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1, Introduction and summary

In the burst of new statistical developments that has followed the work of
Sir Ronald Fisher in introducing and popularizing methods involving exact
probability distributions in place of the old approximations, questions as to the
effects of departures from the assumed normality, independence, and uniform
variance have often been subordinated. It is true that much recognition has
been given to the existence of serial correlation in time series, with the resultant
vitiation of statistical tests carried out in the absence of due precautions, and to
some other special situations, such as manifestly unequal variances in least-
square problems. Wassily Hoeffding has established some general considerations
on the role of hypotheses in statistical decisions [21]. Also, there have been many
studies of distributions of the Student ratio, the sample variance, variance ratio,
and correlation coefficient in samples from nonnormal populations. (Some are
cited at the end of this paper.) These efforts have encountered formidable
mathematical difficulties, since the distribution functions sought cannot usually,
except in trivial cases, be easily specified or calculated in terms of familiar or
tabulated functions. Because of these difficulties, mathematics has in some such
studies been supplemented or replaced by experiment ([20], [38], [564], and
others); or, as in some important work, approximations for which definite error
bounds are not at hand have been used.

Practical statisticians have tended to disregard nonnormality, partly for lack
of an adequate body of mathematical theory to which an appeal can be made,
partly because they think it is too much trouble, and partly because of a hazy
tradition that all mathematical ills arising from nonnormality will be cured by
sufficiently large numbers. This last idea presumably stems from central limit
theorems, or rumors or inaccurate recollections of them.

Central limit theorems have usually dealt only with linear functions of a large
number of variates, and under various assumptions have proved convergence to
normality as the number increases. For a large but fixed number the approxima-
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tion of the distribution to normality is typically close within a restricted portion
of its range, but bad in the tails. Yet it is the tails that are used in tests of
significance, and the statistic used for a test is seldom a linear function of the
observations. The nonlinear statistics ¢, F, and r in common use can be shown
({91, p. 266) under certain wide sets of assumptions to have distributions ap-
proaching the normal form, though slowly in the tails. But in the absence of a
normal distribution in the basic population, with independence, there is a lack
of convincing evidence that the errors in these approximations are less than in
the nineteenth-century methods now supplanted, on grounds of greater accuracy,
by the new statistics.

In tails corresponding to small probabilities the behavior of ¢, », and various
related statistics may be examined with the help of a method of tubes and
spheres proposed in [10], [11], and [12], and applied by Daisy Starkey in 1939
to periodogram analysis [57]; by Bradley [4], [5], [6] to ¢, F, and multivariate T';
by E. 8. Keeping [29] to testing the fit of exponential regressions; and by
Siddiqui [565], [56] to the distribution of a serial correlation coefficient.

The distribution of the Student-Fisher ¢, as used for testing deviations of
means in samples from various nonnormal populations, and in certain cases of
observations of unequal variances and intercorrelations, will be examined in the
next few sections, with special reference to large values of ¢. New exact distribu-
tions of ¢ will be found for a few cases. A limit for increasing ¢, with wide ap-
plicability, will be obtained for the ratio of two probabilities of ¢ being exceeded,
one probability for the standard normal theory with independence on which the
tables in use are based, the other pertaining to various cases of nonnormality,
dependence, and heteroscedasticity. This limit depends on the sample size, which
as it increases provides a double limit for the ratio. This double limit, for ran-
dom samples from a nonnormal population, is for many commonly considered
populations either zero or one. After considering the accuracy of the first limit
and exact distributions of ¢ in certain cases of small samples, we obtain the condi-
tions on the population that the double limit be unity, a situation favorable to
the use of the standard table. The nature of the conditions leads to certain re-
marks on proposals to modify the ¢-test for nonnormality.

The marked effects of nonnormality on the distributions of sample standard
deviations and correlation coefficients will then be shown. The paper will con-
clude with a discussion of the dilemmas with which statisticians are confronted
by the anomolous behavior in many cases of statistical methods that have be-
come standard, and of possible means of escape from such difficulties.

2. Geometry of the Student ratio and projections on a sphere

To test the deviation of the mean Z of observations z;, --- , 2y from a hy-
pothetical value, which is here assumed without loss of essential generality to
be zero, the statistic appropriate in case the observations constitute a random
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sample from a normal population, that is, are independently distributed with the
same normal distribution, is
ZN2

(21) t = s )

where s is the positive square root of

_ Sz —7)* _Sx*— Nz* Sz*—z8x
B n - n - n

2.2) s?

where S stands for summation over the sample, Z = Sz/N,andn = N — 1. We
shall continue to adhere to Fisher’s convention that S shall denote summation
over a sample and Y other kinds of summation.

In space of Cartesian coordinates x;, - - - , Zx let O be the origin and X a ran-
dom point whose coordinates are the sample values. Let 6 be the angle, between
O and 7 inclusive, made by OX with the positive extension of the equiangular
line, that is, the line on which every point has all its coordinates equal. It will
soon be shown that

(2.3) t = n''? cot 6.

We deal only with population distributions specified everywhere by a joint
density function. This we call f(xy, 22, - - - , zx). On changing to spherical polar
coordinates by means of the N equations z; = p;, where &, - -, &y are func-
tions of angular coordinates ¢, - - - , ¢v—1 and satisfy identically

(2.4) Sgg=8+- -+ =1,

while the radius vector p is the positive square root of

(2.5) pP=at+ - + 2k

the Jacobian by which f is multiplied is of the form J = p¥—1H(¢y, - - - , ¢n-1).
Thus the element of probability is

(2.6) f@y, -+, ax) day - - - daw = flpky, - -+, pEn)p" " dp dS,

wheredS = H(¢y, - -+, ¢n) d¢n, - - -, dew is the element of area on the unit sphere.

Let the random point X be projected onto the unit sphere by the radius vec-
tor OX into the unique point £ on the same side of O as X. The Cartesian coordi-
nates of ¢ are &, - - -, v, while

(@.7) Dy(® = [)" foks, -+, o)~ d,

in accordance with (2.6).

Any statistic that is a continuous function of the N observations, that is, of
the coordinates throughout a region of the n-space, determines through each
point of this region what Fisher has called an ¢sostatistical surface, on all points
of which the statistic takes the same constant value. If, as in the cases of ¢, F,
and r, the statistic remains invariant when all observations are multiplied by
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any one positive constant, the isostatistical surface is a cone with vertex at the
origin, or a nappe of such a cone. The probability that the statistic lies between
specified values is the integral of (2.7) over the portion of the unit sphere between
its intersections with the corresponding cones. .

Since ¢ is unaffected by the division of each z; by p, and therefore by its re-
placement by the corresponding &;, we may rewrite (2.1) and (2.2) in terms of
the £; and then simplify with the help of (2.4). We also use the notation

(2.8) a=8t=86+ - + &
and obtain
2.9) t = a(N — a®)~ V(N — 1)V2,

Thus the locus on the unit sphere for which ¢ is constant is also a locus on which
St has the constant value a. This locus is therefore a subsphere of intrinsic di-
mensionality N — 2 = n — 1, that of the original unit sphere beingn = N — 1.

The distance between O and the hyperplane (2.8) is aN—'/2, and also equals
cos 0. From these facts (2.3) easily follows.

The probability that ¢ is greater than a constant 7, which we shall write
P{t > T}, is the integral of (2.7) over a spherical cap. In the case of independent
observations all having the same central normal distribution, a case for which
we attach a star to each of the symbols f, D, and P already introduced, we
readily find

f*(xl, ey xy) = (2m) V% —312/2’

(2.10)
% = (2r)N/2 / N e="2pN-1dp = 1 ~Ni2] (E),
o 2 2
independently of &.

The constancy of probability density over the sphere in this case, with the
necessity that the integral over the whole sphere must in every case be unity,
provides a ready derivation of the (N — 1)-dimensional “area’” of a unit sphere,
which is at once seen to be D¥™', that is

22

r(3)

This is one of several contributions of statistics to geometry arising in connec-~
tion with contributions of geometry to statistics.

The N-dimensional “volume” enclosed by such a sphere is found by integrat-
ing with respect to r from zero to one the product of (2.11) by »¥—1, and therefore
equals

(2.11)

e
)

Evaluation of the probability of ¢ being exceeded in this standard normal

(2.12)
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case is equivalent to finding the area of a spherical cap, a problem solved by
Archimedes for the case N = 3. A geometrical solution in any number of di-
mensions may be obtained by noticing that the subsphere of N — 2 =n — 1
.dimensions considered above for a particular value of ¢ has radius sin 8 and that
its “area’ is proportional to the (n — 1)st power of this radius. By considering a
“zone” of breadth dé obtained by differentiating (2.3), the Student distribution
may be reached in the form obtained by Fisher [15] in 1926 by quite different
reasoning and for a broader class of uses,

n

2.13)  g*(t) dt = (em)=V°T [% (n + 1)] [r (5)]—1 (1 +

The integral of this from T to « is the probability P{t > T}. This must of
course be doubled to get the usual two-tailed probability.

2\~ +1/2
By,
n

3. Probabilities of large values of { in nonstandard cases

The probability P{¢ > T} when T > 0 is the integral of the n-dimensional
density Dy(£) over a spherical cap. This cap is the locus of points on the unit
sphere in N-space whose distance from the equiangular line is less than sin 6,
where T = n'/2cot @ and 0 < 6 < /2. Central to such a cap is the point A on
the unit sphere at which all the Cartesian coordinates are equal and positive,
and are therefore all equal to N='/2. The projected density (2.7) thus takes at A
the value

(3.1) Dy(A) = ];“’ f(oN-Y2, ...  pN-V2)pN—=1 gy,

A similar situation holds at the point A’ diametrically opposite to A, whose
coordinates are all N—V2,

We consider the approximation to P{t < T} consisting of the product of the
n-dimensional area of the cap centered at A by the density at A.

If corresponding to two different population distributions both the Dy func-
tions are continuous, the limit of the ratio of these as T increases, if it exists,
equals the limit of the ratios of the probabilities in the two cases of the same
event ¢ > T'. This also equals the limit of the ratio of the two probability densi-
ties of ¢ when £ increases, provided that this last limit exists, as L’Hospital’s
rule shows.

We are particularly concerned with comparing P{t > T} for various popula-
tions with the probability of the same event for a normally distributed population
with zero mean and a fixed variance. Using a star attached to P or D to identify
this case of normality, we introduce for each alternative population distribution
for which the indicated limits exist the following notation:

(3.2) Ry = lim DU>T) _ Dv(4) _ 20%2Dy(4)

1—e Pt > T} ~ DX(A) ~ | (%/’)
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in accordance with (2.10). By L’Hospital’s rule,

iy 90
@ i 5y
where ¢(¢) is the probability density of ¢ in the nonstandard case and g*(¢) is
given by the standard ¢ density (2.13). We also put
(3.4) R = lim Ry.
Now

If Ry is less than unity, a standard one-tailed #-test of significance on a suf-
ficiently stringent level, that is, corresponding to a sufficiently small probability
of rejecting a null hypothesis because ¢ exceeds a standard level given in tables
of the Student distribution, will in samples of N overstate the probability of the
Type I error of wrongfully rejecting the null hypothesis. If Ry > 1, the probabil-
ity of such an error is understated. Such biases exist even for very large samples
if R 5 1.

Negative values of t may be treated just as are positive ones above, replacing
A by the diametrically opposite point A’, with only trivially different results.
For symmetrical two-tailed ¢-tests, Dy(A) is to be replaced by its average with
Dy(A").

In random samples of N from a population with density f(x), that is, with
independence, (3.1) takes the form

(85)  Dx(4) = [ [f(eN-)1¥p"-1dp = NV [ * [[(2)]¥e¥ de.

Substituting this in (3.2) yields
(3.6) Ry = 2(xN)¥" [r (%’)T / " @ de.
0

4. Samples from a Cauchy distribution

When the Cauchy density
(4.1) f@) =11 + 25~

is substituted in (3.5) the integral may be reduced to a beta function by sub-
stitution of a new letter for 22/(1 + 2%), and we find

N2 _ (N
- w2 1G)

T'(N)

For large samples we find with the help of Stirling’s formula that Ry approxi-
mates

ve (N
(4.3) 272 (5 ’

™
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and thus approaches zero. For N = 2, 3, 4, the respective values of Ry are
(4.4) 6366, 4134, .2703.

The fact that these are markedly less than unity points to substantial over-
estimation of probabilities of getting large values of ¢ when a population really
of the Cauchy type is treated as if it were normal.

A desirable but difficult enterprise is to provide for these approximations,
which are limits as ¢ increases to infinity, definite and close upper and lower
bounds for a fixed ¢. This can be done for samples of any size from a Cauchy
distribution by a method that will be outlined below, but the algebra is lengthy
except for very small samples. The case of the double exponential, or Laplace,
distribution is more tractable, as will be seen later.

For N = 2 the exact distribution of ¢, which then equals (z; + x2)/|z1 — 2|,
is readily found directly by change of variables in f(x;)f(x.) and integration. On
the basis of the Cauchy population (4.1) this yields

-1 4 1\?
(4.5) 27t log (t—— 1) dt.

To prove this, we observe that |t| has the same distribution as |u|, where
u = (x+ y)/(x —y) and the joint distribution of = and y is specified by
(1 + 23)7'(1 + y?) ' dx dy.

Substituting z = y(u + 1)/(u — 1), de = —2y(u — 1)~*du, we have for the
joint distribution of y and u,

2ly| dy du )
(1 + y)[(w — 1D + (v + 1)%?]

In spite of a singularity at the point w = 1, y = 0, this may be integrated with
respect to y over all real values. The result, when ¢ is substituted for u, is (4.5).

The density given by (4.5) is infinite for ¢ = X1, but is elsewhere continuous,
and is integrable over any interval. Upon expanding in a series of powers of ¢!
and integrating, it is seen that the probability that any ¢ > 1 should be exceeded
in absolute value is given by the series

@4.7) 4(tl+ 1, 1 )

72 3 " 5

(4.6)

which converges even for { = 1, and then takes the same value 1/2 as the cor-
responding probability for ¢ = 1 based on a fundamentally normal population,
for which the distribution (2.13) becomes

dt
(4.8) A0
The formula 3_7 n—2? = #2/8 used to sum (4.7) may be derived by integrating from
0 to 7/2 the well known Fourier series sin x + (sin 3z) + (sin 5z)/5 4 - - - = n/4.

Expansion of (4.8) in powers of ¢~! and integration gives for the probability
corresponding to (4.7),
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2/1 1 1
The ratio of (4.7) to (4.9), or of (4.5) to (4.8), approaches 2/7 when ¢? increases,
agreeing with the result for N = 2 in (4.4), but exceeds this limit for finite
values of .

The five per cent point for ¢ based on normal theory, that is, the value of ¢
for which the probability (4.9) equals .05, is 12.706. When this value of ¢ is sub-
stituted in (4.7) the resulting exact probability is found to be .0218. The ap-
proximation obtained by multiplying R, from (4.4) by the originally chosen
probability .05 is .0318.

The true five per cent point when the underlying population is of the Cauchy
form is 8.119.

When we go farther out in the tail we may expect a better approximation in
using the product of R, by the “normal theory” probability to estimate the
true “Cauchy’’ theory probability, and indeed this is soon verified: the one per
cent point from standard normal theory tables for » = 1, that is, N = 2 in the
present case, is 63.657. The approximation to the true Cauchy probability ob-
tained on multiplying the chosen ‘“normal theory” probability .01 by R, is
.006366. The true value given by (4.7) is .006364. Thus the approximations by
the R, method are rough at the five per cent point, but quite satisfactory at the
one per cent point or beyond.

b. Accuracy of approximation. Inequalities

Various inequalities may be obtained relevant to the accuracy of the approxi-
mations that must usually be used to estimate the probabilities associated with
standard statistical tests under nonstandard conditions.

For the Cauchy distribution and others similarly expressible by rational func-
tions, and some others, the theorem that the geometric mean of positive quan-
tities cannot exceed the arithmetic mean can be brought into play. Thus when
the n-dimensional density D(f) on the unit sphere is specified by substituting
in (2.7) for f the product of N Cauchy functions (4.1) with different arguments,
the result,

(5.1) DE =¥ [T+ ) - (L+ )] d,

in which St2 = 1 and S¢ = a, can be shown to exceed D(4), in which each &2
in (5.1) is replaced by N—* and which is given by (3.5). This readily follows from
the fact that the product within the square brackets in (5.1) is the Nth power of
the geometric mean of these binomials, and is therefore not greater than the
Nth power of their mean 1 + p?/N. Since the density on the sphere thus takes
a minimum value at A4, the estimate of the tail probability obtained by mul-
tiplying the area of the polar cap by the density at its center 4, equivalent to
multiplying the tail probability given by ‘normal theory” by the factors Ry
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given in (4.2) and (4.4), is an underestimate. A numerical example of this is at
the end of section 4.

Another kind of inequality may be used to set upper bounds on the difference
between the probability densities on the sphere at different points, and from
these may be derived others setting lower bounds. Consider for example samples
of three from a Cauchy population, and instead of (5.1) use the notation Dog.
This will be changed to Dig if £ is changed to a new value £] while & and &; re-
main unchanged. In relation to a new set of values £, £, & and the old set
&, &, &, we shall use D with three subscripts, each subscript equal to 0 if the
corresponding argument is an old £, or to 1 if it is a new &’. Now

(5.2
Diw — Do = 7¥(8] — &) .[ow [+ 2251 + p%D) -+ (1 + p%R)] 70" dp.

This difference is of the same sign as £ — £3. The integrand on the right is the
product of that of Doy by p?/(1 + p2%1%). This last factor is less than £ =2 for
all positive values of p. Thus we find

(5.3) |Dioo — Dooo| < ;—; — 1{Doco.

The equality holds only if ¢ = £ Put v = |£/£2 — 1|. Then
(5.4) [D1o0 — Dol = v1Dooo,

whence

(5.5) (1 — v1)Dwo = Dio = (1 + 1) Dow.

In the same way,

lDuo - Dmol = ’Yleoo, (1 - ’Yz)Dmo ZE D = (1 + ’Yz)Dmo,
(5.6)

[Dlu - Duol = ‘Y;',Duo, (1 - ’Yz)Duo £ Dy £ (1 + ’Ya)Duo-
Combining these results gives
(5.7 1 =) —v2)A — ¥9)Doo = Din = (1 4+ v1)(1 + v2)(1 + v3) Dooe,
and
(5.8) |Din — Doo| £ v1Dow + v2Dwo + vsDuo
< [+ 72(1 4+ 7)) + (1 + v2) (1 + v1)] Do
= [ + )@ + 7)1 + v5) — 1] Do

6. Exact probabilities for N = 3: Cauchy distribution

For samples of three or more from nonnormal populations the direct method
used for samples of two in section 4 leads usually to almost inextricable difficul-
ties. Another method, particularly simple for finding the portion of the distribu-
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tion of ¢ pertaining to values of ¢ greater than n, will be applied in this section
to samples of three from the Cauchy distribution, and in the next section to
samples from the double exponential. We continue to use what may seem an odd
dualism of notation, with N for the sample value and n = N — 1, in dealing
with the Student ratio, partly in deference to differing traditions, but primarily
because some of the algebra is simpler in terms of the sample number and some
in terms of the number of degrees of freedom.

It is easy to prove the following lemma, in which we continue to use the nota-
tion z; for the 7th observations, & = pziy2 =1, -+, N,p > 0,882 = 1,a = St

LemMMa. Ifa = nV? thenall &; = 0. On the other hand, if all£; = 0, thena = 1

If the first statement were not true, one or more of the £ must be negative;
then since the sum of the £ is positive, there must be a subset of them, say
El: "')21‘) with 1 <r <N: such that a<f+ - +Er;£%+ +$%<1
The maximum possible value of this upper bound for a, subject to the last condi-
tion, is #V/2, Since r is an integer less than N, this leads to ¢ < /2, which con-
tradicts the hypothesis. The second part of the lemma follows from the relations

= (S£)2 = St + 28t.£,, with S£2 = 1, and, because all the £ are nonnegative,
Stk = 0.

The Cauchy distribution (4.1) generates on the unit sphere in N-space the
n-dimensional density

L/ i
©.1) m®‘ﬂﬁ(uw5 (14 o)

This may be decomposed into partial fractions and integrated by elementary
methods. The process is slightly more troublesome for even than for odd values
of N because of the infinite limit, but the integral converges to a finite positive
value for every positive integral N. For N = 3 the expression under the integral
sign equals Sax/(1 + p%3), where

. g
©.2) " TE-—DE -8

and a, and a; may be obtained from this by cyclic permutations. Since

(6.3) /(; (1 + p%2)~'dp = 2_|£_\,
we find
(6-4) Ds(f) =95 \E l

When this sum is evaluated with the help of (6.2) and reduced to a single frac-
tion, both numerator and denominator equal determinants of the form known
as alternants, and their quotient is a symmetric function of the form called by
Muir a bialternant; this gives a form of (6.1) for all odd values of N. In the
present case we obtain after cancellation of the common factors,
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(6.5) Di(®) = 3 w[(] + eD el + 16D (&) + )

as the density on an ordinary sphere. This density is continuous excepting at
the six singular points where two observations, and hence two of the £, are zero.
At each of these six points, t = +1.

We shall use on the unit sphere polar coordinates 6, ¢ with the equiangular
line as polar axis, and 8 the angle between this axis and a random point having
the density (6.5). For samples of three, » = 2, and so we have from (2.3),

(6.6) t = 2Y2cot 6.

The element of area on the sphere is sin 6 df d¢. When this is multiplied by the
density (6.5), with the &’s replaced by appropriate functions of the polar coordi-
nates, and then integrated with respect to ¢ from 0 to 2, the result will be the
element of probability for 6, which will be transformed through (6.6) into that
for .

Let s, s, ys be rectangular coordinates of which the third is measured along
the old equiangular line. These are related to the old coordinates £ by an or-
thogonal transformation

(6.7) £ = 2 iy with ¢ =37V 1=1,2,3.

The orthogonality of the transformation implies the following conditions, in
which the sums are with respect to k from one to three:

(68) Z CriCr2 = 07 Z Cej = O) Z c%] = 1: .7 = 1v2'
The orthogonality also implies that

1
(6-9) C11Ca1 + C1aC2 = CuCa1 + €€z = CuCst + CroCaz = "'§'

On the sphere, whose equation in terms of the y is of course }_ y% = 1, the trans-
formation to the polar coordinates may be written

(6.10) #1 = sin ¢ sin 6, Y2 = cos ¢ sin 6, ys3 = cos 6.

The five conditions (6.8) on the six unspecified c,; are sufficient for the orthog-
onality of the transformation (6.7), so one degree of freedom remains in choos-
ing the ¢;;. This degree of freedom permits adding an arbitrary constant to ¢,
thus changing at will the point on a circle 6 = constant from which ¢ is measured.
In going around one of these circles, ¢ always ranges over an interval of length
2#. This degree of freedom will be used later to simplify a complicated expres-
sion by taking ¢z = 0.

We shall now derive as a single integral and as a series the probability
P{t = T} that the Student ¢ should in a random sample of three from the Cauchy
distribution (4.1) exceed a number T which is itself greater than two. We thus
confine attention to values of ¢ greater than two, and these correspond to values
of a greater than 2% agis seen by putting N = 3 and ¢ = 2Y2 in (2.9), which
specifies a monotonic increasing relation between a and ¢{. Then from the lemma
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at the beginning of this section it follows that all the observations and all the ¢
are positive in the samples with which we are now concerned, as well as in some
others.

The positiveness of the £ permits for the present purpose the discarding of the
absolute value signs in (6.5). The resulting cubic expression may, since

(6.11) G+ &+ & =aq
be written
(6.12) (a — &)(a — &)(a — &).
With the help of (6.11) and the relation, derived from (6.11) and S¢? = 1,
1
(6.13) & T bt + &6 = 3 (@® — 1),
the eubic (6.12) reduces to
(6.14) La(a — 1) — gk
With the new symbols
(615) Ur = Cralh + Cr2Y2, k= ], 2, 3,
the transformation (6.7) can be rewritten
(6.16) o= + 3V =y + g,
the last equation holding because solving (6.7) for y; gives
6.17) yi = 3Vt + £ + &) = 312,
From (6.15), (6.8) and (6.10) it will be seen that
(6.18) >u =0, Y ui =y} + ¥ = sin%0.
From (6.18), by reasoning analogous to that leading to (6.13), we find
(6.19) WUy + Usus + usyy = -—% sin? 6.
From (6.15),
(6.20) Uyl = ko?/? + kl?/%yz + kzylyé + kakg,
where

ko = cucaca, ks = c19CzeCar,
(621) k1 = cutncse + cucaciz + CaCucas,
k2 = c11CasC32 + CaCssCrz + Ca1C1oCa2.

In each term of &y, the first two factors may be eliminated with the help of (6.9),
which may also be written caci = —1/3 — cicje, Where 2,5 = 1,2, 3;¢ 5 j.
The linear terms thus introduced cancel out in accordance with the second of
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(6.8). The three remaining terms are each equal to k;. Thus k; = —3k;. Like-
wise, k2 = —3k..

At this point a substantial simplification is introduced by using the one avail-
able degree of freedom to make ¢;; = 0, thereby making k; and k; vanish. The
orthogonal matrix in which ¢;; is the element in the 7th row and jth column is
now

6—-1/2 __2—1/2 3—1[2
(6.22) 612 g-v2 g,
—2 X 6712 0 312

Thus ko = —2-123-%2 and k; = 0. From (6.20) we now find, with the help
of (6.10),

(6.23) wugs = ko(y? — 3y1y3) = ko sin® 8(sin® ¢ — 3 sin ¢ cos? ¢)
= 2-V23-3/2 gin3 § sin 3¢.
From (6.16), (6.18), (6.19), and (6.23) we find

(6.24) Eibaks = (g + m)(% + m)(g + us)
@ _a. o, —1/22-3/2 4in3 B
=ﬁ—asm 0 4+ 212332 5in? @ sin 3¢.

Substituting this in (6.14) and simplifying gives the expression that appears in
the denominator of the density (6.5) in the form

25a®
54
This may be put into terms of ¢ and ¢ alone by substituting in it the expres-
sions, derivable when N = 3 from (2.9) and (6.6),

(6.26)
@ =3U%2 + )Y, cosh =42+ )12  sing = 2U2 4 ¢)~u,

(6.25) — 24 %gin2g — 2-123-%2 5in? g sin 3¢.
278

The result is
6.27) 3-3122(4¢% — 3¢ — sin 3¢)(2 + £2)-%2,

and this equals the content of the square bracket in (6.5) when all the £ are posi-
tive, as they are for ¢ > 2.

In the probability element Ds(£) sin 6 d6 d¢, the factor sin 6 df may be replaced
by |d cos 68| from (6.26), that is, by 2(2 + #?)~%2 dt. Substituting (6.27) in (6.5)
and multiplying by the element of area as thus transformed we have as the ele-
ment of probability

(6.28) 33/2(27x%) (44> — 3t — sin 3¢)~1 d¢ di.

The probability element for ¢ when it is greater than two will be found by
integrating (6.28) with respect to ¢ from 0 to 2x. We put
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(6.29) w = 4% — 3¢,

and observe that

(6.30) w—1=(—1)(2t 4+ 1)? w+1=(0+1)2 — 1)

From the first of these relations it follows, since ¢ = 2, that w = 25, and there-
fore that the integral

(6.31) J= A * (w — sin 3¢)~1 do

exists. If the substitution ¢’ = 3¢ is made in this integral, a factor 1/3 is in-
troduced by the differential, but the range of integration is tripled, and we have

(6.32) J = ﬁ) " (w — sin ¢')-1 dg'.

This is evaluated by a well known device. For the complex variable z = exp (i¢’),
the path of integration runs counterclockwise along the unit circle C around O,
and d¢’ = dz/(:2). Since sin ¢’ = (z — 271 /(21), we find

(6.33) J=—2 / (22 — 2iwz — 1)~ da.
c

Poles are at
(6.34) z =1dw+ W - D], z=1iw-— (w-—1)"
of which only the latter is within the unit circle. Hence
4ms
2 — 2

(6.35) J=-

= 2r(w? — 1)-172,

Substitution in this from (6.30) yields a function of ¢ alone. When this is mul-
tiplied by the factors of (6.28) not included in the integrand of (6.31), the ele-
ment of probability g(¢) dt is obtained, where

(6.36) g@t) = 3%%p1(42 — 1)71(82 — 1)7V2, t=2.

A check on the reasoning of this whole section is provided by dividing this
expression for g(f) by the corresponding density of ¢ as given by normal theory,
that is, by g*(¢) as given by (2.13), and letting ¢ increase. The limit, 3%2(4x)",
agrees with R; as given by (4.2), in accordance with (3.3).

The Laurent series obtained by expanding (6.36) in inverse powers of ¢ is

- 3,9 .2 . )
(6.37) 392 (4xt)! (1 twtiontem™ )

and converges uniformly for all values of { = 2. For any such value it may
therefore be integrated to infinity term by term. After doubling to include the
like probability for negative values from the symmetric distribution this gives

(638) P{l 2 T} = 3%2(4xT?)! (1 34 3 4 29

g7 T 16Tt T 25670 T ) rzz

a rapidly convergent series.
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This probability is also available in closed form. Indeed, the integral of (6.36)
may be evaluated after rationalizing the integrand by means of the substitu-
tion ¢t = (u? 4 1)/(u? — 1). The indefinite integral then becomes
(6.39) 32(tan~! 3V2%y — tan—! 3—1/2u) 4 constant.

The two inverse tangents may be combined by the usual formula, and the prob-

ability may be expressed in various ways, of which the most compact appears
to be

(6.40) P{lt| = T} =1 — 6x!arctan [3~1/2T-(T? — 1)V?], Tz 2.

One consequence is that P{|{| = 2} is about .115.

This equation may be solved for T to obtain a “percentage point” with
specified probability P of being exceeded in absolute value when the null hypoth-
esis is true. We have thus the formula

(6.41) T2 = 1 — 3 tan? [” ' P )],

which is true only if the value of |T'| obtained from it is at least two. Taking in
turn P as .05 and .01, we find from (6.41):

(6.42) T = 2.95, T o = 3.69.

7. The double and one-sided exponential distributions

We now derive for random samples of N = n 4 1 the probability that ¢
should exceed any value T = =, when the population sampled has a frequency
function of either of the forms

&) sy = {7 20
' ~ o, z <0;
(7.2) J(&) = 3 kb,

where k is in each case a positive scale factor. Since ¢ is invariant under changes
of scale, k does not enter into its distribution and we shall take £ = 1 without
any loss of generality. Thus in the following we shall use the simpler frequency
functions

73) sw={" %)
' = 0, z <0;
(7.4) foz) = %e"", all real =z;

and the results will be applicable without change to (7.1) and (7.2). We are free
also to interchange the signs = and >, and to say “positive” for “nonnegative”
without changing our probabilities. The limitation of T and therefore ¢ to values
not less than n implies, in accordance with the lemma at the beginning of sec-
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tion 6, that all observations are nonnegative in the samples with which we are
dealing.

Such samples are represented by points in the “octant” of the sample space
for which all coordinates are positive, and in this part of the space the density,
which is the product of N values of the frequency function for independent
variates, is exp (—Sz) for (7.3) and 2% exp (—Sz) for (7.4). Both these densi-
ties are constant over each n-dimensional simplex (generalized triangle or tetra-
hedron) defined, for ¢ > 0, by an equation of the form

(7.5) mtomt o tav=c

and the N inequalities z; = 0. Since this definition is unchanged by permuting
the «, the simplex is regular. Its n-dimensional volume, which we designate v.,
may be determined by noticing that this simplex is a face, which may be called
the “base,” of an N-dimensional simplex with vertices at the origin and at the
N points where the coordinate axes meet the hyperplane (7.5). These last N
points are all at distance ¢ from the origin. A generalization, easily established
inductively by integration, of the ordinary formulas for the area of a triangle and
the volume of a pyramid, shows that the volume of an N-dimensional simplex is
the product of the n-dimensional area of any face, which may be designated the
“base,” by one-Nth of the length of a perpendicular (“altitude’”) dropped upon
this base from the opposite vertex. Since the perpendicular distance from the
origin to the hyperplane (7.5) is ¢cN—V2, the volume of the N-dimensional sim-
plex enclosed between this hyperplane and the coordinate hyperplanes is v,cN—3/2,
But this N-dimensional volume may also be computed by taking another face
as base, with ¢ as altitude, evaluating the n-dimensional area of this base by
the same method, and so on through all lower dimensions. This gives ¢¥/N! as
the N-dimensional volume. Equating, we find
an3l2 anl/ 2

(7.6) bn =TT T

The samples for which ¢ exceeds T are represented by points within a right
circular cone with vertex at the origin, axis on the equiangular line, and semi-
vertical angle 8, where T = n'/2 cot 6. This cone intersects the hyperplane (7.5)
in a sphere whose radius we may call 7. Then, since the distance of the hyper-
plane from the origin is ¢cN—V2, we find r = cN~V2tan 0 = cn'/2N—12T-1. The
n-dimensional volume enclosed by this sphere is within the simplex and, in ac-
cordance with (2.12), equals

e

(7.7, I‘—(—'g:;

When the expression for r is inserted here and the result is divided by the
volume v, of the simplex, the result is

—1
(1.8) a2l [NN/2I‘ (’5” + 1) T"] .
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This is the ratio of the n-dimensional volume of the sphere to that of the sim-
plex, and is independent of ¢. It is thus the same on all the hyperplanes specified
by (7.5) with positive values of ¢. Because of the constancy of the density on
each of these hyperplanes, (7.8) is the probability that ¢ = 7 when it is given
that the probability is unity that all observations are positive, as is the case
when the frequency function (7.1) or (7.3) is the true one. But if (7.2) or (7.4)
holds, (7.8) is only the conditional probability that ¢ < T, and to give the un-
conditional probability must be multiplied by the probability of the condition,
that is, by 2-7.

If a two-tailed t-test of the null hypothesis that the mean is zero is applied
and the double exponential (7.2) is the actual population distribution, the prob-
ability of a verdict of significance because of ¢ exceeding T is double the fore-
going, and therefore 2 times (7.8). With a slight change in the latter through
reducing the argument of the Gamma function, this gives

7.9 P{{ =T} = (mn)"*(n — 1)![27»—1N"/2r_(’§‘> T"]_lr T2n

The obvious relation

(7.10) r (%’) r (g) 9t = (n — )il

which is a special case of the duplication formula for the Gamma function, makes
it possible to write (7.9) in the simpler form

N
2

Such probabilities of errors of the first kind in a two-tailed ¢-test are illus-
trated in table I for the values of T found in tables based on normal theory

(7.11) P{f| =T} = r("_l)”n”/“’l‘( )N'N/2T—", T = .

TABLE I
PROBABILITIES FOR { IN SAMPLES FROM THE DOUBLE EXPONENTIAL

Stars refer to normal theory.

P = .05 P =01 P = 001
Sample P{lt] > t* 05} P{lt] > t*.a} P{ltl > t*om}
size N | t*o5 t*a t* o0t

Exact | Approx. Exact | Approx. Exact | Approx.

12.706 .03935 |.03927 [63.657 .007 855|.007 854 1636.619 .000 799} .000 785
4303 .03265 [.03023 | 9.925 .006 138|.006 046 | 31.598 .000 606000 605
3.182 .031051|.023 132 | 5.841 .005120|.004 626 | 12.941 .000 471|.000 463
2.776 .-+ |.017 656 | 4.604 .004 715(.003 531| 8.610 .000 386|.000 353
2.571 <+« 1.013 458 4.032 .-+ 1.002692| 6.859 -.000 337|.000 269

S G WD

corresponding to the frequently used .05, .01, and .001 probabilities. One of
these probabilities appears at the top of each of the three main panels into which
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the table is divided, and is to be compared with the exact probabilities in the

second column of the panel, computed as indicated above for the values t* of T

obtained from a table of the Student distribution and often referred to as ‘“per-

centage points” or “levels.” It will at once be evident that the normal-theory .
probabilities at the heads of the panels are materially greater than the respective

probabilities of the same events when the basic distribution of the observed

variate is of the double exponential type (7.2).

This table also illustrates the comparison of the exact probabilities with the
approximations introduced in section 3 for large values of T'. These approxima-
tions, presented in the third column of each panel, are obtained by multiplying
the normal-theory probability at the head of the panel by the expression Ry
of (3.6) as adapted to the particular case. For the double exponential (7.4) we
find

—1
(7.12) Ry = xVi°n! [2nNN/2I1 (g)] .
This may, with the help of (7.10), be put in the simpler alternative form
(7.13) Ry = #n/2T (g + 1) N-Ni2,

The table illustrates the manner in which the approximation slowly improves
as T increases for a fixed n but grows poorer when 7 increases and T remains
fixed.

The blank spaces in table I correspond to cases in which T < n, to which
our formulas do not apply. Expressions of different analytical forms could be,
but have not been, derived for such cases.

All the probabilities in the body of table I are less than the normal-theory
probabilities .05, .01, and .001 at the heads of the respective columns, illustrat-
ing the greater concentration of the new distribution about its center in com-
parison with the familiar Student distribution. This concentration is further
illustrated by the circumstance that Ry < 1for all values of N. Indeed, R, = = /4
and R; = 7/3%? are obviously less than unity, and for all N,

RN+2_EN+1< N )Nm,
(7.14) Ry _ 2N +2\N +2

may be shown to be less than unity by means of the sign of the error after two
terms in the expansion of the logarithm of the last factor.

Percentage points, the values that ¢ has assigned probabilities P of exceeding,
can be found for the double exponential population by solving (7.9) or (7.11)
for T, provided the value thus found is not less than n. For samples of three
(n = 2) the five per cent point thus found is 3.48 and the one per cent point is
7.78. Each of these is between the corresponding points for the normal and the
Cauchy parent distributions, the latter of which were found at the end of sec-
tion 6. These results are summarized in table II, along with the values of R; for
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TABLE 1I

PERCENTAGE PoINTS OF { AND MULTIPLIERS OF SMALL EXTREME-TAIL
NoRMAL-THEORY PROBABILITIES FOR SAMPLES OF THREE

Population T Tam Ry
Normal 4.30 9.92 1.000
Double exponential 3.48 7.78 785
Cauchy 2.95 3.69 413

the same populations, which provide good approximations when ¢ is very large.
The degree of concentration of ¢ about zero is in the same order by all three of
the measures in the columns of table II.

For a fixed basic distribution and a fixed probability of T being exceeded by ¢,
T is a function of n alone. The behavior of this function as n increases
depends on the basic distribution. If this is normal, a percentage point T ap-
proaches a fixed value, the corresponding percentage point of a standard normal
distribution of unit variance. If the basic distribution is the double exponential,
it is deducible from (7.11) with the help of Stirling’s formula that T = O(nV?)
when P is fixed. More exactly, T ~ (wn)1/%(2¢)"/2P4/n,

8. Student ratios from certain other distributions

The distribution of the Student ratio in samples from the “rectangular’ dis-
tribution with density constant between two limits symmetric about zero, and
elsewhere zero, has been the object of considerable attention. The exact distribu-
tion for samples of two is easily found by a geometrical method. Perlo [41] in
1931 obtained the exact distribution for samples of three in terms of elementary
functions—not the same analytic function over the whole range—again by
geometry, but with such greatly increased complexity attendant on the exten-
sion from two to three dimensions as to discourage attempts to go on in this way
to samples larger than three. Rider [45] gave the distribution for N = 2, and
also, by enumeration of all possibilities, investigated the distribution in samples
of two and of four from a discrete distribution with equal probabilities at points
uniformly spaced along an interval; the result presumably resembles that for
samples from the continuous rectangular distribution.

The distribution of ¢ is independent of the scale of the original variate, and
we take this to have density 1/2 from —1 to 1, and zero outside these limits.
In an N-dimensional sample space the density is then 2~ within a cube of
vertices whose coordinates are all 41, and zero outside it. The projection of the
volume of this cube from the center onto a surrounding sphere will obviously
produce a concentration of density at the points A and A’ on the sphere where
the coordinates all have equal values, greater than at the points of minimum
density in the ratio of the length of the diagonal of the cube to an edge, that is,
of N2 from —1 to 1. Substituting the frequency function
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1

o -l<e<l
(8.1) fz) =42

0, otherwise
in (3.6) gives

N \V/2
(%)
03 +1)

This increases rapidly with N and without bound; indeed, Ry,2/ Ry is nearly we/2,
so B = «. The lowest values are

m

=§’

This provides a sharp contrast with the cases of the Cauchy and the single
and double exponential distributions, for which B = 0. There seems to be a real
danger that a statistician applying the standard ¢-test to a sample of moderate
size from a population which, unknown to him, is from a rectangular popula-
tion, will mistakenly declare the deviation in the mean significant. The opposite
was true for the populations considered earlier; that is, use of the standard
normal-theory tables of ¢ where the Cauchy or exponential distribution is the
actual one, with central value zero the hypothesis to be tested, will not lead to
rejection of this hypothesis as often as expected.

An interesting generalization of the rectangular distribution is the Pearson
Type II frequency function

R3 = 7—2l'31/2, Iﬁ,; =

™

(8.3) R, 5

@) = ¢p(1 — 2?)77, p>0 —-1l<z<1,
(8.4) 1\ __
. = I‘(p +2)1r 1’2’
I'(p)

which reduces to the rectangular for p = 1. Values of p greater than unity de-
termine frequency curves looking something like normal curves, but the induced
distribution of ¢ is very different in its tails. These are given approximately for
large ¢ by the product of the corresponding normal-theory probability by

l N
e ey

This is a complicated function of which only an incomplete exploration has
been made; it appears generally to increase rapidly with N, less rapidly with p;
whether it has an upper bound has not been determined. If it approaches a
definite limit as N increases, the tail distribution of ¢ has a feature not yet en-
countered in other examples: the probabilities of the extreme tails on this Type II
hypothesis, divided by their probabilities on a normal hypothesis, may have a

(8.5)
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definite positive limit as the sample size increases. Such limits of ratios have in
previous examples been zero or infinity.

Values of p between zero and one (not inclusive) yield U-shaped frequency
curves. The expression just given for Ry may then present difficulties because of
zero or negative values of the Gamma functions. The usual nature of the func-
tion and the variety of possibilities connected with it appear particularly when
studying large samples, as the application of Stirling’s formula is not quite so
straightforward when the arguments of the Gamma functions are not all posi-
tive; and the factor in square brackets with the exponent N may be either
greater or less than unity.

Skew distributions and distributions symmetric about values different from
zero generate distributions of ¢ which can in many cases be studied by the
methods used in this paper, particularly by means of Ry, which is often easy to
compute and gives approximations good for sufficiently large values of ¢, even
with skew distributions. In particular, power functions of one-sided or two-
sided i-tests can readily be studied in this way for numerous nonnormal popula-
tions.

9. Conditions for approximation to Student distribution

We now derive conditions on probability density functions of a wide class,
necessary and sufficient for the distribution of ¢ in random samples to converge
to the Student distribution in the special sense that R = 1; that is, that B =
limy-» Ry = 1; Ry = limr-. (P/P*), where P is the probability that ¢ exceeds
T in a random sample of N from a distribution of density f(z), and P* is the
probability of the same event on the hypothesis of a normal distribution with
zero mean. A like result will hold, with only trivial and obvious modifications,
for the limiting form when ¢ approaches —. It will be seen from the results of
this section that the conditions for this kind of approach to the Student distribu-
tion are of a different character, and are far more restrictive than those treated
in central limit theorems for approach to a central normal distribution, which
is also approached by a Student distribution, with increasing sample size within
a fixed finite interval.

The probability density (frequency) function we suppose such that the prob-
ability that z is positive is itself positive. In the opposite case the trivial varia-
tion mentioned above comes into play. We rewrite (3.6) in the form

Iy
(9.1) Ry = 2(xN)¥* — 50
r (%)
where
9.2) Iy = [} 2" [f@)]" da,

and consider only cases in which this last integral exists and can be approximated
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asymptotically by a method of Laplace, of which many accounts are available,
including those of D. V. Widder in The Laplace Transform and of A. Erdélyi in
Asymptotic Expansions. Direct application of this method requires that zf(x),
and therefore

(9.3) g(z) = logz + log f(x),

shall be twice differentiable and shall attain its maximum value for a single posi-
tive value zo of z; and that this be an ordinary maximum in the sense that the
first derivative is zero and the second derivative is negative at this point. It is
further required that, for all positive z # o, the strong inequality g(z) < g(xo)
shall hold. Variations of the method may be applied when these conditions are
somewhat relaxed; for instance, when there are several equal maxima, the
interval of integration may be broken into subintervals each satisfying the con-
ditions just stated; but we shall not in this paper consider any such variations.

Thus we deal with cases in which there is a uniquely determined x, > 0 for
which g(xo) > g(z) when 2y # 2 > 0, ¢’ (x) = 0, ¢''(x0) < 0, and

94) 9@) = gle0) +3 @ — 20" (@) + oz — )"
Then (9.2) may be written
9.5 Iy= ﬁ) * exp [Ng(z)] 2~ dx

= exp [Ng(xo)] /: exp [ﬂ%ﬂl (x—x0)2+ No(x — xo)z]x—l dzx.

When f, g, and their derivatives appear without explicit arguments the argu-
ment x, will be understood. With this convention, a new variable of integration
z = (—Ng'"")¥*(x — x0) leads to the form

(9.6)
w=ev [ exo[ 5 + 0 (5) ] o + 015 aa(—Ng' -1
—a(—Ng")™1is

An asymptotic approximation to Iy, which by definition has a ratio to Iy that
approaches unity as N increases, is found here by letting the lower limit tend
to —« and dropping the terms o(z?/N) and O(N—V?), which are small in com-
parison with the terms to which they are added. This gives

9.7 Iy ~ (2r) V225 {(— Ng'") =120,

With the understanding that the argument is x, in (9.3) and its first and second
derivatives, we find

(9.8)

4 "o £
g =logx +logf, ¢ =:co“+]-;r =0, g¢'= —-xo‘2+ﬁ-f—2i—,
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whence

(9.9) ¢ = mf, o= _%, g =i ; 2"
By Stirling’s formula, I'(N/2) is asymptotically equivalent to

(9.10) (2m) 12 <N 2— 2)(N—1>/2 .

This contains the factor (1 — 2/N)¥/2-1/2 which may be replaced by 1/e. In
this way we obtain

11 T _1. ~ 21—NI?7rl/2N(N—1)/2 —N/2.
(9.11) 5N e

Making both this substitution and (9.7) in (9.1) and simplifying gives
(9.12) Ry ~ 212(—g")Vi5 @retrt i1,

Since g"’ < 0 by assumption, it is clear from (9.12) that the limit B of Ry
as N increases is zero, a positive number, or infinite, according as 2« exp (29 + 1)
is less than, equal to, or greater than unity. Since this critical quantity is, by the
first of (9.9), equal to 2me(z,f)2, we have

TuroreM 1. For a frequency function f(x) satisfying the general conditions
for application of the Laplace asymptotic approximation to zf(x), a necessary and
sufficient condition that the corresponding distribution of the Student ratio have the
property that R is a positive constant s that xof = (2mwe)~1/2 is the absolute maximum
of xf(x), taken only where x = xo, and is an ordinary maximum.

If this condition is satisfied, then it is obvious from (9.12) that a further neces-
sary and sufficient condition for R to be unity is that 2/2(—g”)~12z5 ' = 1, that
is, z3g”’ + 2 = 0. In this we replace zo and g”’ by the expressions for them in the
second and third equations respectively in (9.9) and simplify. The result is
simply f’’ = 0. Hence

TaEOREM 2. In order that R = 1 for the distribution of the Student ratio in
random samples from a distribution of  of the kind just described, it is necessary
and sufficient that the conditions of theorem 1 hold and that f" (x0) = 0.

A graphic version of these conditions is as follows. Under the portion of the
smooth frequency curve y = f(x) for which z is positive let a rectangle be in-
seribed, with two sides on the coordinate axes and the opposite vertex at a point
L on the curve. Let L be so chosen that the rectangle has the greatest possible
area. Let the tangent to the curve at L meet the z-axis at a point M. Then the
triangle formed by L and M with the origin O is isosceles, since the first-order
condition for maximization, the second equation of (9.8) or (9.9), states that
the subtangent at L equals its abscissa and is measured in the opposite direction.

The area of the isosceles triangle OLM equals that of the maximum rectangle.
The necessary and sufficient condition that R be a positive constant is that this
area have the same value (2me)~V2 as for a normal curve symmetric about the
y-axis. If this is satisfied, the further necessary and sufficient condition that
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R =1 is that L be a point of inflection of the frequency curve for which z
is negative.

It is particularly to be noticed that these conditions, which indicate the
circumstances under which the familiar Student distribution can be trusted for
large values of ¢ and large samples, have nothing to do with the behavior of the
distribution of x for extremely large or extremely small values of this, the ob-
served variate, nor with its moments, but are solely concerned with certain
relations of the frequency function and its first and second derivatives at points
of inflection.

Proposals to “correct” ¢ for nonnormality by means of higher moments of x
(up to the seventh, according to one suggestion), encounter the difficulty that
such moments reflect primarily the behavior of the distribution for very large
values, whereas the mainly relevant criteria seem from the results of this sec-
tion to concern rather the vicinity of the points of inflection, which for a normal
distribution are at a distance of one standard deviation from the center. It is
such intermediate or ‘“‘shoulder” portions of a frequency curve that seem chiefly
to call for exploration when the suitability of the ¢ tables for a particular ap-
plication is in question, especially for stringent tests with large samples. Mo-
ments of high order, even if known exactly, do not appear to be at all sensitive
to variations of frequency curves in the shoulders. Moreover, if moments are
estimated from samples, their standard errors tend to increase rapidly with the
order of the moment. More efficient statistics for the purpose are evidently to be
sought by other methods.

10. Correlated and heteroscedastic observations. Time series

Much was written in the nineteenth century, principally by astronomers and
surveyors, about the problem of unequal variances of errors of observation,
and hence different weights, which are inversely proportional to the variances.
Much has been written in the twentieth century, largely by economists and
others concerned with time series, about the problems raised by the lack of in-
dependence of observations, particularly by the tendency for observations close
to each other in time or space to be more alike than observations remote from
each other. The two problems are closely related, though this fact is seldom
mentioned in the two separate literatures. They combine into one problem where
the observations, or the errors in them, have jointly a multivariate normal
distribution in which both correlations and unequal variances may be present.
Problems of estimating or testing means and regression coeflicients may in such
cases easily be reduced by linear transformation to the standard forms in which
the observations are independent with a uniform variance, provided only that
the correlations and the ratios of the variances are known, since these param-
eters enter into the transformation.

Thus, if a multivariate normal distribution is assumed, the leading methodo-

logical problem is the determination of this set of parameters, which collectively
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are equivalent to the covariance matrix or its inverse, apart from a common
factor. The number of independent parameters needed to reduce the problem to
one of linear estimation of standard type is less by unity than the total number
of variances and correlations of the N observations, and therefore equals N+
NN —1)/2 — 1= (N — 1)(N + 2)/2. Since this exceeds the number of ob-
servations, often greatly, there is no hope of obtaining reasonable estimates from
these N observations alone. Numerous expedients, none of them universally
satisfactory, are available for arriving at values for these parameters in various
applications. Thus astronomers add estimated variances due to different sources,
one of which, the “personal equation,” involves a sum of squares of estimated
errors committed by an individual observer. For observations made at different
times, 2 maintained assumption, ostensibly a priori knowledge, that the observa-
tions or their errors constitute a stationary stochastic process of a particular sort
often reduces the number of independent parameters enough so that, with large
samples, estimates can be made with small calculated standard error, but valid
only if the maintained assumption is close to the real truth. Another expedient,
often in time series the most satisfactory of all, is to adjust the observations by
means of concurrent variables, either supplementary observations, such as tem-
perature and barometric pressure in biological experiments, or variables known
a priori, such as the time as used in estimating seasonal variation and secular
trend with the help of a number of estimated parameters sufficiently small to
leave an adequate number of degrees of freedom for the effects principally to be
examined. The simplest of all such expedients is merely to ignore any possible
differences of variances or of intercorrelations that may exist.

If methods of this kind leave something to be desired, the statistician using
them may be well advised at the next stage, when estimating the expected value
common to all the observations, or that of a specified linear function of all the
observations, or testing a hypothesis that such a linear function has a specified
expected value, to modify or supplement methods based on the Student distri-
bution so as to bring out as clearly as possible how the probability used is
affected by variations in the covariance matrix. In addition, when as here the
maintained hypotheses about the ancillary parameters of the exact model used
are somewhat suspect, a general protective measure, in the nature of insurance
against too-frequent assertions that particular effects are significant, is simply
to require for such a judgment of significance an unusually small value of the
probability of greater discrepancy than that actually found for the sample.
Thus instead of such conventional values of this probability P as .05 and .01, it
may be reasonable, where some small intercorrelations or differences in variances
in the observations are suspected but are not well enough known to be used in
the calculation, to disclaim any finding of significance unless P is below some
smaller value such as .001 or .0001. Such circumstances point to use of the ¢-
statistic, with a new distribution based on a distribution of observations which,
though multivariate normal, differs from that usually assumed in that the several
observations may be intercorrelated and may have unequal variances. More-
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over, the tails of the new ¢-distribution beyond large values of [{| are here of
particular interest. The probabilities of such tails will now be approximated by
methods similar to those already used in this paper when dealing with ¢ in sam-
ples from nonnormal distributions.

Consider N observations, whose deviations from their respective expectations

will be called z;, - - - , 2y, having a nonsingular multivariate normal distribution
whose density throughout an N-dimensional Euclidean space is
100 flo e z) = @A exp (—5 = T husas

where A is the inverse of the covariance matrix and is symmetric, |\l is its deter-
minant, and A\;; = A; is the element in the 7th row and jth column of \. Let the
Student ¢ be computed from these x by the formula (2.1), just as if X\ were a
scalar matrix as in familiar usage, with the object of testing whether the expec-
tations of the z, assumed equal to each other, were zero. Then, as before, t =

(N — 1)¥2 cot 6, where 6 is the angle between the equiangular linex; = --- = zy
and the line through the origin O and the point 2 whose coordinates are
Zy, + -+, «y. When the points z are projected onto the (N — 1)-dimensional unit

sphere about O, the density of the projected points £(%, - - - , £x) is given by (2.7),
which for the particular distribution (10.1) becomes

(10.2)  Dw(¢) = ﬁ)w foky, -+, pEn)pN "1 dp
= (2m)~Ni2l\|v2 /"’ pV—1 exp (_% DI )\i,&éj) dp
0

= % —Niz|p|rer (%) (X 2 Mkt~

When A = 1 (the identity matrix), the double sum in the last parenthesis reduces
to unity, since £ + -+ 4+ £ = 1, and in this case

(10.3) Du(®) = DE(E) = %,,-mp (%)
The ratio of (10.2) to (10.3) is

_ |)\‘1/2 ,
(104) Bu®) = (X X N2

and is the ratio of the density in our case to that in the standard case at point &
on the sphere. If £ moves to either of the points A, where all £, = N~Y2 or 4’,
where all ¢; = —N—'2 (10.4) approaches

N2\ |12

10.5 Ry(A) = R A’=———l—;

( ) N( ) N( ) (z Z )\ij)N/2

this we call simply Ry. For large values of ¢, (10.5) approximates both the ratio
of the probability densities and the ratio of the probabilities of a greater value
of ¢ in our case to that in the standard case.
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A smmall bias may here be mentioned in our earlier method of approximating
the distribution of ¢ in random samples, a bias generally absent from the ap-
plications in the present section. The approximation is, as was seen earlier,
equivalent to replacing the integral of the density over a spherical cap centered
at A or A’ by the product of D(A) or D(A’) respectively by the (N — 1)-di-
mensional area of the cap. In the applications we have considered to the dis-
tribution of ¢ in random samples from nonnormal populations, A and A’ are
likely to be maximum or minimum points of the density on the sphere, in which
case the approximation will tend to be biased, with the product of Ry by the
probability in the standard case of ¢ taking a greater value tending in case of a
maximum to overestimate slightly the probability of this event and in case of a
minimum to underestimate it. In nonrandom sampling of the kind dealt with in
this section, maxima and minima of the density on the sphere can occur only
at points that are also on latent vectors of the quadratic form; A and A’ will be
such points only for a special subset of the matrices A. Apart from these special
cases, the approximation should usually be more accurate in a certain qualita-
tive sense with correlated and unequally variable observations than with random
samples from nonnormal distributions.

The simplest and oldest case is that of heteroscedasticity with independence.
Here both the covariance matrix and its inverse A are of diagonal form. Let
w, - -+, Wy be the principal diagonal elements of A, while all its other elements
are zero. These w are the reciprocals of the variances, and are therefore the
true weights of the observations. From (10.5),

_ NV (ww, - - - wy) Y2

(10'6) Ry = (Z 'w,-)N/“’

_ [ geometric mean V2 <1
arithmetic mean =

Hence, for sufficiently large T,
(10.7) P{t> T} < P*{t > T},

where the right-hand probability is that found in familiar tables. Moreover, the
ratio of the true probability to the standard one is seen from (10.6) to approach
zero if the observations are replicated more and more times with the same un-
equal but correct weights, and with concurrent appropriate decreases in the
critical probability used. The equality signs in (10.6) and (10.7) hold only if
the true weights are all equal.

In contrast to the foregoing cases are those of correlated normal variates with
, equal variances. The common variance may without affecting the distribution
of ¢t be taken as unity, and the covariances then become the correlations. We
consider two special cases.

A simple model useful in time series analysis has as the correlation between
the sth and jth observations pl*~7, with p of course the serial correlation of con-
secutive observations; and |p| < 1. It is easy to verify that the determinant of
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this matrix of correlations among N consecutive observations is (1 — p2)V-!

and that its inverse is

(10.8)

m 1

—p
0

AN=(1—-p) -

0

0

—p 0 0 0 0 ]
14 p? —p 0 0 0
-p 1402 —p- 0 0

0 0 0 <14 p? —p
0 0 0 —p 1

From this we find 3~ 3" Aij = (N — Np + 20)/(1 + p). The determinant of A

is of course the reciprocal of that of the correlation matrix, and therefore equals
(1 — p?)~V+1, Substituting in (10.5) gives

(109) Ry = (1= p)¥2(L = oL+ 2p(L — o) N-1]"0,

If N increases and p > 0, Ry diverges, in contrast with the case of independent
observations of unequal variances, where the limit was zero. Ry also becomes
infinite as p approaches one with N fixed. But when p tends to —1 with N fixed,
Ry vanishes. If p is fixed with —1 < p < 0, then limy.,, Ry = 0.

As another example, consider N observations, each with correlation p with
each of the others, and all with equal variances. The correlation matrix has a
determinant equal to (1 — p)¥![1 + (N — 1)p], which must be positive, im-
plying that p > —(N — 1)~'; and the inverse matrix may be written

1+g g g - - g
(010 a=a-pm 0 T 0T )
g g g c14g

where g = —p[1 + (N — 1)p]~L. A short calculation now gives
(10.11) Ry = [1 4+ Np/(1 — p)]&¥-vri2,

As in the previous example, Ry becomes infinite if N increases with p fixed, or if
p tends to unity with N fixed. The possibility that p approaches —1 cannot here
arise.

A further application of the methods of this section having some importance
is to situations in which the mean is in question of a normally distributed set
of observations whose correlations and relative variances are known approxi-
mately but not exactly. An exact knowledge of these parameters would provide
transformations of the observations z, --- , zy into new variates «f, - - - , =¥,
independently and normally distributed with equal variance. If now ¢ is com-
puted from the starred quantities, it will have exactly the same distribution as
in the standard case. But errors in the estimates used of the correlations and
relative variances will generate errors in the transformation obtained by means
of them, and therefore in the distribution of ¢. The true and erroneous values of
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the parameters together determine a matrix A which, with (10.4) or (10.5), gives
indications regarding the distribution of ¢, from which approximate percentage
points may be obtained, with an accuracy depending on that of the original
estimates of the correlations and relative variances. In this way general theory
and independent observations leading to knowledge or estimates of these param-
eters may be used to improve the accuracy of the probabilities employed in a
t-test. If a confidence region of known probability is available for the param-
eters, an intersteing set of values of Ry corresponding to the boundary of the
confidence region might be considered.

11. Sample variances and correlations

The sensitiveness to nonnormality of the Student i-test is, as we have seen,
chiefly a matter of the very nonstandard forms of tails distant from the center
of the true t-distribution to an extent increasing with the sample number.
Between fixed limits, or for fixed probability levels, it is easy to deduce from
known limit theorems of probability that the Student distribution is still often
reasonably accurate for sufficiently large samples. However, these theorems do
not apply in all cases; for instance, they do not hold if the basic population has
the Cauchy distribution; and unequal variances and intercorrelations of observa-
tions are notorious sources of fallacies. Moreover, the whole point in using the
Student distribution instead of the older and simpler procedure of ascribing the
normal distribution to the Student ratio is to improve the accuracy in a way
having importance only for small samples from a normal distribution with inde-
pendence and uniform variance. Deviations from these standard conditions may
well, for small samples with fixed probability levels such as .05, or for larger
samples with more stringent levels, produce much greater errors than the intro-
duction of the Student distribution was designed to avoid. The limit theorems
are of little use for small samples. To substitute actual observations uncritically
in the beautiful formulas produced by modern mathematical statistics, without
any examination of the applicability of the basic assumptions in the particular
circumstances, may be straining at a gnat and swallowing a camel.

Even the poor consolation provided by limit theorems in the central part of
some of the distributions of ¢ is further weakened when we pass to more com-
plicated statistics such as sample variances and correlation coefficients. Here the
moments of the statistic in samples from nonnormal populations betray the
huge errors that arise so easily when nonnormality is neglected. Thus the
familiar expression for the variance of the sample variance,

o _ M4 — 43
(11.1) oh =S
when divided by the squared population variance yields a quotient two and a
half times as great for a normal as for a rectangular population, and has no
general upper bound.
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The asymptotic standard error of the correlation coefficient (see, for example,
Kendall, vol. 1, p. 211) reduces for a bivariate normal population to the well
known approximation which is the square root of

(11.2) U—_T"ff

where p is the correlation in the population. This may now be compared with
the asymptotic variance of the correlation coefficient between x and y when the
density of points representing these variates is uniform within an ellipse in the
zy-plane and zero outside it. The population correlation p and the moments of
the distribution are determined by the shape of the ellipse and the inclinations
of its axes to the coordinate axes. On substituting the moments in the general
asymptotic formula for the standard error of the correlation coefficient r, the
result reduces to the square root of

(11.3) 20 = Y,
3n
only two-thirds of the standard expression (11.2). It is noteworthy that in the
special case p = 0, in which the ellipse reduces to a circle, the variance is only
2/(3n), differing from 1/n, the exact variance of r in samples from a bivariate
normal distribution with p = 0, and the asymptotic variance of r in samples
from any population in which there is independence between z and y, or even
in which the moments of fourth and lower orders satisfy the conditions for
independence.
Fisher’s ingenious uses ([14], section 35) of the transformation

(114)  z=f0) =Slog(L+1) —Zlog(1 —7), {=F0o),

whose surprising accuracy has been verified in a study by Florence David [10],
and which has since been studied and modified [26], owes its value primarily to
the properties that, for large and even moderately large samples, z has a nearly
normal distribution with mean close to { and variance n~!, apart from terms of
higher order. This transformation may be derived (though it was not by Fisher)
from the criterion that z shall be such a function of r as to have the asymptotic
variance 7!, independently of the parameter p. This problem has been studied
[26], and an asymptotic series for the solution has been found to have z as its
leading term; two additional terms, multiples respectively of n~! and »n~2, have
been calculated, with resultant modifications of z that presumably improve
somewhat the accuracy of the procedures using it.

All uses of 2z, however, depend for the accuracy of their probabilities on the
applicability of the familiar formula (11.2) for the variance of r, which has been
derived only from assumptions including a bivariate normal population, and
even then, only as an approximation; see [26]. If the bivariate distribution is
not normal, and in spite of this fact the variance (11.2) is used either directly,
or indirectly through the z-transformation, the errors in the final conclusions
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may be very substantial. This transformation does not in any way atone for
nonnormality or any other deviation from the standard conditions assumed in
its derivation.

A different transformation having the same desirable asymptotic properties
as Fisher’s may be obtained for correlations in random samples from a nonnormal
bivariate distribution of known form, or even one whose moments of order not
exceeding four are all known, provided certain weak conditions are satisfied.
In these cases the asymptotic standard error o, of r is of order n—/2 and may be
found in the usual way as a function of p. If z = f(r) and ¢ = f(p), with f a
sufficiently regular increasing function, a time-honored method of getting ap-
proximate standard errors may be applied: Expand z — { in a series of powers
of r — p; square, and take the mathematical expectation; neglect terms of the
resulting series that are of order higher than the first in n~', thus ordinarily
retaining only the first term, which emerges as asymptotically equivalent to
the variance of r. A theorem justifying this procedure under suitable conditions
of regularity and boundedness is given by Cramér [9], but the technique has
been in frequent use for more than a century without the benefit of a careful
proof such as Cramér’s. In the present case, after taking a square root, it yields
o, ~ a.(dt/dp). If now we put ¢, = n~'/2, integrate, and impose the additional
condition that f(0) = 0, we find:

(11.5) ¢~ ﬁ) * o34 dp.

If we wish to obtain a transformation resembling Fisher’s in being independent
of n, as well as in other respects, we may replace the sign of asymptotic ap-
proximation in (11.5) by one of equality.

Substituting in (11.5) the reciprocal of the square root of the asymptotic
variance (11.2) of r in samples from a normal distribution leads to Fisher’s
transformation (11.4). But for the bivariate distribution having uniform density
in an ellipse we substitute from (11.3) instead of (11.2), thus redefining z and ¢
by multiplying Fisher’s values by (3/2)'%, while retaining the approximate
variance n~%

12. Inequalities for variance distributions

Light may often be thrown on distributions of statistics by means of inequali-
ties determined by maximum and minimum values, even where it is excessively
difficult to calculate exact distributions. An example of this approach is provided
by the following brief study of the sample variance in certain nonnormal popula-
tions. It will be seen that this method sometimes yields relevant information
where none can be obtained from the asymptotic standard error formula because
the fourth moment is infinite.

One family of populations presenting special interest for the study of sample
variances ig specified by the Pearson Type VII frequency curves
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2\ —
(12.1) y=w(1+5)" pz 1,
where
(12.2) - TI(p

Yo = N
a1r1’2I‘ <p - 5)

This family of symmetric distributions may be said to interpolate between the
Cauchy and normal forms, which it takes respectively for p = 1 and p = .
In the last case we may take a®> = 2p.

The even moments, so far as they exist, are given by

a1 (Ic + %) T (p -k - %)
(123) = - : k<p—3
T —= 2
(v-3)

Putting & = 1, 2 we find
a? . 3
2 = . y -
a—u2—2p_3 if p>2
(12.4) .
w = 3a%(2p — 3)"'(2p — 5)7, if p> 5

We consider the case in which the population mean is known but methods
appropriate to a normal distribution are used in connection with an estimate of ¢
and tests of hypotheses concerning ¢. In a random sample let x;, - - - , z, be the
deviations from the known population mean; then n is both the sample number
and the number of degrees of freedom; and s? = Sz2/n is an unbiased estimate
of the variance ¢? in any population for which the latter exists. But despite this
fact and the similarity of the Type VII and normal curves, the accuracy of s?
as an estimate of ¢? differs widely for the different populations, even if ¢2 has
the same value.

When the formula (11.1) for the variance (that is, squared standard error) of
the sample variance s? is applied to a normal distribution, the result is 204/n as
is well known. But when the moments (12.4) of the Type VII distribution are
inserted in the same formula, the result is

(12.5) 4a'(p — D[(2p — 3)*2p — 5)n] ™, P>

oIt

In this, a? may by (12.4) be replaced by (2p — 3)¢?, yielding
(12.6) 0% = 40'(p — 1)[(2p — 5)n] N

The variance of s? is infinite when p < 5/2, for instance when p = 1 and the
Type VII takes the Cauchy form. When » > 5/2 the ratio of the variance of s?
in samples from a Type VII to that in samples from a normal population of the
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same variance is equal to 1 + 3/(2p — 5); this may take any value greater than
unity.
In studying the distributions of s let us put

u? = ns? = Szf, u =0,
x5
Q =Slog{1+ ;2>'

Then in the sample space u is the radius of a sphere whose (n — 1)-dimensional
surface has, by (2.11), the ““area’” 2x%/2y»—1/T'(n/2). Also, let us denote by ga(u),
q(u), and qu(u), or simply ¢m, ¢, and ¢, the minimum, mean, and maximum
respectively of @ over the spherical (n — 1)-dimensional surface of radius u.
Thus

(12.8) an(uw) < quw) < gum(u).

The density in the sample space found by multiplying together n values of
(12.1) with independent arguments is, in the new notation,

(12.7)

(12.9) yiere.

The probability element for u is seen, on considering a thin spherical shell, to be
—~1

(12.10) 272 [I‘ (g)] Yhe—Peyn—1 dy.

Upper and lower bounds will be found by replacing ¢(«) here by ¢. and qx
respectively.
At the extremes of @ for a fixed value of u, differentiation yields

2\ —1
(12.11) x,(l + 2—;) = 7\331', 1 = 1, 2’ SR (X

where A is a Lagrange multiplier. This shows that all nonzero coordinates of an
extreme point must have equal squares. Let K be the number of nonzero coordi-
nates at a point satisfying the equations. Since the sum of the squares is u?, each
of these coordinates must be +K~V2y; and if u > 0, then K can have only the

values 1, 2, - - - , n. At such a critical point,

(12.12) Q@ = Klog (1 + w*K'a™?).

This is a monotonic increasing function of K. Hence,

(12.13) gn = log (1 + u?a™?), g = log (1 4 un~la"2)".

A slightly larger but simpler upper bound is also available; for the monotonic
character of the function shows that ¢g» < u2/a?.

The well known and tabulated distribution of x? = ns?/¢?, based on normal
theory, is used for various purposes, one of which is to test the hypothesis that ¢
has a certain value gy against larger values of ¢. Such a test might for example
help to decide whether to launch an investigation of possible excessive errors of
measurement. The simplest equivalent of the standard distribution is that of
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(12.14) w= %xﬁ = ns*(20%)~,

of which the element of probability is

wr2le= dw
n
r(3)

We now inquire how this must be modified if the population is really of Type VII
rather than normal.

Let us first consider the cases for which the Type VII distribution has a
variance, that is, for which p > 3/2; then by (12.4), a2 = (2p — 3)0? Eliminat-
ing a between this and (12.2) gives

(12.16) Yo(2m) "M% — 1

g

(12.15) gn(w) dw =

where ¢, = (p — 3/2)~Y2T(p)/T(p — 1/2). When p increases, ¢, tends to unity
through values greater than unity. Also, c; is approximately 1.23.

Since ns? = Sz? = u?, we find from (12.14) that v = ¢(2w)V/2 This and (12.16)
we substitute in the distribution (12.10), which may then be written with the
help of the notation (12.15) in the form

(12.17) h(w) = ¢ exp {w — pgle(Rw)Y2]} g.(w) dw.

Making the substitutions for 4 and a also in (12.13), where u?/a? becomes
2w/(2p — 3), and referring to (12.8), we observe that the ¢.function in (12.17) is
greater than log {1 4+ 2w(2p — 3)~!] and less than log [1 + 2w n~'(2p — 3)~']~.
Consequently, for all w > 0,

(12.18) K (w) < h(w) < h'"(w),

where

mm=db¥@;i—rwmm,

2p — 3 + 2nw
(12.19) 0 3 )
”" _.n pP—o w
K'(w) = cj <2p 3t 2w) e*gn(w).

If p increases while n and w remain fixed, both A’'(w) and A" (w) tend to g.(w),
and their ratio tends to unity. Thus the ordinary normal-theory tables and
usages of x? give substantially correct results when applied to samples from a
Type VII population if only p is large enough. This of course might have been
expected since the Type VII distribution itself approaches the normal form
when p grows large; but the bounds just determined for the error of assuming
normality may often be useful in doubtful cases, or where p is not very large.
In all cases, h’'(w) and h”(w) may be integrated by elementary methods.
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13. What can be done about nonstandard conditions?

Standard statistical methods involving probabilities calculated on standard
assumptions of normality, independence, and uniform variance of the observed
variates lead to many fallacies when any of these assumed conditions are not
fully present, and adequate corrections, often requiring additional knowledge,
are not made. The object of this paper is to clarify the behavior of these aberrant
probabilities with the help of some new mathematical techniques and to take
some soundings in the vast ocean of possible cases. '

We have concentrated for the most part on the effects of nonstandard condi-
tions on the distribution of Student’s ¢, and especially on the portions of this
distribution for which [¢] is rather large. It is such probabilities (or their comple-
ments) that appear to supply the main channel for passing from numerical
values of ¢ to decisions and actions. A knowledge of the ‘“‘tail”’ areas of the fre-
quency distribution of ¢ (as also of F, r, and other statistics) seems therefore of
greater value than information about relative probabilities of different regions
all so close to the center that no one would ever be likely to notice them, to say
nothing of distinguishing among them. Thus instead of moments, which de-
scribe a distribution in an exceedingly diffuse manner and are often not suf-
ficiently accurate when only conventional numbers of them are used, it seems
better to utilize for the present purpose a functional only of outer portions of the
distribution of ¢. Such a measure, here called Ry for samples of N and R in the
limit for very large samples, is the limit as T increases of the ratio of two prob-
abilities of the same event, such as ¢ > T or |{| > T, with the denominator
probability based on standard normal central random sampling and the numer-
ator on some other condition which the investigator wishes to study. Additional
methods are here developed for evaluating the exact probabilities of tail areas
for which T is at least as great as the number of degrees of freedom =, in such
leading cases as the Cauchy and the single and double simple exponential dis-
tributions. These findings could be pushed further inward toward the center, but
with increasing labor and, at least in some cases, diminishing utility.

To heal the ills that result from attempts to absorb into the smooth routine
of standard normal theory a mass of misbehaving data of doubtful antecedents,
an inquiry into the nature and circumstances of the trouble is a natural part of
the preparations for a prescription. Such an inquiry may in difficult cases require
the combined efforts of a mathematical statistician, a specialist in the field of
application, and a psychiatrist. But many relatively simple situations yield to
knowledge obtainable with a few simple instruments. One of these instruments
is Ry, which in case of erratically high or low values of ¢ will eliminate many
possible explanations of the peculiarity. Positive serial correlations in time series,
one of Markov type and the other with equal correlations, tend to make Ry
and ¢ too large, whereas independence without accurate weights makes them too
small. The Cauchy distribution makes them too low, some others too high.
Seldom will Ry be close to unity, especially in small samples, unless the standard
conditions come close to being satisfied.
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The conditions that R, which is one for random sampling from a normal dis~
tribution, be also one with independent random sampling, but without actual
normality, are very special, and are developed in section 9. These are rather
picturesque, and show that this kind of approximate normality has absolutely
nothing to do with moments, or with the behavior of the frequency curve at
infinity, or very near the center of symmetry if there is one, but are solely con-
cerned with what happens in a small neighborhood of each point of inflection.
Any correction of ¢ for nonnormality should evidently be respoasive to devia-
tions from the conditions of section 9.

In some cases the trouble can be dispelled as an illusion, generated perhaps by
too few or too ill-controlled observations.

When a remedy is required for the errors resulting from nonnormality, a first
procedure sometimes available is to transform the variate to a normal form, or
some approximation thereto. The transformation must be based on some real
or assumed form of the population distribution, and this should be obtained
from some positive evidence, which may be in an empirical good fit or in reason-
ing grounded on an acceptable body of theory regarding the nature of the variates
observed. One form of the first, practiced by at least some psychologists, con-
sists of new scores constituting a monotonic function of the raw scores but
adjusted by means of a large sample so as to have a nearly normal distribution,
thus bringing the battery of tests closer to the domain of normal correlation
analysis. This is satisfactory from the standpoint of univariate normal distribu-
tions, though for consistency of multivariate normal theory additional conditions
are necessary, which may or may not be contradicted by the facts.

The replacement of price relatives by their logarithms appears to be a sound
practice. Indeed, a positive factor, the general level, persisting through all
prices, has a meaning and movement of its own; and with it are independent
fluctuations of a multiplicative character. All this points to the logarithms of the
prices as having the right general properties of approximate symmetry and
normality instead of the very skew distributions of price relatives themselves,
taken in some definite sense such as a price divided by the price of the same
good at a definite earlier time. There is also some empirical evidence that
logarithms of such price relatives have normal, or at least symmetric, distribu-
tions. In preparing a program of logarithmic transformations it is desirable to
provide for suitable steps in the rare instances of a price becoming zero, infinite,
or negative. The advantages of replacing each price, with these rare exceptions,
by its logarithm (perhaps four-place logarithms are best) at the very beginning
of a study are considerable, and extend also to some other time variables in
economics.

Nonparametric methods, including rank correlation and the use of contingency
tables and of order statistics such as quantiles, provide a means of escape from
such errors as applying normal theory, for example, through the Student ratio,
to distributions that are not normal. Getting suitable exact probabilities
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based purely on ranks is a combinatorial problem after a decision has been
reached in detail as to the alternative hypotheses to be compared, and the steps
to be taken after each relevant set of observations. These however are often
difficult decisions, lacking such definite criteria as occur naturally in parametric
situations like those involving correlation coefficients in normal distributions.
Changing from measures to ranks often implies some sacrifice of information.
For example, in a sample from a bivariate normal distribution, it is possible to
estimate the correlation parameter either by the sample product-moment cor-
relation or by a function of the rank correlation coefficient; but the latter has a
higher standard error.

In spite of such strictures, nonparametric methods may suitably be preferred
in some situations. The median is a definitely useful statistic, and so, for some
purposes, is M. G. Kendall’s rank correlation coefficient.

One caution about nonparametric methods should be kept in mind. Their use
- escapes the possible errors due to nonnormality, but does nothing to avoid those
of falsely assumed independence, or of heteroscedasticity, or of bias; and all these
may be even greater threats to sound statistical inference than is nonnormality.
These prevalent sources of trouble, and the relative inefficiency of nonparametric
methods manifested in their higher standard errors where they compete with
parametric methods based on correct models, must be weighed against their
advantage of not assuming any particular type of population.

We have not until the last paragraph even mentioned biased errors of observa-
tion. Such errors, though troublesome and common enough, are in great part
best discussed in connection with specific applications rather than general theory.
However, the statistical theory of design of experiments does provide very
material help in combating the age-old menace of bias, and at the same time
contributes partial answers to the question at the head of this section.

Objective randomization in the allocation of treatments to experimental units,
for example with the help of mechanisms of games of chance, serves an important
function that has been described in at least two different ways. It may be called
elimination of bias, since in a balanced and randomized experiment any bias
tends to be distfibuted equally in opposite directions, and thereby to be trans-
formed into an increment of variance. Randomization may also be regarded as a
restoration of independence impaired by special identifiable features of individual
units, as in shuffling cards to destroy any relations between their positions that
may be known or suspected. This aspect of randomization offers a substantial
opportunity to get rid of one of the three chief kinds of nonstandard conditions
that weaken the applicability of standard procedures of mathematical statistics.

Normality, independence, and uniformity of variance can all be promoted by
attention to their desirability during careful design and execution of experiments
and analogous investigations, such as sample surveys. Emphasis during such
research planning should be placed on features tending to normality, including
use of composite observations, such as mental test scores, formed by addition
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of individual item scores; and the removal of major individual causes of variance
leaving as dominant a usually larger number of minor causes, which by their
convolutions produce a tendency to normality.

After factorial and other modern balanced experiments, the unknown quan-
tities are commonly estimated by linear functions of a considerable number of
observations, frequently with equal coefficients. In addition to the other benefits
of such designs, this feature is conducive to close approach to normality in the
distributions of these estimates. A case in point is in weighing several light
objects, which is much better done together in various combinations than sep-
arately one at a time, especially if both pans of the scale can be used, weighing
some combinations against others. In the development of this subject (Yates
[62], Hotelling [25], Kishen [31], Mood [33]) the primary motives were cancel-
lation of bias and reduction of variance, followed by advancement of the com-
binatorial theory. But from the point of view of the present inquiry, an important
part of the gain is the increase in the number of independent observations
combined linearly to estimate each unknown weight. Errors in weights arrived
at through such experiments must have not only sharply reduced bias and
variance, but much closer adherence to the normal form.

One other protection is available from the dangerous fallacies that have been
the main subject of this paper. It lies in continual scrutiny of the sources of the
okservations in order to understand as fully as possible the nature of the random
elements in them, as well as of the biases, to the end that the most accurate and
reasonable models possible be employed. To employ the new models most ef-
fectively will also call frequently for dealing in an informed and imaginative
manner with new problems of mathematical statistics.
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