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Let w(jli), where i, j = 1, * - *, a, be such that
(1) minw(jli) _ a > 0

i,i

and
a

(2) Ew(jIi) = 1 i = 1, , a.
j=1

To avoid the trivial we assume that the positive integer a is greater than one.
Call any element in the set (1, * * *, a} a "letter," and any sequence of n letters
an "n-sequence" or a "word." Let gl, g2, * be an infinite sequence of nonnega-
tive numbers such that

(3) E gi = 1, L igi <X1
We will consider a stationary, nonanticipating channel with an infinite past R

(say); the latter may be a mathematical idealization of a physical situation. For
reasons which will appear in a moment it will at any time completely describe
the past history to give the (infinite) sequence of letters which have been trans-
mitted over the channel. Thus, if
(4) r = ( , r.2, r-., ro)
is a sequence of letters, the statement R = r means that the last letter trans-
mitted was ro, the one before that was r.1, and so forth. Suppose the letter i,
where i = 1, * * -, a, is sent or transmitted over the channel when the past
history is r, that is, R = r. The chance letter v(i) received (by the receiver) has
the distribution

(5) P{v(i) = jlR = r} = w(j|i)g, + E w(jlr_k)gk+2 j = .* ,a.
k-0

A code (n, N, X) for this channel is a set

(6) {(u1, A1), *.. , (UN, AN)}
where ul , UN are n-sequences, Al, * * ,AN are disjoint sets of n-sequences,
and
(7) P{v(ui) E A iR = r} _ 1 -,
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for i = 1, , N and every sequence r. Here v(ui) is the chance n-sequence
(word) received when the n-sequence (word) ui is sent. The number n is the
length of each word, N is the length of the code, and X is the probability of
error (more fully, an upper bound on the probability of error for each word).
The practical application of the code is as follows: When the sender wishes to
send the ith word (i = 1, * * *, N) he sends the n-sequence ui. When the receiver
receives an n-sequence which lies in Aj he concludes that the jth word (uj) has
been sent. If the received sequence does not lie in A1 U * U AN the receiver
may draw any conclusion he wishes about the word which has been sent. The
probability that any word sent will be incorrectly decoded (understood) is thus
at most X, no matter what the past history of the channel may be.

In this note we shall sketch briefly a method by which the capacity of this
channel can be determined (theorem 1 below) and a coding theorem and strong
converse (theorem 2) proved. More details will appear elsewhere. The same
channel as above, except that the number of letters in the alphabet of letters
sent is different from the number of letters in the alphabet of letters received, is
only trivially different from the present channel. The channel where the distri-
bution of each letter received depends, in a manner similar to (5), on all the
letters previously sent and received will be treated elsewhere.
We shall base ourselves on the ideas of [1] and [2] and use the method of

generated sequences employed there. In [2], where m was the duration of
memory, one "ignored" all the received letters whose serial numbers were con-
gruent to 1, * * *, m, modulo (m + x), where x was a suitably chosen number.
Of course now there is no m because the duration of memory is not finite. How-
ever, let d and x be positive integers, and let us ignore all received letters whose
serial numbers are congruent to 1, * , d, modulo (d + X).

Write

(8) ti = gi + 9i+1 + gi+2 +

(9) ti = gi + 2gi+1+ 3gi+2 +
Let
(10) r =( , r2, r_, ro)
be any sequence of letters, and

(11) s = ( S* * ,S8i, 80)

be a fixed sequence. Consider the probability, under the condition R = r and
tinder the condition R = s, of the subsequence (of the n-sequence received)
which consists of the letters not ignored, that is, of those letters whose serial
numbers are not congruent to 1, * * *, d, modulo (d + x). The ratio of these
probabilities (under the two conditions) and its reciprocal can be shown to be
both bounded above by f = expe {t(d+2)/a}. Suppose then one demonstrates the
existence of a system (6) in which the assignment of an n-sequence to each of
A1, * * *, AN is based solely on the subsequence of its nonignored letters (that is,
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two n-sequences with the same subsequence of nonignored letters belong to the
same one of A1,l , AN), and which, in place of (7), satisfies

(12) P{v(ui) E AiR = s} 1- =1, , N.

Then clearly such a system is a code (n, N, X) for our channel, that is, it satisfies
(7) for all r.
Now suppose we obtain an upper bound on the length N of all systems (6)

such that the assignment of an n sequence to each of A1,l , AN is based solely
on the subsequence of its nonignored letters, and such that
(13) P{v(ui) fE AiIR = s} > 1 -X, i = 1, *.*,N,
is satisfied. Then, as in [2], one can show that adnl(d+x) times this upper bound
is an upper bound on the length of all systems (6) which satisfy (13), and is
therefore a fortiori an upper bound on the length of all systems (6) which satisfy
(7) (for all r), that is, an upper bound on the length of all codes (n, N, X) for
our channel.
We now consider the discrete memoryless channel T(r) whose input alphabet

consists of all (d + x)-sequences, whose output alphabet consists of all x-se-
quences, and whose channel probability function is given by the probability
distribution of the X-sequence of letters not ignored when, in the channel of the
present note, we set n = (d + x) and R = r. Let C(d, x) be the capacity of the
clannel T(s), and let Cr(d, x) be the capacity of the channel T(r). Then it can
be shown without much difficulty that, for any sequence r,

(14) ^ C(d, x) _ C(d <(d,x),

where A(d, x) will be given as follows: First define

(15) 4(d, x) = H
i=d+l CY

(16) h1(d, x) = 0(d, x) log2 +(d, x)
(17) h2(d, x) = 4(d, x) - 1.

Then

(18) A(d, x) = 2h2(d, x) 1og2 a + d + x

We now use the method of generated sequences, used in [1] and [2], with
modifications as follows: Let n = n'(d + x), with n' large. Compute all prob-
abilities as if R = s; thus, when the second subsequence of length (d + x) is
sent, the past history consists of the first (d + x)-sequence sent, and the se-
quence s before that, and so forth. A received n-sequence is generated by a
transmitted n-sequence if the number of pairs (of letters of the input and output
alphabets, as in [1]), differs from the expected number by less than a suitable
multiple of the standard deviation. Taking into account the argument which
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involved (12) and (13) above one can obtain, after an argument which utilizes
the ideas of [1] and [2], the following
LEMMA. Let E > 0 and X, with 0 < X < 1, be arbitrary. Let d and x be any

integers. For all n sufficiently large there exists, for the channel of this paper, a
code (n, N, X), with

(19) N > exp2 {n [ C(d, X) _ A(d, x)-lL(d + x)
Any code (n, N, X) for the channel satisfies (when n is sufficiently large)

(20) N < exp2 (n [(d+ X) + A(dX) + E +d1092]}
Now apply (19) to the arbitrarily chosen pair (di, xi) and (20) to the arbitrarily

chosen pair (d2, X2)- Since E was arbitrary we obtain that

(21) C(di, xi) _ C(d2, X2) _< A(d1, xi) + A(d2, X2) +d2 log2 a
(di + xi) (d2 + X2) =(d2 + X2)

Since (di, xi) and (d2, X2) were arbitrary we can reverse their roles in (21). From
this and (21) we obtain

(22) C(di, xi) -C(d2, x2) <A(di xi) + A(d2, X2) + d92a + d2 log2 aI(di + xi) (d2 + X2) = (di + xi) (d2 + X2)
From (22) we obtain at once
THEOREM 1. We have

C(d, x)_(23) lim (d+ x) C,

,ay, as d -+ oo d/x -0. For any (d, x) we have

(24) C _ C(d, x) <A(d, x) + d 192 a.(d +x)l - (d+ x)
C is the capacity of the channel, because from theorem 1 and the lemma we

obtain at once
THEOREM 2. Let e > 0 and X, with 0 < X < 1, be arbitrary. For all n suf-

ficiently large there exists a code (n, N, X), with

(25) N > exp2 {n(C - E)}.

Any code (n, N, X) for the channel satisfies (when n is sufficiently large)
(26) N < exp2 {n(C + E)}.

The relation (24) has as a consequence that, at least in principle, the capacity
C can be computed to within any specified error bound. The relation (26) is the
strong converse, so called because it holds for any X such that 0 < X < 1, and
not only for small enough X.
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