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1. Summary

We consider estimation of the finite dimensional real parameter « from inde-
pendent identically distributed observations on a generalized random variable
with density discontinuous in the parameter on a set which depends on the
parameter. We assume that certain regularity conditions are met; some of these
will be explicitly stated, but many will not. These conditions are merely to
insure that the approximations made are valid. Subject to these conditions, we
show that hyper-efficient estimators, among them the maximum likelihood
estimator, exist, and that asymptotically the estimation problem is equivalent
to that for a nonstationary process with possibly multidimensional ‘time” and
unknown center of nonstationarity.

The inference problem for the process is treated from the standpoint of the
likelihood function, a method which has not been used as much as it should be.

2. Reduction to the asymptotic problems

Specifically, we consider the following problem: Let z = (y, 2), where y is
k-dimensional, and let R(a) be a region in k-dimensional Euclidean space. We
assume that the density is given by
(1) f(z, 6, 0) = g(x, 0, a), Yy € R(a),
) f(z, 6, a) = h(z, 6, o), y & R(a).
We do not assume that 8 or z are finite dimensional. This density is with respect
to dy X du(z). From now on we shall assume all approcimations are valid.

One classic example is the case of the rectangular distribution with one or both
endpoints unknown. Another is that of the endpoint of the exponential distribu-
tion. In both of these cases it is well known that the extreme order statistic or
statistics are the maximum likelihood estimators and are hyperefficient.
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The first nontrivial case considered was by Chernoff and Rubin [1]. In
this paper y is one dimensional, « is one dimensional, and z is trivial. Also
R(a) = (—, ). They showed that the maximum likelihood estimate and some
related estimates are consistent and have an asymptotic variance O(1/n?). They
also reduced the problem of computing the asymptotic distribution of the esti-
mates obtained to the distribution of a corresponding function of a stochastic
process. Breakwell and Chernoff, in some unpublished memoranda, obtained the
asymptotic distribution of those estimates. It was observed that the mean
is O(1/n).

Since the mean is of the same order as the standard deviation, the question
arises as to whether the maximum likelihood estimate is even asymptotically
sufficient. This is not so, and in [2], Rubin considered the asymptotic estima-
tion problem.

That there should be a close relationship between the inference problem for
one-dimensional random observations and for Poisson processes is not as sur-
prising as would seem. If we assume the number of observations has a Poisson
distribution, the number of observations in an arbitrary set will be a Poisson
variable, independent for disjoint sets, and hence will form a Poisson process.
No great use has been made of this fact for inference purposes, and in most
cases it will not be of great importance.

The special example used in [1] is very well suited to illustrate this point. In
that example, g(z) = 8 and h(z) = ¥ on (0, 1), and O otherwise. Then if the
number of observations is Poisson with mean A, and if 2’ = Nz — «), the result-
ing process will have rate 8 on (—Aa, 0) and rate v on (0, A\(1 — a)). Intuitively
the estimation of the actual O of such a process should not depend heavily on
the tails, and so should be asymptotically independent of X; also it should be
asymptotically independent of the estimates of 8 and y. Thus the asymptotic
distribution of the estimate of « should have a scale factor of 1/, and so should
be hyperefficient, and also the large sample problem is approximately reduced
to that of the corresponding stochastic process.

Let us now examine our problem. We define

AN}
3) Mz, 6, a) = h(z, 0, @)
Let 8 and v be two possible values of @, and ¢, ¥ two possible values of 6. If
we consider the likelihood ratio of (¢, 8) to (¥, ¥), from a sample of size N
we obtain

(4) l(ﬁ, 7, ‘I’) = Hf(;:, 3:; 5;

_ g(z;, ¢, B) h(z:, ¢, B)
=eR@NRM 9(&: ¥, ¥) gr@®URM A, ¥, )

2, 6,8 ] MeadB)

2R ~R MZi, ¥, V) ek ~r® 9(Ti, ¥, V)
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Let us assume that the likelihood function is well behaved for observations
restricted to neither or both of B(8) and R(y). That is, we shall assume that

(5) 1B, x, v, x) = L(B, v, 0B, v, x),
where [; is the contribution of the terms in (4) with z; in neither or both of R(8)
and [ is the contribution of those z; in exactly one.

Let M be the number of the z; entering in l.

(6) l(ﬂ, X7, X) = l3(M, ﬂ, v, X)ll(ﬁy Y, X'M)h(ﬁ; v, X|M))

where [; is the likelihood ratio of M and the other terms are the conditional
likelihood ratios. Let capital letters denote the logarithms of the corresponding
quantities with small letters. Then if suitable regularity conditions are satisfied,

(M L, o x|M)
=N-M"L Vi — ) — é (N = M) Wi — a)(§ — o))

for ¢ near a, x near 6, where the V; have a limiting distribution and W,; have
probability limits as N becomes large. Now if we can show that

(8) L3(M)§y ayX)+L2(§-; O!,XIM) <A—BNZ|§‘1’_“"[’

for { near a and x near 6, where A has a limiting distribution and B is some posi-
tive constant, L, can be ignored. In fact, in [1] much weaker conditions than (7)
were used. The proof of (8) will be given here only asymptotically, (that is, for
the stochastic process approximation), but it can be carried out as in [1]. The
remainder of this section will be devoted to the asymptotic reduction of the
likelihood function to a stochastic process.

Let us take, as an example, the following generalization of the case of Chernoff
and Rubin. Let y and « be one dimensional, R(a) = (—=, a), and assume that g
and h are continuous in y and o uniformly in z and 6. These conditions are
unnecessarily restrictive, but will serve to clarify the situation.

Then,

9) 9@z, x, §) ~ B(2),
(10) h(z, x, §) ~ ¥(2),
(11) Az, x, §) ~ log B(2) — log v(2) = A*(2).

As in [1], we shall assume that 8 and v are both nonzero. It is clear that, by
continuity, the general nature of the results must remain valid. However, tech-
nical difficulties occur which have not yet been adequately treated. Suppose
a < ¢. From (8), we may take { = a + r/N. Then under «, the joint distribu-
tion of the numbers w; of the z with y between « and { and z € S; is multi-
nomial with means

(12) mia) = [ [h@, x, @) du(a) de
S:

and, under ¢, k is replaced by g. The likelihood ratio of these distributions is
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% _ 1 — Z m’(tz N — Zw; m‘gsz wi
= v e =[TEmG ] (E)"
As N — » with r fixed and the S; shrink to sets on which A is nearly constant,
we obtain

(14) LG 00 ~ T 4G) = 7 [ [86) — v()] du(a).

a<yi
A similar argument holds if { < «, where the sign of the sum is reversed, as
in [1], equation (41).
Now suppose we consider a random measure m on (—«,®) X Z, with
m(E) Poisson with mean u(E) and independent for disjoint E and u(E) =

f B(z) du(z) dyfor E C (—o, p) X Z and Bisreplaced by v for E C (p, ©) X Z.
Then as in [2], the likelihood ratio of p + 7 with respect to p is given by
15)  Aptre) = T A% -7 [ [86) - v@)] due),

p<yi<ptr

which is approximately the same as (14), and the appropriate remarks apply.
Furthermore, the distribution of L is asymptotically the same as that of L*.
This can still be somewhat simplified. If we set

. = 8@,
(16) el = +G)
then (15) becomes
(17) Do+ne) = T g—7[(—1)d)
p<yi<p+r

This corresponds to a separable process with independent increments with char-
acteristic function per unit interval

[ [ = Der — in(er — 1)] dv(a), y <o
(18)
[ [em = 1) = iner — D] dv(a), y >
The condition that we started with a finite sample size implies that
(19) [ e+ 1o <.

However, the sample size might be infinite, but the conditional sample size
given z is finite. In this case the condition on » can be written in many ways;
one is

(20) [ (672 — 1) du(g) < .

Now let us consider the multivariate case. First let us look at an example.
Let the range of y be the unit disc, z be trivial, « be the-product of the unit circle
with the open interval (0, 1), and 6 the open interval (0, 1). Let R(a) be the
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ellipse with major axis 2 and minor axis 2a,, with center at 0 and major axis in
the direction a;/2.

Let
(21) 9(x, 0, @) = fi(6, ‘7‘)f2(yg + y%, 0),
(22) h(x7 8, a) = 116, a)f:*(y% + yg) 0),

and let us assume that f; and f; are uniformly integrable and uniformly con-
tinuous. Then the regularity conditions are satisfied.

Again the likelihood ratio depends mainly on the observations falling in one
of the regions, and not in the other. Let us assume, as in [1], that we employ a
consistent estimate of 8. Now if N(¢{ — a) = r, the number of observations in
R(¢) and not in R(e) with 7 + ¥} € S will be approximately Poisson with mean

(23) N j h(z, 0, @) de
[R®) ~R(@)iNS

under o and g instead of A under {. Also the numbers in disjoint regions are
asymptotically independent. Intuitively, the point of the boundary correspond-
ing to a point in R({) ~ R(a), which in this case can be taken to be the nearest
point on the boundary at the same distance from the origin, now enters the
argument.

We can now consider the general case. As remarked previously, certain dif-
ficulties occur in the passage to the limit. We shall ignore this problem. To avoid
difficulties with infinities, let us define

_ g(z, 0, @) .
(24) §2,6,0) = ) ¥ bz, 0, @)

Now consider Es = {x:: §(x,0, @) € S and y, € R({) ~ R(a)}, and Fg =
{x:: £(xs, 0, @) € S and y; € R(a) ~ R(})}. The number of observations in Eg
is approximately Poisson with mean

N f h(z, A, @) dy du(2) under a, |
£18N[RE) ~R(a)]X Z

(25)
N / 0, A, ¢) dy du(?) under ¢,
£1SN(RE) ~R(@)]X Z

with corresponding expressions for the case of F. With r = N({ — «) fixed,
these expressions approach a limit which is positively homogeneous in 7. Thus
the distribution function of L* corresponds to a separable process with multi-
dimensional time.

Suppose now that the boundary BR(a) of R(e) is such that a point in the
neighborhood of it can be expressed in the form (u,v), v & BR(a), and suppose
that R(¢) is such that

(u,0) ERE) ~R(c) if uEQE —a) and 0<v = du(y, ¢ — o),

26
(26) (4,9) ER(@) ~RE) if uEQ{—a) and 0>0v = ¢o(y,{ — ).
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Suppose further that N¢;(u, n/N) approach a limit y:(u, n) and also Q:(6, n/N)
converge to Vi(n), and ¥1(ur — 1) = ¥2(u, 1), Vi(—n) = Va(n).

Let dm(u) dv = dy be the representation of Lebesgue measure on the neigh-
borhood of BR(«) in the (u, v) coordinate system. Let 7¢ = N({* — a). Then the

number of observations in E: N --- N EZ% is asymptotically Poisson with mean
(27) [ i, 0), 2], 0, a min a(u, %) dm(u) du(z),
U 1
where
(28) U = O Vi) NES) N BR() X 2,

if (27) is continuous at S. The reason for this latter restriction is that, loosely
speaking, a ‘“large’”” number of points can move in and out of S by a slight change
of parameters if it is not met. A similar expression holds for F. The asymptotic
independence of disjoint sets completes the description of the asymptotic reduc-
tion to the process, which otherwise proceeds as in the univariate case. The
details are left to the reader.

Another way of looking at the reduction is as follows. In the neighborhood
of any particular point on the boundary, the movement of points in and out
of R(¢) as ¢ varies from a depends essentially on a linear function of . Thus
the resulting likelihood process is a continuous convolution of one-dimensional
processes.

3. Description of the stochastic process

Let us first describe a general process with independent increments and n-
dimensional time. For convenience the notation used in this and the following
section is independent of that of the preceding part. Since the process is to have
independent increments along each line,

(29)  log E{eNX®-Xw1
= ta(f, WA — %ﬁ(t, w)A? + f [e — 1 — iNf(#)u(dz, ¢, u).

This can be looked at, in the usual manner, as a convolution of a Gaussian
process with a continuous convolution of Poisson processes. Let us for the
moment consider only the two Poisson processes with means 1 and —1. In
this case

(30) log E{eNXO-X@1} = a(t, u)(e™ — 1) + b(t, w)(e=™ — 1).

Some inequalities can be obtained, but the joint distribution cannot be obtained
from these data. Let us consider, however, a set of the processes introduced by
consideration of (27). Let a function ¢ be given on E, X W, linear on E,, and
let » be a measure on W. We can obtain a stationary generalized Poisson process
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as follows. Let F be a finite subset of E.. For each nonempty subset G of F,
define

v(G) = / [min* ¢(z, w) — max* ¢(t, w)]*+ dv(w),
t€q tE@

31)
5(G) = / [min* {—e(t, w)} — max* {—(f, )} 1* dv(w),
tcaq tEQ

where the superseript + makes the expression 0 if it is negative or undefined.
Let g(@), (@) be independent Poisson variables with means v(G), 8(G) respec-
tively. Then set

32) X0 = X g(@) — h(@).
teqd

In the one-dimensional case, this gives the general difference of two Poisson
processes, and, in fact, W can be taken to consist of two points, one for each
process. We shall consider stationary processes which are infinite convolutions
of these processes, with possibly a Gaussian component.

The processes we have given have another description which is rather in-
teresting. That is, we can look at the process as a continuous convolution of a
one-dimensional process, the convolution being over the space of linear func-
tionals. As two proportional linear functionals combine into one, this integration
is over proportionality classes of linear functionals.

Can we now get an interpretation of the Poisson component for this process?
If we attempt this, we obtain precisely the previous formulation. In fact, each
jump corresponds to one linear functional. We thus obtain a Poisson distribu-
tion of the number of jumps in a given size range lying in a given set.

The location of a given jump can be used to supply a precise value to the
arbitrary constant of proportionality by having the linear functional take the
value 1 at the jump, if desired. We shall not use this fact.

Another consequence of this approach is that we can consider a nonstationary
process as a convolution of nonstationary processes. If the process is to be locally
stationary except at 0, the only difference is that a constant of proportionality
must be inserted into the right side of one, or both, lines of (31). This type of
process, with no Gaussian component, corresponds precisely to the problem
at hand.

4. Inference about the point of nonstationarity

As we can consider the process as the convolution of one-dimensional processes
plus a Gaussian term, all of which are independent, we can obtain the likelihood
ratio by an investigation of the one-dimensional case together with a considera-
tion of the Gaussian part.
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In the one-dimensional case, let ¢ be the point of nonstationarity, and let

- 1 Elog E{eNX0-X®)
= o\ — %aw + / [ — 1 — iNf(z)] du(z), t>¢
(33)

: 1 . log E{eNx®-x0)

= 6\ — %Tz)\z + / [e* — 1 — iag(x)] dv(z), t <&

Let us compute the likelihood ratio of the point # of nonstationarity to the
point £. We may assume £ < %. Then the increment process for ¢ < ¢ and ¢ > 9
has the same distribution under ¢ and #, so only the process between £ and 7 is
relevant. Under each of £ 5 the process is stationary there. An easy considera-
tion (see, for example, [3]), shows that a sufficient statistic for a stationary
process over a finite interval is the sequence of its jumps (which can be ordered,
for example, by the magnitude of the jump, the locations of the jumps being
unimportant), the variance (which can be estimated exactly with probability
one) of its Gaussian component, and its increment over the interval.

The inference problem can be trivial, that is, £ can be computed with prob-
ability one. While manipulating the process, we shall impose any condition we
find necessary to prevent this.

Thus the first consideration for the problem to be nontrivial is that ¢ = 7.
Next, the number of jumps whose sizes are in S is Poisson with mean (n — £)u(S)
under £ and mean (n — £)»(S) under 5. Let

dv
34 T PE)

First consider u¢—1{0}. This is the probability per unit time that a £-admissible
jump will occur under ¢ which cannot occur under 5. Obviously the likelihood
ratio will be 0 if such a jump occurs. Now if u¢=2{0} = », there will be such a
jump in every interval to the right of ¢ with probability one, and in no interval
to the left of ¢ with probability one, if £ is the true value. Note that any test of &
against 7 has constant power on (—, £] and [4, ). Thus, we may assume
that u¢—1{0}, and v¢—1{1}, are finite.

We shall next show that (¢ + »)¢~(4) < « if 1/2 is not a limit point of 4 for
the inference problem to exist. If this measure is infinite, say (u + »)¢~}(B) = =,
BC [p, 1), p > 1/2. Now ¢1(B) = U 8,, with u(S,) < « for all n, S, E Sp41.
For the case in which B has one point, see [2].

Let Y, be the number of jumps whose sizes are in S,. Now under £,

(35) E(Ya) = Var (Ya) = (1 — §)u(Sa) 2 p(n — H (1 + »)(8a)
so that for r < p,
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(36)
_ NS (n — &)[p(Ss) — r(u + »)(Sa)]?
P{Yn 2 r(ﬂ ‘E)(ﬂ' + ),(bn); 2 (1' _ E)[M(Sn) _ 1'(# + V)(Sn)]2 4 ﬂ(sn)

(=8 — 1%+ )(S)
T =80 -1kt (S) +1
Thus for large n, we have Y. = (n — £)(p — €)(u + »)(S,) with probability
close to one under £, and similarly Y. = (1 — p 4 €)(n — £) (s + »)(S») with
probability close to one under 7, so that £ and »n are distinguishable with prob-
ability one. It is not difficult to extend the argument to show that the value of ¢
can be inferred with probability one.

We are now in a position to compute the contribution to the likelihood func-
tion of the jumps. If z; is the 7th jump in some order, a restatement of (17)
yields

1

6 L=Tlogr - [ @u- 1 i+ e,
i 0

The sum should be taken negatively for n < &.

Two remarks are appropriate in connection with (37). First, it takes into
account correctly the possibility that ¢ = 0 or ¢ = 1. Observe that if ¢ = 0
or 1, then L = —o or o, respectively. However, our previous discussion about
this possibility shows that ¢(x) = 0 can only occur for x > £ and ¢(x) = 1 for
x < £, where £ is the true value, which only restricts the range of n. Second, the
separate terms on the right side need not exist. Let us write

(38) LJ = Z LJn,

where

39) Lm= ¥ log—2@___p / @ — 1) du + »é-'(w),
Sn

\

sG@rES. 1 — ¢(x:)

and 1/2 is not a limit point of S, for any n.

By our preceding observations, each Ly, exists with probability one. Also the
Ly, are independent random variables. We may select the S, to suit our con-
venience. Consequently, set S; = [0,1/3) U (2/3, 1]. Then for n > 1, if £ is
the true value,

(40)  E(Lsn) = (n— &) f log 7 10 o ¢TI w) = (2w — 1) d(u + »)¢7 (),
SII
w \? -
(41) Var (Lyu) = (n — §) S/ (log1 — w) dp ¢~ (w).

Both integrands are comparable with (2w — 1)2d(u + »)¢~! on [1/3, 2/3]
and the integrand in (40) is negative. A modification of the argument used to
show that (u + »)¢™! is finite away from 1/2 shows that
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(42) i @e = D2+ e < =,
and hence
(43) [, @w =12 ds + »éw) < .

If (43) holds, all our previous conditions are satisfied. Since (42) then implies
that > .1 E(Ls.) and X.,s1 Var (L;,) are finite, the sum in (38) exists with
probability one.

We have deliberately left f and g vague. We shall now show that we may
take fdu = g dv, and that after that is done, the inference problem is trivial
if @ # B unless ¢ > 0.

The usual procedure is to take f to be fo = z/(1 4+ x?). [‘urthermore the con-

dition usually given on p is that f x2/(1 4 2?) du(xr) < <. Since this also holds

for »,

(44) /1_T_zx2d(#+y)<oo,

Now clearly f can be taken to be any function with f — f; integrable [u], and
hence it is sufficient that f — f; be integrable [u + v]. Let f = 2fy¢. Then

X

1+ a2

It easily follows from (43) and (44) that f — f, is integrable [u -+ v]. Similarly we
may take g = 2(1 — ¢)fo. Then since du = (1 — ¢) d(u + v), dv = ¢ d(u + »),
we see that

(46) fdp = g dv.
Now let [f(x), g(x)] be [f(x), g(x)] if |z| £ ¢ and (0, 0) if |x| > e Since f — f.
and g — g. are integrable [u + »], and also / (f—Ff)dp = f (g — go) dv, we

could have used f. for f and g. for ¢ without altering the equality or inequality
of a and B. If we break the process into the two independent parts, corresponding
to the jumps of size greater than e in absolute value and the other part Y., we
find that E«(Y.) — E,(Y.) approaches (3 — £)(« — B8) and the variance of Y.
approaches ¢%(n — £) under both £ and 7.

Consequently, if ¢ = 0 and a # 8, we may distinguish ¢ from n with prob-
ability one. If « > 8 and ¢ > 0, we may obtain the logarithm of the likelihood
ratio of the Gaussian component in the usual manner as

(47) Lo = B52[ Xotw — Xatp — St 0]

(45) f@) = folx) = [2¢(z) — 1].

We may combine (37) and (47) to obtain the logarithm of the likelihood ratio,
and we see that this is a process with independent increments and characteristic
function
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tl glogE{ei*L("E)} = _( - ) (N2 4 1))
6 \* .
+/{[(1—_—¢> —1](1—¢)—(2¢—1)Z>\}d(#+V), t—£>0,
(48)
- thg B {e= M) = _%_U—O‘L (A2 — IN)

+ /{[(rf—d;)* =16 - @ = DiNpd+ ), (-t <0

These expressions need the appropriate interpretation if (u + »){0, 1} > 0. The
likelihood ratio process of the likelihood ratio process does not yield anything
new.

Suppose (¢ + »){0, 1} = 0. (We can obtain even better results if this is not
80.) Then under £, we have E[exp L(t, £)] = 1, but

—(t—g)[(ﬁz'%‘)i—/(l—wloglf(b

—(2¢—1)d(/4+1/):|’ [— >0,

49 E[L@ 5] =

_(2¢_1)d(#+y>], [—t<0.

.

These integrals might not exist; however, a failure of the integral to exist
would make the expectation —o in the usual sense. In any case, E;[L(t, £)] < 0.
Then by the strong law of large numbers, L(t, £) < A — B|t — & for all ¢,
where A is a finite number with probability one.

Similar results hold for the case of n-dimensional time. A rather interesting
result is that the likelihood ratio statistic only depends on the one-dimensional
marginal processes of the likelihood ratio process (not the original process). Note
that the likelihood ratio process will, if truncation might occur, be restricted
to a subset of K,..

It will frequently happen that one is interested in inference with an invariant
loss function. In that case there will exist an optimal invariant procedure which
consists of assuming a uniform a priori “distribution” on E, for £ This will give
an a posteriori distribution which has a density proportional to exp L(, &), for
any & in the range permitted by the 0 and 1 values of the ¢.

Note that this procedure is not the maximum likelihood procedure, even for
large samples. What is the effect of a sample of size N? It is to multiply the
parameters and measure of the processes involved by N, and thus to change
the scale by N. That is, the estimation procedure is hyperefficient, which we
have already seen in the discontinuity problem which leads to the inference
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problem. In the one-dimensional pure Gaussian case, the ratio of the variances
of maximum likelihood to the minimum variance estimate is 3.25, for an ef-
ficiency of 1.803 for the best estimate with quadratie loss function.

An interesting observation is that from the computational viewpoint the maxi-
mum likelihood estimate may be preferable because of the greatly increased labor
to compute the best estimate. This is so because the constant B above may be
quite small, causing the numerical computations to be extended over a con-
siderable range, and also because the integration of the likelihood function can
be computationally expensive. If the loss of the maximum likelihood estimate is
small, the increased efficiency of better estimates may not compensate for the
cost of computation.
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