologies

38 and 3, also coincide with S.
We now consider some special cases.
EXAMPLE 1. Let (Y, SC) be a Banach space. Then for every x C X we can

introduce in the usual way the norm llxll. The topology induced by this norm
coincides with 3b. For the compacts C. in condition (3a) we can take spheres of
radius n

(17) C. = {x: lixii n}.

EXAMPLE 2. Let Y be a linear space in which the particular countable set
of scalar products

(18) (Y, Y), n = 1, 2,*
satisfies the condition

(19) (Y, Y). -< (Y, Y)n+1
for every y E Y and for every n. We denote by 3C the topology in which the
basis for the neighborhoods of zero is formed by the sets

(20) On,,,(0) = {Y: (Y, Y)n < el-
The space (Y, 3C) is metrizable. For the distance we can take the function

(21) P(y" = 1 +1I ¶.ItlnnI2" 1 + ily' - Y"filn
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where

(22) Hlyll. = [(y, y)n]"2.
We shall call (Y, ac) a counttably Hilbertian space if
(a) The scalar products are concordant, that is, if for each sequence {y,} with

yeE Y, which is a Cauchy sequence simultaneously in the nth and in the
(n + 1)st norm, the convergence to zero in the nth norm implies the convergence
to zero in the (n + 1)st norm.

(b) Y is complete with respect to the metric p.
Every countably Hilbertian space Y can be represented as an intersection

(23) Y = n Yn, Yn,
n=l

where Y., is a Hilbert space, which is the completion of Y with respect to the
nth scalar product. In the dual space Y* = X the sets

(24) Cr x: sup1| x(y) ml
n, m = 1, 2, * , are compacts in the topologies 38 and 3, and their union is
equal to X.
We now introduce the concept of nuclear space [25], [24], [11]. We shall call

S-operator in Hilbert space every linear symmetric nonnegative completely con-
tinuous operator with finite trace. A countably Hilbertian space in (Y, 3C) is
called nuclear if for every n there can be found an m > n and an S-operator
Sn,m in Xm such that

(25) (y, I")n = (Sn,L,mY,Y"X)-.
It is not hard to see that every nuclear space is separable. We note, although

we will not make use of it, that every nuclear space is a Montel space. Therefore,
in the conjugate space the classes of Baire and Borel sets in the topologies 3,
and 3, = 3b coincide with 2.

4. Weak distributions and their characteristic functionals

Let (X, 3) be a locally consvex space and let P be a real nonniegative finite and
finitely additive function given over an algebra a of cylindrical sets, and let
P(X) = 1.
DEFINErION 2. P is called a weak distribution in X if it is a-additive on each of

the classes £'".
To every weak distribution P corresponds its characteristic functional (ch.f.)

defined by

(26) x(x*, P) = f eix*(x) dP.
X

The integral a of a m-easurable bounded function with respect to a finitely
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additive P is defined, as usual, as the limit of Lebesgue sums. It is clear
that x(x*, P) can be calculated as f exp (iu) dFz*(u), where Fx(u) =
P{x: x*(x) < u}.

If P is a probability measure, whose domain of definition contains a, then its
ch.f. is defined analogously. It is clear that to each such measure P corresponds a
weak distribution P (simply by restricting P to a). It is well known that a
weak distribution need not necessarily be a-additive. The simplest example is
x(x*, P) = exp {- (1/2)1 Ix*112} in a separable Hilbert space X.
The ch.f. possesses the following fundamental properties.
(1) It is nonnegative definite, that is, for any x*, x2, *, x*,E X* and any

complex numbers cl, c2, * *,

n
(27) E_ X(Xk* - XlZ, P)CkOI _ 0.

ksl=1

(2) Continuity, that is, for every fixed x* E X*, the function x(tx*, P) of a
real argument t is continuous.

(3) x(O*) = 1, where D* is the zero of the space X*.
It is not hard to show that the converse is true.
THEOREM 2. Every functional x(x*) satisfying conditions (1) to (3) is a ch.f.

of some weak distribution. Moreover, P is uniquely defined by x.
PROOF. The proof follows, on the whole, the same plan as the proof of

Kolmogorov's theorem about probabilities in infinite-dimensional spaces ([13],
chapter 3; compare also closely related statements in [10], section 3). In addition
we make use of the following elementary
LEMMA 2. Let At(a) = 4'(al, a2, * , a,.) be a nonnegative definite function in

Rn satisfying the conditions
(1) 41(0) = 1,
(2) At(a) is continuous at zero in n linearly independent directions {tjej}, that is,

4,(t,1,) - 1 for ti , 1 j < n.

Then i, is an n-dimensional characteristic function.
After introducing the concept of weak distributions two questions arise nat-

urally.
(1) When is a function P cr-additive over a, and therefore when can it be

extended uniquely into a probability measure P on 2?
(2) When can the probability distribution P thus obtained be extended

uniquely into a measure over a (this gives, for example, a way of defining from
x the integrals of all continuous functions, and so forth).
The answers to these questions will be found in section 5.

5. The extension of a weak distribution to probability measure

The question of a-additivity of P on a is not directly connected with topo-
logical considerations. However, it is possible to give sufficient conditions for the
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o-additivity of l' in topological terms. Moreover in soine impl)ort aiit special cases
these conditions become necessary and sufficient.

Let 3' be some topology in X with X3 = X3. If the weak distribution P over
e is 3'-tight, then in accordance with remark 2 after definition 1, it is possible
to extend P into a u-additive, and what is more into a 3'-tight, measure over £.
A weak distribution is automatically regular with respect to 3', that is, condition
(1) of definition 1 is satisfied for P. Therefore condition (2) of definition 1 is
necessary and sufficient for P to be 3'-tight. Suppose now that the weak distri-
bution P is fixed, X = (x,, x2, * , x*), let Px be the joint distribution of
Xi2X2 * *Xn

(28) I"(21n) P[- A( ]
where A. is an arbitrary Borel set in Rn. The image of the set C C X uilder the
mapping 7rx will be called the X-projection of C. Obviously

(29) C" = 7rX l[7rX(C)]
is the least cylindrical set containing C and definable by x*, x2, * , x*. From
the previous remarks we have
LEMMA 3. In order that a weak distribution P be extended into a 3'-tight meas-

ure P over £ it is necessary and sufficient that for any E > 0 a 3'-compact C, C X
can be found such that for all X

(30) 1 - P[rx(C,)] < E.

Naturally, onle cain verify (30) in principle with finite-dimensionial characteris-
tic functions
(31) jfX(t, P) = x6Z" x.(t1, , t,n P) = x(tlx* + * + tnx* P).

We now consider some examples of the application of lemma 3. We shall take
the case when X is the dual of some Fr6chet space (Y, 3C). In this case it can be
seen from property (3a) after equation (15) that the 38-tightness, the 3,-tightness,
and the countable additivity of P are equivalent ([1], p. 232).
EXAMPLE 1. If (Y, 3C) is a Banach space we can take for the compacts C,

the spheres
(32) Ce = -(x: IxlI < r__

Lemma 3 then gives us the result of papers [15] and [14] (chapter 3). Unfortu-
nately the X-projection of spheres cannot be simply described and therefore the
verification of relation (30) in terms of ch.f. is difficult (see theorem 5 below).
We note in passing that if (Y, SC) is separable then in X the classes of Baire and
Borel sets with respect to all three topologies 3s, 3, and 3b coincide with £. In
this case lemma 3 answers both questions proposed at the end of section 4.

If the topology 3C in Y is defined by a scalar product or by a sequence of scalar
products, then the conditions of lemma 3 can be expressed in terms of the con-
tinuity of the ch.f. x(y, P), with y E Y in some topology, which gives an analogue
of the classical theorem of Bochner. This topology is defined by a suitably chosen
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system of completely continuous quadratic forms with a finite trace. To this
field of ideas belong the results of papers [17], [16], [18], and [11], where the
cases in which (Y, 5C) is a Hilbert space, a countably Hilbertian space, and a
nuclear space are considered. In the proofs one should mention two main points.
The first point is that the existence of scalar products enables us to consider
only those X-projections of the compacts which are finite-dimensional spheres.
The second point is the application of a certain lemma (lemma 4 below) about
finite-dimensional distributions which was not explicitly used in [22]. The impor-
tance of the lemma was underscored in [18].
EXAMPLE 2. To illustrate the above, consider the case of a separable Hilbert

space (Y, 5C). For the sake of what follows we shall not identify X = Y* and
Y. We shall call the topology g' in Y admissible if the following statement holds.
In order that x be the ch.f. of some o-additive distribution over Q (or £) it is

necessary and sufficient that x be continuous in the topology g'. We shall sup-
pose that the letter x denotes only nonnegative definite functionals, equal to
unity at zero. For every such functional continuity is equivalent to continuity
at zero.
We shall denote by , the topology in which the basis for the neighborhoods of

zero is given by the sets

(33) 4s(O) = {y: (Sy, y) < 1},
where S is an arbitrary S-operator in Y, with the property (25). The result of
Sazonov [17] can be formulated in these terms as
THEOREM 3. The topology , is admissible, and is the weakest of aU admissible

topologies.
REMARK. The author does not know of any other admissible topologies.
5.1. Sufficiency of the continuity of x in the J-topology.
(1) From the ,-continuity of x(Y) it follows that x is a ch.f. of some weak

distribution P

(34) x(Y) = x(y; P)
(2) Let Q be the probability measure in Rn

(35) 4t(tl, t2, * , tn) = J exp [i(tial + * + t.a.)] dQ
and

(36) E ak,Ltktl, 1 _ k, 1 _ n,

be a nonnegative quadratic form. Then lemma 4 holds.
LEMMA 4. If the inequality E ak,ltktl _ 1 implies the inequality

(37) 1 - Re 1'(t1, t2, * *, tn) < e,

then

(38) Q{a:a2+a2 + ... +a c2} -< e + 2
(38) la al 2 =C2} Nle- 2
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where

(39) a2 = ak,k.
k

(3) Let x(y, P) be continuous in the 9-topology and let e > 0 be a given
positive number. Let = (Ve - 1)e/4ve and let the S-operator be such that
for (Sy, y) < 1,
(40) 1 -Rex(y, P) < t1.
Denote by A2 the trace of S and define c by the relation

(41) 2'-1ec2 2
Let us verify that for the sphere
(42) CE= {X: ILxLI _c}
the inequality (30) of lemma 3 is satisfied.

Let X = Xm = (Yl, Y2, * * *, y1,) be an arbitrary finite subset of elements of Y
and let Iu = ,, = (yl, y2, ... , y') be an orthonormal system equivalent to X,
in the sense that the linear envelopes of X and pu coincide. Then

(43) P'{7rA(C.)} = P{r(C,)j,
and the IA-projection of C. is the n-dimensional sphere

(44) {a: a~~~2+ A2 + ***+ C,2 < c2l.(44) {a:aoil ..2 +a<c2}

The ch.f. 4"' of the distribution PA over the ellipsoid

(45) [S(tly ++ + tyn), (tiy + * + t-yn)] < 1
satisfies the inequality

(46) 1 - Re4#(t, *, tn) _<.

Therefore by lemma 4

(47) 1 - PA{Tr,(C,)} = PA{a: a2l + a2 + * + an> c2} < f,

that is, condition (30) of lemma 3 is satisfied, which remained to be proved.
5.2. Necessity of continuity in g-topology. Suppose that P is countably addi-

tive over £. Select a sphere C C X with center at the origin so that 1 - P(C) <
e/2. The equation

(48) e-1 fx2(y) dP = (Sy, y)
C

defines, as can be easily seen, an S-operator in Y. In the 9-neighborhood of zero
gs(O)

(49) 1- Re x(y) = f -cos x(y)] dP < 2(Sy, Y) +
x~~~~~~~
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EXAMPLE 3. Let (Y, JC) be a separable, countably Hilbertian space. Denote
by , the topology in which the basis for the neighborhoods of zero is given
by the sets

(50) .ns = {y: (Sy, Y)n < 11,
where n is any natural number and S is some S-operator in Y.. Here an assertion
similar to theorem 3 holds (see [16]). It is not hard to see that JC C , always.
Moreover the equality holds if and only if (Y, 3C) is nuclear. Therefore in the
space X, dual to the nuclear space the necessary and sufficient conditions for
the function x(Y) with x(O) = 1 to be a ch.f. of a countably additive distribution
over £ reduces, as in Bochner's theorem, to the conditions (a) nonnegative
definiteness, (b) continuity.
We now consider the second of the questions proposed at the end of section 4.

Little is known that is applicable to the case of general locally convex spaces.
We give below a lemma of Sazonov and a theorem of Le Cam [1] (theorem 8),
which exhaust practically everything that is known in this direction.
LEMMA 5. Let (X, 3) be a locally convex space and let P be a 5-tight weak distri-

bution. Then P can be uniquely extended into a Baire measure (which is auto-
matically tight).

PROOF. (1) We can assume at once that P is a a-additive 3-tight measure
on £. Let K, C K2 C ... be a sequence of compacts in X such that

(51) P*(K) > 1 - -Y

where P* is the outer measure induced by P. Then by lemma 1 63 n C = £ n C
where C = un=1 K,,. For every B C (6 we define a set L E 2 such that

(52) BnC= LnC.

Since P*(C) = 1, L is defined uniquely by this equation up to a set of measure
zero. Let P(B) = P(L). From this definition it follows immediately that P is a
tight measure on 63.

(2) Let P, and 2 be two tight extensions of P on 63 and let B C (B. For au

arbitrary e > 0 select a compact K such

(53) A(K) > 1- i = 1, 2.

Let L EC be such that L n K = B n K. Then

(54) IP1(B) - P2(B)l _ P1(B) - P(L) + |P2(B) - P2(L)l < e.
Hence P1 P2.
As a corollary we obtain
THEOREM 4. Every tight Baire or Borel measure P in (X, 3) is uniquely defined

by its ch.f.
We next give Le Cam's theorem together with a proof based on the use of

lemma 3 and different from Le Cam's proof.
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We shall call every finite sum of the form

(55) q(x) = k P) eib cff g e
a trigonometric polynomial.
THEOREM 5. In order that the functional Xx(a*, P) be a ch.f. of a tight mteasure

on S it is necessary and sufficient that for every e > 0 there exist a compact K in
X and a number a > 0 such that the inequalities

(56) sup jq(x)1 _ 1,
zXG

(57) sup 1q(x)j < 6,

imply

(58) | CkX(X, P)I < e.

PROOF OF NECESSITY. Let P be a tight measure on £, and e > 0. Let K be
an E/2 compact, K? a measurable envelope of K, and 8 = e/2. Then for every
trigonometric polynomial q satisfying the conditions of the theorem with K and
8 selected as above

(59) 1 CkX(Xt)-I. ff q(x)| dP + fx\- jq(x)| dP < e.

PROOF OF SUFFICIENCY.
LEMMA 6. Let Q be the probability distribution in RI = {a}, a = (a, , an).

If the compact k is such that for every trigonometric polynomial

(60) 4(a) = cc, ei(ik,ak) tk, ak E Rn,

the inequalities

sup I4(a) _ 1,
(61)

sup (a) < 6,
aEK

imply the inequality

(62) If 4(a) dQ <e,
then

(63) 1 - Q(K) < E.

PROOF. Lemma 6 is based on the fact that by means of the classical
Weierstrass theorem (see, for example [3], chapter 1), we can construct a se-
quence qm(a) of trigonometric polynomials with the properties (a) 0 < 4"m(a) _ 1,
(b) as m - oo we have for every a

(64) q m(Ca) pk(a) {=
, v K,

where the convergence on K is uniform.
Suppose now that the ch.f. of the weak distribution P satisfies the conditions
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of theorem 5. Let X = (xl, x2,* , x*). For an arbitrary f > 0 and a corres-
ponding K C X and a > 0 let
(65) 4(a) Ckei(c,"')
be a trigonometric polynomial satisfying the conditions
(66) sup I4(a) I _ 1, sup lq(c)I <a.

a aCE rx(K)

Letting

(67) q(x) = [7rx(X)] = Ck eiyk*(X),
where yk = tix + n..+ t we obtain a trigonometric polynomial q(x) in X
satisfying the conditions of the theorem. Therefore

(68) If (a) dPx = Ck4lI(tk) CkX(8k) I<<
and by lemma 6

(69) 1 -PX[irx(K)] < E.

It remains to apply lemma 3.

6. Compactness and tightness of families of distributions

We denote by (P the set of all Baire probability distributions in a locally convex
space (X, 3). A weak topology can be defined in (P, for example, by means of a
system of neighborhoods. An arbitrary neighborhood of the point PO E (P is
determined by giving an e > 0 and functions gi, g2, , g, E C.

(70) N(P0, g~, , fl9 = n{P: fgi dP - gidPo < 1

Correspondingly, a weak convergence P, => P is introduced as the convergence

(71) fgdPn f gdPo
for every functioi g (E C( (see [1] and [2]). We shall be inlterested in the r'elative
compactness of subsets of (P and in particular of sequences of elements of (P, more
specifically not of (P itself but of its subset (Pt composed of all tight distributions.
The connection between the relative compactness of the subsets of (P and the

properties of the ch.f. is established by means of the concept of tightness of the
sets of measures.

DEFINITION 3. The set {Pa,} of distributionis in X is called tight if (a) every
Pa, is tight, (b) for every e > 0, the same E-compact Kf can be selected for all a.

In the simplest case, for example, when (X, 3) is a separable Banach space,
the tightness of the family {P,a} is equivalent to its relative weak compactness.
But, in general, this is not the case. The relation between these two concepts is
studied in detail by Le Cam [1] and Varadarajan [2]. We give below three
theorems taken from these papers.
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THEOREM 6. Let (X, 3) be a topological space anid let Di be a tight set of Baire
measures. Then 91 is relatively weakly comipact and its closure is again tight (see
[2], theorems 6.4.1 and 6.3.4).
THEOREM 7. Let (X, 3) be a hemicompact k-space [see properties (1) to (6)

after equation (15)] and let {Pn; n = 0, 1, 2, } be a sequence of Baire meas-
ures. If

(72) Pn => PO
then the set {P,n; n = 0, 1, 2, *} is tight (see [1], theorem 9.2).
REMARK. It is easily seen that in (X, 3) every Baire measure is automatically

tight.
THEOREM 8. Let (X, 3) be a metrizable space. The closed set 91 C (PZ is compact

if and only if it is tight (see [2], theorem 6.4.4).
From theorem 6 and lemma 3 we deduce
COROLLARY 1. If condition (30) of lemma 3 is satisfied for the set of distribut-

tions {Pa} in the locally convex space (X, 3) uniformly in a,

(30') 1 - P.[7rx(CQ)] < E,
where the 3-compact Cf does not depend on a, then {Pa} is relatively weakly compact.
From this in turn follows a sufficient condition for x(x*) to be a ch.f. of some

5-tight distribution.
THEOREM 9. If {Pn; n = 1, 2, * * }, is a sequence of weak distributions which

satisfy the conditions of lemma 3 uniformly and if for every x* E X*, we have
x(x*, P.) - x(x*) then there exists a 3-tight measure PO such that

(73) X(x*) = x (x*, Po)
and Pn, =* Po.
As a consequence of this we can obtain theorems of Mourier ([14], chapter 3,

theorem 8), Le Cam ([1], theorem 10), and Getoor ([10], theorems 5 and 6).
In all cases when the estimate of the probabilities

(74) 1 - PX[7rx(Cf)],
appearing in lemma 3, can be achieved by means of the ch.f. we can obtain from
theorem 9 theorems of the following type.
THEOREM 10. [17]. Let (Y, SC) be a separable IIilbert space X = Y* [see

remark following equation (33) concerning example 2] and let {Pa} be a family of
distributions in X. If the corresponding ch.f. are equicontinuous at zero in the
9-topology, then {Pa} is tight and therefore is weakly relatively compact.
REMARK. It can be shown that in a separable Hilbert space (Y, SC) there does

not exist any locally convex topology ,J' with the property that the equicontinuity
of xa for {j' is equivalent to the tightness of the family {P,,} or, what is the same
thing, to the relative compactness of {P,a}; here we have in mind a strong
topology in X.

This sharply distinguishes the case of the Hilbert space from the finite-dimen-
sional case. Of all the countably Hilbertian spaces only the nuclear space (Y, SC)
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lhas the lproperty that there exists a topology, naiely XC itself, such1 thiat, the cqui-
continuity of x(y, Pa) in it is equivalent to a weak sequential compactness of the
set of distributions P,a in (X, 3,).
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