
A COMBINATORIAL TEST FOR THE
PROBLEM OF TWO SAMPLES FROM

CONTINUOUS DISTRIBUTIONS
S. S. WILKS

PRINCETON UNIVERSITY

1. Introduction

The general problem of testing the null hypothesis that two independent
samples come from identical continuous distributions against the alternative
hypothesis that they come from any pair of different continuous distributions,
has been considered by Smirnov [11], Wald and Wolfowitz [13], and others.
The two-sample problem for testing the null hypothesis against various restricted
classes of pairs of alternatives has been considered by Dixon [3], Wilcoxon [14],
Mann and Whitney [7], Lehmann [5], Mood [8], Savage [10], Sukhatme [12],
and other authors.
The purpose of this paper is to consider a simple combinatorial test for the

general two-sample problem based on what are called "cell frequency counts"
which one sample generates with respect to the other. The test proposed is con-
sistent for testing the null hypothesis against alternatives in the class of all
pairs of different continuous distributions subject to mild assumptions. The test
criterion suggested, defined by (4.8), has as its limiting distribution in large
samples a chi-square distribution under the null hypothesis. The power of the
test is considered in some detail for alternatives in which the two distributions
are "nearly" equal.
To be more precise let e be the class of all pairs of continuous c.d.f.'s

(F(x), G(x)) and let eo be the subset of e for which F(x) _ G(x).
Let (x(i), .. *, x(nl)), with x(l) < * - < x(X), be the order statistics of a sam-

ple °n from F(x) and let II, * * * , I.+, be the intervals (-00, x(1)], (X(t), X(2)], * ,
(x(n.-), x()], (x(,) +oo), respectively. In an independent sample Om from G(x),
let r1, * * ,r.+i be the numbers of elements in O' which fall into I,, * ,I.+,
respectively. Then (r1, * * *, rn+l) is a discrete vector random variable where
r1, -*, r+ are nonnegative integers satisfying
(1.1) r1 + - * * + rn+1 = m.
Next we define a new vector random variable (so, si, s, Sm) where

(1.2) si = number of (ri, * * *, r,+1) which are equal to i,
Research partially supported by the Office of Naval Research.
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i = 0, 1, in,m. The so, si, * , sm will be called cell frequency counts which O'
makes with respect to O,n. They can take only nonnegative integral values sub-
ject to the two conditions

(1.3) so+2s2+ +ms =mn+1
si + 2S2 + ***+ MSn = m.

The components of the vector (so,s * * , Sm) are invariant under permuta-
tions of ri, * * *, rn+,. There does not appear to be a more basic set of elements
from which to construct a general nonparametric two-sample test than these
components. For any fixed k, if we allow m, n -Xoo so that m/n-+ X > 0, then
so, s1, * * *, sk; are asymptotically normal. The basic quadratic form, given in (4.6)
and in an alternative and more convenient form in (4.8), involved in this asymp-
totic normal distribution takes a particularly simple form which provides a
large-sample test for (F, G) E C,, which is consistent against alternatives in a
large subset e* of e -Co to be defined more precisely later. It is this test which
will be considered in this paper.

2. Distribution of cell frequency counts for (F, G) E eo

If (x(1), * *, x(.)) are the order statistics On let (ul, *.. , u.) denote the contin-
uous vector random variable (F[x(l)], F[x(2)] - F[x(l)], . , F[x(n)] -F[x(n-)])
The components of this vector have constant probability density equal to n!
over the simplex defined by u1+ * + un _ 1 and ui > 0, for i= 1, . . ., n.
The conditional probability that the vector random variable (ri, * , r,,+1) has

a specific value (r', * * *, rn'+), given (ul, , us), is

(2.1) ul' * * - Un)

Multiplying this expression by the probability element of (ul, , un), namely
n! du, ... dun, and integrating over the simplex u1 + -+ un < 1, where
ui > 0, for i = 1, *.. , n, it is seen that the probability that (r1, * *, rn+])
takes on any specified value (rl, * *, rn+,) is given by

(2.2) 1

n

and hence constant for every possible sample point in the space of (r1, rn+1)
The problem of finding the probability that (so, si, .*. , sm) has a particular

value (so, sl', - , s'4) is one of counting all points in the sample space of
(r1, * * *, rn+1) for which (so, si, * * *, sm) = (so, sl, * * *, s'.), subject to conditions

(1.3), and multiplying by l/(m + n) It will be seen that the number of such

points is the coefficient of towt'l' * * - tS'um in the formal expansion of

(2.3) (to + t1u + . .. + t.,um)n+l.
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Extracting this coefficient and multiplying it by I/(m + nand dropping the

dashes, we find the probability function p(so, si, , Sm) of (so, Si, * , sm) to
be given by

(2.4) p(so, !i, *Sm),(n+ 1
SONs1! ... Sm.! (m + n)

To obtain the probability function of only a fixed number of the si, say
(O, S, .. , Sk), with k < m, we set tk+1 = tm = t in (2.3) and select the
coefficient of t,'tl' * tkiVu-, where

(2.5)o + 81 + + Sk +S8= n +1,
S = Sk+1 + +$.

In particular, if n + 1 > in, the probability function of so, the number of
empty cells, is given by

(n + 1)(m-1'
(2.6) p(so) - So_ fl J,

(mn
the sample space of sobeing n-m + 1, n-m + 2, ,n + l.

3. Means, variances, and covariances of cell frequency counts

We shall need the means and covariance matrix of (so, si, . , Sk). For this
purpose it will be convenient once and for all to evaluate the general factorial
moment
(3.1) J,(8bol8[Qll .. 4 )

where
(3.2) slei] = si(si- 1)... (si-g+), si -g,+ 1 > O.

In view of the fact that the sum _,, of p(so, si, , sm) over the sample space
of (soi, s.., Sm) is unity, we see that

Z3.3) ? 1n n+)(3.3) so!si! .sm! (n + 1)!
To determine the value of the expression in (3.1) we must evaluate the sum

(3.4) E slbog"sll' le],

7' SO!sh! ...Sm'!
which is equal to the sum

(3.5) E 1
.' (.'o - go)!(Si -gi) ! ...(Sk - gk) !Sk+1! Sm!.
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where s' is the space of all nonnegative integral values of so -go, 8s-i,g *
Sk gk, Sk+l, * , s,fSsubject to the conditions

(0 -90) + (S1 - 91) + + (Sk -gk) + Sk+1+ + Sm

(3.6) = n +1+--go-g1g -gk
(s- gi) + 2(S2 - 92) + + k(sk - gk) + (k +1)Sk+l +* +mSm

= m-g-292- - kgk,
where go+ g9 + + gk -< n + 1 andgl + 2g2 + - + kgk < m.

It follows from (3.3) that the sum (3.5), subject to conditions (3.6), is given
by the right side of (3.3) upon replacing n by n - go - g * - -g9k and m
by m - - 292 - * * - kgk. This gives for the sum (3.5) the value

m + n-go-2g1- (k + 1)gk

(3.7) (n+1- g-1- gk

Multiplying (3.7) by (n + 1)!/(m + n), we obtain for the general factorial
moment

(n + 1) ! m1 + n 9°go -2g *- (k + 1)gkA
(3.8) E(sb9ls?1 ... slg]) \ n-90- -** -gk /

(n+1-go-g1- g)
We shall be particularly interested in the means and variances of (sO, si, * *, Sk)

forlargevaluesofmandnsuchthatm = Xn + 0(l),where X > Oand(1/n)0(1)
converges to zero as n -. oo.
Under these conditions and putting

(3.9) (1 +i = , 1, k,Pi + X)i+1
it is straightforward but tedious to verify that for i = 0,1, * , k,

(3.10) E(si) = npi + 0(1),
Var (si) =np't [1 -2 - + 1+ X]+ 0(1),

and fori 6 j = 0,1, *,k,

(3.11) Cov (s, s) = np,pj 2 - j + (i+ 1)(j + 1)1+ 0(1).I x 1 + x

4. Asymptotic distribution of the cell frequency counts in large samples
If we put

(4.1) - (s, -npt)
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and, for a fixed k, let (op(to, tl, *-- , tk) be the characteristic function of
(ZOn Zlny ... , Zkn), that is,
(4.2) (on(to, ti, * * * , tk) = E[exp (itoZon + it1Zin + * + itkZkn)],
it can be verified by methods similar, for instance, to those used by Okamoto [9]
and Kitabatake [4] that for (F, G) E eo

(4.3) lim log sPn = -- E ci,titn,n-x 2 i,j=O

where

Pi - 2- ( + 1)]i=j,

Uppf-2 _iS +(i + 1)(i +1) i ej
Pt 1) 11

But the right side of (4.3) is the logarithm of the characteristic function of a
vector random variable (wo, w1, * * *, Wk) having a normal distribution with zero
means and covariance matrix llaijll. Thus, from L6vy's theorem [6] on the
uniqueness of a limiting distribution as determined by the limit of a sequence
of characteristic functions, we have

(4.5) lim P(Zin ::! yi; i = 0, 1 ** k)

=(2w)k/2 | exp - aiiWj dwo
. .

dWk,

where Rk+l is the portion of the Euclidean (k + 1)-space for which wi _ yi with
i = 0, 1, * * *, k and where Ilaiiol| = aijl -1.

Furthermore, as m, n -X oo with m/n -- X> 0, the quadratic form
k

(4.6) Qk= E aiiZinZjn
i,j=O

has, as its limiting distribution, the chi-square distribution with k + 1 degrees
of freedom if (F, G) E eo.

Using the fact that Qk, can be written as

0 ZOn Zin . . . Zkn
ZOn °0oo Soi .* ..* Ok

Zin l1o °011 . . * lk

(4.7) i ijlQkn=

Zk. awkO gkl akk

and performing some simple operations on the determinant on the right it can
be shown that Qkn can be expressed in a more convenient and more easily com-
putable form as
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(4.8) Qk. " + u2 + v2
iO npi nX( )Pk

where
k

u = E (si - npi)(i - - k - 1),
(4-9) io

V = [X(1 + X)]112 E (si- npi).
i=O

Note that the form of the sum appearing on the right side of (4.8) is essen-
tially that of the classical Pearson chi-square associated with the first k + 1
cell frequency counts so, si, * * *, Sk. This sum must be augmented by the term
(U2 + v2)/[nX2(l + X)pk] in order to produce a quantity having a limiting chi-
square distribution with k + 1 degrees of freedom as n -+ oo.

5. Qkn as a test for the hypothesis that (F, G) E eo

As indicated in the preceding section, Qkn has the chi-square distribution with
k + 1 degrees of freedom as n -X o under the null hypothesis that (F, G) E o0,
that is, if F(x) _ G(x). As a matter of fact Qkn provides a test for the null
hypothesis which is consistent against a large class of alternative pairs (F, G)
in e - Co, which we shall call C*, where C* is the subset of e - e0 such that for
any (F, G) E e* the function G(F-1(v)) = H(v), say, has a bounded derivative
h(v) on [0,1], F-'(v) being the inverse of F(x). Then, since C* is a subset of
e - eo, we have for (F, G) E C* that H(v) 0 v, and hence h(v) 0 1, over a set
of positive probability on [0, 1].
To examine the consistency of Qkn we shall use a method similar to that used

on a related problem by Blum and Weiss [1]. Let Ta, with a = 1, *.. , n + 1
be a random variable where Ta = 1 if i elements of the second sample O' lie
on the interval Ia generated by the first sample On where x(O) = -X and
X(n+l) = +o0; Ta = 0 otherwise.
Then if (F, G) EC*, we have

(n+l \ n+1
(5.1) E(siIC*) = E E Tl* = _ E(TalJ*).

Since E(TIC*) = P{TC - 1l*}, we have
n+1

(5.2) E(silC*) = , P{Ta = lIC*}.
alI

But for a = 2, ,n we have

(5.3) P{T_, 1*i} = (a- 2)(n-a)! f [1 - {H(2) - H(ui)}lm-I

[H(u2) - H(uj)]'iuT-2(1 - U2)n- du, du2,
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where ii1 = F(x(a-)), 112 = F(x(G)), and T is the triangle in the ulu2-plane defined
by 0 < Ul < u2 < 1. For a = 1, n + 1 the formulas are slightly different, but for
our purposes they need not be written down explicitly since (1/n)P{Tj = 1e1e}
and (1/n)P{Tn+l = le*} both-+ 0 as n - oo.

Substituting from (5.3) into the right side of (4.2) and summing from a = 2
to a = n, we obtain

(5.4) E(sile*) = 6 + n(n - 1) (M) ff [1 - {H(U2) - H(Ul)}]m-i
T

[H(u2) - H(ul)]i[l - (112 -ul)]n-2 du, du2,
where S = P{T1 = 1le*} + P{TTn+ = 1le*}.

Performing the transformation ul = v and U2 = v + y/n, and considerinig the
mean value of si/n we have

I~\ - 5 f ((1-vlnf.V(5.5) E (sje*) + J1 J fmn(V, y) dv dy,

where

n I(M(
_
yn-2

(5.6) fmn(V, y) = n - im _n
[1- {H(v + y/n) -H(v)l ym-i [H(v + y/n) - H(v) _
L t ~~~y/n Jnj y/n \nJ

If we let m, n oo so that m/n 2X > 0, and making use of the assumption
that H(v) has a bounded derivative h(v) on [0, 1] it follows that B/n -O 0, and

(1r(-v)n1 x
(5-7) fn(fV(v , y) dvdy f f e-yll+Xh(v)lyi[Xh(v)]idy dv

(1 [Xh(v)]i dvh)say.=J[1 + Xh(v)]i+l = p1(X h),
say.
Summarizing, we have the following result:
Let O, and Om be samples of sizes n and m from F(x) and G(x), respectively.

Then ifm,n -+oo so that m/n -X > 0, we havefor (F, G) C

(5.8) En ) PiXh(

Note that if (F, G) C e0, then h(v) -1 on [0, 1] and we obtain the result

(5.9) E (8o) pi

as m, n -+ xo so that m/n -+ X > 0, as implied in (3.10).
For the case i = 0 it follows from the Schwarz inequality
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JI d I1
(5.10) 1 ± Xh(v) j; [1 + Xh(v)] dv

fa;1[ X ]1/2 }2

j[1 + Xh(v)] [1 + Xh(v)]"II dv}
that for any X > 0,

(5.11) i:1 + Xh(v)-1 + X

that is,

(5.12) po(X, h) > po
with equality holdiilg if and only if h(v) -1 oIn [0, 1] except possibly for a set
of probability 0. This means that as m. n -* oo with m/n - X > 0,

(5.13) lim E (-C*) > limE(ECo.
n--o f8le) n- \fln

It can be shown by some tedious computations, which would require too
much space here, that for the variance of s0 under C*, we have

(5.14) Var (8o|2*) < n + 1

It follows from (5.13) and (5.14) that Qon is a test for (F, G) E o which is
consistent against all alternatives (F, G) C6,*.

It should be pointed out, however, that for no other value of i than i = 0
is it true for all (F, G) E Cs* and all X > 0 that we have an inequality of
form pi(X, h) > pi or pi(X, h) < pi. This means that we cannot construct a
test for (F, G) E Co which is consistent against all alternatives (F, G) E e*
for all X > 0 from any single si except so. In the case of so it can be seen from
the structure of Qon1 that for (F, G) E Co, we have so asymptotically normal
N[n/(1 + X), nX2/(1 + X)3] for large n.
On the other hand it follows from (5.13) that for fixed k each of the tests Qin

with i = 0, 1, * * *, k is consistent for testing (F, G) E e0 against alternatives
(F, G) E e*. It can be shown that for large n and for i = 1, * * *, k the power
of Qi,, for testing (F, G) E C0 against alternatives (F, G) C C* is greater than
that of Qi-ltn-

6. Optimum choice of X for members of C* "near" those of Co

A thorough study of the power of the test Qkn for the hypothesis described
above would require the determination and careful examination of the asymp-
totic distribution of Qkn for (F, G) E C,* for large n. For any choice of (F, G) the
power of the test depends on X, the ratio of the size of the second sample to that
of the first. It can be shown by methods similar to those used by Kitabatake [4]
that for (F, G) C C* and for the fixed k, the s0, si, . * *, Sk are asymptotically
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jointly normal. We have shown that the value of E(sile*) to terms of order n
is npi(X, h), but the actual computation of the covariance matrix of (so, si, . * *, Sk)
for (F, G) C e* to terms of order n is a tedious job which remains to be done.

Studies made by Mood [8] and others indicate that the Wald-Wolfowitz run
test has low efficiency if used for testing hypotheses concerning differences of
population means or variances. Such a study is likely to show the same to be
true of tests based on cell frequency counts. On the other hand there may be
some interest in considering such tests for testing the hypothesis that (F, G) C eo
against alternatives (F, G) C e* "near" those in eo. We shall examine the
power of Qkn in some detail for this case.
More precisely, we shall compare approximate values of pi(X, h) with pi,

where i = 0,1, *.. , k, as a function of X assuming h(v) to be of form 1 + e(U)
where values of f0' e(u)r du, for r = 3, 4, *, are negligible compared with that
for r = 2. Note that the value of the integral is zero for r = 1. If we denote
by A2 the value of the integral for r = 2 then for the degree of approximation
indicated we have pi(X, h) p1(X, h), where

(6.1) p1(X, h) = p, 1 + 2 [i(i - 1) - 2i(i + 1)t + (i + 1)(i + 2)t2]},

i =0, 1, *- k,

where t = X/(1 + X), and pi is defined in (3.9).
6.1. Case of k = 0. First consider the test Qon. This test, of course, is equiv-

alent to using so as a test, s0 having the normal distribution N[n/(l + X),
nX2/(l + X)3] as its asymptotic distribution for (F, G) C eo. The value of X
which suggests itself as the optimum choice (the one to maximize the power of
the Qon or so test) for discriminating between members of Co and of "nearby"
members of e* is that which makes the difference po(X, h) - po as large as pos-
sible. Putting i = 0 in (6.1) we find

(6.2) Po(X, h) - po = pot2 A2.

Noting that pot2 = X2/(1 + X), it is seen that the value of X which maximizes
the difference in (6.2) is X = 2. This value of X gives pi the value 2i/3i+l and
hence n/3, 2n/9, 4n/27, 8n/81, * as approximate mean values of cell fre-
quency counts S0, SI, 82, S4, * - -.

It should be pointed out that Qok, or equivalently so, is closely related to the
Wald-Wolfowitz [13] run test. The number of runs u in the Wald-Wolfowitz
test has N[2nX/(1 + X), 4nX2(1 + X)3] as its limiting distribution as m, n -X cc
with m/n -* X > 0. Since the variance of u is four times that of so, to terms of
order n, the value X = 2 also maximizes the variance of u.
We further remark that so may be regarded as a two-sample version of a one-

sample test proposed by David [2] for testing the hypothesis that a sample of
size m comes from a specified continuous distribution Fo(x). In her problem
I,, * * , I.+, are disjoint intervals of the x-axis such that the probability on
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each as computed from Fo(x) is 1/(n + 1) and her test is the number so of these
intervals containing no elements of the sample. It was shown by Okamoto [9]
that Eo is consistent for testing Fo against any continuous distribution differing
from Fo and satisfying certain mild restrictions. Kitabatake [4] showed that so
has a limiting normal distribution in samples from Fo as well as from any alter-
native to Fo satisfying some mild conditions.

6.2. Case of k _ 1. If one considers the problem of an optimum choice of X
for Qkn with k > 1, the situation is much more complicated. The choice X = 2,
which is optimum in the sense discussed earlier for k = 0, produces nonzero
values of p-i(X, h) - pi except for i = 1 and 8 which indicates that for this
choice of 1X the cell frequency counts si and s8 would contribute virtually nothing
to the power of Qkn in large samples for discriminating between members of Co
and "nearby" members of e*. For the case k = 1 the prospect that si would
contribute almost nothing to the power of Qln is not very attractive!
One procedure which might suggest itself is to choose X so as to maximize

k

(6.3) E [Pt(X, h) -pil.
i =O

This solution, however, neglects the direction of the vector

(6.4) po(X, h) - po, p1(X, h) - pi, ... , pk(X, h) -Pk
which is an important matter on account of the dispersion among the eigen-
values of the covariance matrix II aiij defined in (4.4).
The problem of properly controlling the direction of the vector can be handled

by selecting the value of X which maximizes the quantity
k

(6.5) k= E a i[ps(X, h) - pi][pj(X, h) - pl.

The structure of Q* is identical with that of Qkn as given in (4.8) except that
(si - npi)/v4/ is replaced by [p2(X, h) - pi], which, as will be seen in (4.1), has
the value (A2/2)pifi, where

(6.6) f, = [i(i- 1) -2i(i + 1)t + (i + 1)(i + 2)t2]

and, as before, t = X/(1 + X).
Thus, we have

Q*=A4 pj +
2 +/ 1,

(6.7) Qk =4L[Jt + 2(1 + X)Pki
where

k
a = E pifi(i - k - 1),

(6.8) 0

= [X(1 + X)]1/2 E pifi.
0

For the case k =0, we find that X = 2 maximizes Q*1, which is the same value
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of X which, as we pointed out earlier, maximizes pi(X, h) - pi and also maxi-
mizes the variance of so.

For the case k = 1 the value of X which maximizes pi(X, h) - pi is 1.88 (to
two decimals). The problem of determining the value of X for k > 2 requires a
considerable amount of computation and this remains to be done. It is con-
jectured that these values of X would lie in the interval (2 [ .1). In actual ap-
plications of Qkn values of k not exceeding 2 or 3 would probably be sufficient
for practical purposes.
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