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1. Introduction

As in other disciplines, statistics and probability have a strong impact on the growth
and development of the psychological sciences; and the substantive problems of the
psychological sciences, in turn, are instrumental in the growth and development of con-
cepts and methodology in statistics and probability. Moreover, this relationship now
also exists, to a much smaller degree, between other mathematical disciplines and the
psychelogical sciences. This marriage of the two subjects has certainly been a legitimate
affair since Galton’s genius operated in the second half of the nineteenth century.

Probability continually looms as an important tool for measurement problems in
psychology, and statistics does its share once a probabilistic model has been formulated.
This paper was sandwiched between two others! whose titles illustrate this point very well.
In the previous paper by Mosteller you were invited to look at recent thinking in prob-
abilistic models in learning theory and some of the statistical problems connected with
the estimation of the parameters of the models. If I may assume one of the prerogatives
of the statistician, I should like to “predict” that you will be treated to a similar repast
in the paper by Anderson in connection with “common factor” factor analytic mod-
els, one of the earliest attempts at measurement of mental ability. However, the im-
portant point to be brought out by the comparison is that in the old sometimes maligned
model discussed by Anderson only questions of inference for parameters of the model
are analyzed in a statistically sophisticated manner with not much attention to the
validity of the model; while in Mosteller’s discussion of a rather new measurement device
in learning theory the emphasis is on the validity of the model.

At this point one might add a trite statement, namely, that the statistician or prob-
abilist should work closely with the psychologist so that the inference machinery of the
statistician, the tools of the probabilist, and the imagination and experience of the
psychologist can be jointly brought to bear on the simultaneous construction of both a
valid model and the inference devices necessary to demonstrate that the model is tenable
on the basis of sample observations. However, who is to determine whether the stat-
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! At the Symposium, this paper followed the paper by Mosteller and preceded the one by Anderson.
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istician’s emphasis is to be placed on the validity of models or the inference aspects
connected with measurement models? The fundamentals of a prospering research system
demand that only intellectual motivation be a consideration before statisticians and
probabilists are arrayed for battle with psychological models. Obviously both types of
activity are necessary and desirable. I should like to add at this point that my position
on the program was not attained by design so that I could make this opening sally
(friendly as Mosteller and Anderson are to me, and as I hope they will remain after this
paper). It just happened and T decided to exploit it.

It would certainly be presumptuous now to make the grandiose statement that I shall
discuss the mutual impact of statistics and probability and the psychological sciences.
The American Psychological Association has some 15 active chapters and each of these
considers itself an aggregate of many areas of inquiry. Some time ago, it was suggested
to me that for this Symposium I consider either some topics in psychology which have
been mistreated by psychologists through the use of incorrect statistical methods es-
pecially when appropriate techniques are available, or some topics for which appropriate
techniques are not available, and yet decisions must be made even though one cannot
calculate the risks of the decision process. This latter point reminds me of my govern-
ment and industrial experiences in the field of acceptance sampling where decision rules
for acceptance or rejection of manufactured products were intuitively constructed and
used, since obviously some procedure was necessary. Quantitative analyses of the risks
inherent in the use of some of these rules were later made by statisticians but there is
usually quite a lag between the actual use of a decision rule and the measurement of its
risks. While the literature of psychology (and other disciplines) probably abounds with
situations where Student’s ¢, or chi-square, or the analysis of variance F are used in-
discriminately, I will not concern myself with this issue. Accordingly, I prefer to consider
the second point raised and choose a specific, though not necessarily small, area of
psychology and discuss a few current issues. The topics I choose to discuss fall under two
general headings: (1) item analysis and (2) classification techniques. These two topics
are, of course, related since the first represents a fundamental study in test theory and
is therefore a natural precursor of the second topic which is based on the results of
testing. I should like to reiterate that the emphasis for these two topics will be on
unsolved or unclear issues.

2. Item analysis

The subject of item analysis has received considerable attention in psychological and
other journals. We can embark on this subject in much the same manner as most au-
thors do by assuming the testing situation to be a rather simple one and then notice
that we are rather quickly confronted with intricate if not deep problems. Suppose that
a test is composed of K items and the response to a test item is either right or wrong and
can thus receive the value one or zero. Then the test score is simply the sum of the num-
ber of correct responses. Before going any further let us begin to mathematize the situa-

tion. Let X, be the ability to answer item g, g = 1, 2, - - - , K, and assume item g is
answered correctly when X, = a,. Let Sy, Ss, - - -, Sk denote the chance variables
which are

S, = 1if item g is answered correctly

S, = 0 if item g is answered incorrectly
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and let X, be normally distributed with zero mean and unit variance (this will cause no
loss of generality). Then P, where

(1) Py=P{S;=1}=1—(a,),
with

X
(2) & (X) =712=Tf_ e—t*/2dt

is termed the difficulty of item g. For further theoretical development of item analysis
to which we shall soon return the aforementioned description of item difficulty can
suffice; however, the estimation of item difficulty can quickly lead to interesting prob-
lems.

3. Item difficulty

Suppose there are f possible responses to an item (multiple choice test) and the item
is marked zero for an incorrect response and one for a correct response. This means zero
can occur in (f — 1) ways. If T is the total number of persons responding to the item
and R is the number of persons correctly responding to the item then, in general, R/T
may not be a reasonable estimate of P, as defined above for there may be individuals
with correct responses who either from a lack of knowledge guessed correctly or from
partial knowledge narrowed down the possible choices and then guessed correctly. On
the other hand there may be those who responded incorrectly because of misinformation,
but who would have obtained the correct answer otherwise. Obviously, knowledge of the
underlying information model is necessary to obtain reasonable estimates of P,. If the
individuals are basing their responses on the tosses of an f-faced die then one should
reduce the number of observed correct responses by the average number of incorrect
responses over the (f — 1) incorrect categories of response before dividing by the total
number of responses or

b e )

where R, is number of correct answers to the gth item

W, is number of wrong answers to the gth item

T, is total number of answers to the gth item.

However, it is unrealistic to assume the choices are equally attractive to the examinees.

An interesting, more realistic, model was proposed by Horst [6] some twenty years
ago. Horst assumed that those who do not know the correct answer fall into various
subgroups. The first subgroup is composed of those who know nothing about the alterna-
tives in question and distribute their responses equally to all of the f possible answers.
A second subgroup is composed of those who know that one of the alternatives is wrong
"and distributes its answers uniformly over the remaining (f — 1) choices. The sth sub-
group is composed of those who know that s of the alternatives are wrong (0 < s =
f — 1). Then Horst showed that

1
) P} =7 Re—W7)
g

where W% is the number of persons selecting the most frequent incorrect answer is a
reasonable estimate of P,.
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On the basis of empirical observations one could say that where the correct responses
to an item are less than one would expect by chance, then apparently misinformation is
operating while conversely better than chance responses indicate a partial information
framework. Thus, a correction based on blind guessing can seriously underestimate or
overestimate item difficulty when partial information or misinformation respectively
are operating. Beyond this statement nothing more exact can be done unless the under-
lying situation can be quantified. Horst succeeded twenty years ago in formulating a
simple probabilistic model of the use of partial information. It seems to me that some
effort in formulating other models incorporating partial information or misinformation
would be quite useful in the determination of item difficulty. In line with my opening
remarks this effort, rather than the tenability of existing models, obviously deserves
primary attention in this area.

4, Item parameters and item relationships

Now to return to our general development of the subject. One of the prime purposes
of item analysis is to gain as much information as possible about the distribution of test
scores resulting from our K item test. Usually this information is desired in terms of the
item difficulty P, and the intercorrelation between any two items g and %, namely pj.
In the test literature, the K items are usually measuring an underlying trait y (as-
sumed to be normally distributed with zero mean and unit variance) with the under-
standing that the item intercorrelation matrix has rank one since the items are saturated
with the underlying ability only and thus the Spearman single factor model is operating
between the items and the underlying trait. A corollary of this model is that for a fixed
ability

(5) P{S, = 1,5 = 1|y} = P{S, = 1|y} P{Su = 1|5},

or the partial correlation gk, = 0. This also leads to gy = phy Py 2nd thus relates
item intercorrelation to item-ability correlation. We may also write

* ¥

*32 pg p

(6) p — e af
pef

where p,, oy, and gty are any three elements in the item correlation matrix subject only
to the restrictions imposed by the subscripts. Since X, and y have bivariate normal dis-
tributions with known covariance matrices, the marginal distribution of X, given y is
normal with mean (phyy) and variance (1 — pj2). The joint distribution of X3, X5, - - -,

X,, "+, X&, y can now be written. Since
(7) P(Xl, Xﬂ) Ty XK; }’) = P(le X2y Ty XKIy)?(y) ’
thus

(8) P(Xn X‘Z:' * 'yXK: y)

=C exp —%[ifﬁl&:gﬁ+yz] bax.dX,, -, dXxdy,
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where
(9) c= . :
(g+1/2 *2\ 1/2
(2m) (1= pg)
[Ta-e

By means of this terminology we can now discuss what has been labeled the item char-
acteristic curve (ICC). This curve expresses the relationship between the probability of a
correct item response and a fixed point on the ability continuum. Thus we get

>y — a
(10) ICC=P{S,=lly}=<I>(%"”1L—_~——;§).
This should not be confused with either the item difficulty P, or the regression of X,
on y which by the above discussion must be linear. It is interesting to note that in latent
structure analysis, Lazarsfeld [8] attempts somewhat the reverse procedure of deriving
the distribution of the underlying trait from a known distribution of test scores plus
some assumptions about the ICC function; he calls the ICC the trace line of the item.

To return to our basic discussion it seems likely that information on Py, ... 4,
(n=1,2,---,K) the proportion of persons answering all of the items g1, g3, - * , g
correctly will be necessary to determine the moments of the distribution of test scores.
As we shall soon see it will be necessary to determine P,,,, in order to get the interitem
covariance from test scores.

Suppose we wish to get the interitem correlation from test scores. Call this p;» and
notice that it is different from g, which can be determined from our underlying model.
Of course, pys and piy, will be related and this relationship will help explain,? as we shall
see shortly, an alleged paradox in test theory, apparently first discussed explicitly by
Tucker [19], and called the “attenuation paradox” by Loevinger [9]. We know that

(11) Pan = Pﬂh—PFPh
* VP, (I=P)P,(1-Py)’

and since P, and P; are item difficulties we must still determine P,5. Now
(12) P{S;=1,S5=1]|y}

AT X = pay)® | (Xn—py)*
12l + Ik

wpa TP AT T Ty Y
_../u;‘/a;l 21',(1_’)::’2) 1/2(1_p':,2) 1/2 XgQ Xp,
and thus
(13) P0h=P{Sn=1,S}.=1}
1
P ;_71—_7;"27[X3—29:;1X0Xh+-¥:] ;
2
—~/¢;./¢; 2 (1—p22) 12 dx,d %,

where ph, = poyPhy-
Thus p,4 is a function of pt;. and the item difficulties and their relationship can be de-
picted graphically through the use of the bivariate normal tables in Tables for Stat-
2 Much of the work presented here and related to the attenuation paradox in test theory will be con-

tained in a report on “Statistical Formulation of the Attenuation Paradox in Test Theory” prepared
under Air Force Contract AF 18(600)-941 (School of Aviation Medicine) by Dr. Rosedith Sitgreaves.
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isticians and Biomelricians. When the item difficulties are equal, that is, P, = P, =
1 — ®(a) and o? = ®(a)[1 — P(a)] then

Pop— [1—®(a)]?

s = @I (@]

6. The attenuation paradox

An important study in item analysis centers on the choice of items which optimize two
operating characteristics of a test of K items. These two characteristics are the “reliabil-
ity of a test” and the “validity of a test.” The meanings of reliability and validity in test
theory are essentially the same as the meanings of precision and accuracy, respectively,
in any measuring device. By reliability we usually mean the stability of test scores after
many repetitions of the test and measure it by the correlation of two parallel tests.
Validity, also measured by a correlation coefficient, is the relationship between the test
and ability (the single common factor). The discussion thus far has been a prelude to
the consideration of the “attenuation paradox’ in test theory. Briefly, several authors
have demonstrated that if item intercorrelations and item difficulties are the same for
all items, then as item intercorrelations increase, the reliability of a test continually in-
creases but that a point is reached in the process where validity, which is also increasing,
reaches a maximum and then decreases. It is difficult to imagine at first why one should
construe this to be a paradox since precision and accuracy (or reliability and validity)
need have no relationship to each other. However, the underlying single factor model be-
tween item and ability can give some justification to the feeling in this instance. The
higher the item-ability correlations the higher the validity of the test. But higher item-
ability correlation means higher interitem correlation since g, = ph,0hy; and this in turn
leads to higher reliability. Since reliability and validity of a test as we shall specifically
define them can be written in terms of item intercorrelations and item difficulties, it
should be possible to “‘explain’ the paradox just from the mathematical manifestations
of the formulations made by researchers in test theory.

K
The reliability of test scores pgs is defined in the following way. Let S = 2 S; be
i=1

the test score, then

K
2;0'00

K
(15) Pss—-K—:T 1—

where o, = V(S,) = P,(1 — P,) and o, = cov (S,Sn) = Pyn — PyPy. Then we may
write
K K
1/2 _1/2
E E PorOog Ohh

g=1 h=1

pes = K g#h
55 =
(K—1) K K K
2 o5+ E Z Paha'tln/lzo'%z

g=1 g=1 h=1

g#h

(16)
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At this point the reliability is a function of number of test items, intercorrelations of
items based on test scores, and item difficulties. Now to examine the alleged paradox,
let pgo = p; 8, B =1,2,- -+, K; 049 = 0*;g=1,2,- -, K; then

Kp

a7 PSS =TI (E=1p

Thus as the equal item intercorrelations increase, the reliability increases.
Validity is defined as the correlation between S and y; thus we can write

E(yiS,)—E(y)E(iS,)

g=1 9=1
(18) Psy 308 .
This reduces to
K
D E(Sy)
(19) psy =,
(4]

since E(y) = 0 and o, = 1. Now E(S;y) = E,[yE(S,|y)] so that

20 E6o) = [ 52y
[4 oy

1

2 _ . % 2
* €Xp [W(Xa 200Xy +y )]dx,dy

or

® 1
E(Syy) =_/: v
(21) ,

_X © y _1 % 2
ce[ =52 s [ V27 (1— piny 2 P [2(1—-,,;;2) (v = ohXo)* | dy.

This reduces to

* —al/s

(22) E(Syy) =20,

which then leads to

K
* —a/2
Z poye °

g=1
(23) Psy = )
- K K 1/2
VI (23 om)
g=1 h=1
or
K
e—(u;+a;)/2p:”p:v
g=1 h=1
(24) poy =
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Since from the underlying model g, ok, = o4, We can write

K
—(aj+a)/2 %
e v h Pon
ge=l Am]

K E K :
2 2 E /2 1/
27 [ o+ Pﬂh“’tlm O'hhz]
=1 g=1 h=1
g#h
Now since the item difficulties and item intercorrelations are equal we write a; = as =

a, oo = p*, pon = p and thus in this situation the validity ps, is defined by

2 _ .8_“’Kp*
P = st I+ (K—1) p] -

Now recall, of course, that p is a function of p* and we can thus examine the validity
psy When item difficulties are equal and the interitem correlations increase. Suppose we
consider the parameters usually quoted by test theorists in examining the attenuation
paradox, namely the item difficulties are all at the fifty per cent level; this means a = 0,
o=*%and
2 p*
27 V=2 [t =] -

Moreover, when a = 0, ¢ = %, we get p = (2/7) arcsin p*. This relationship is plotted
in figure 1 for three values of the item difficulty. Notice that the second factor on the

(25) psy =

(26)

1.0

FiGure 1

Relation between p and p*, where p is the correlation between two item scores and p* is the correlation
between the underlying abilities to answer these items, for three levels of item difficulty.

right-hand side of the equation is very similar to psg; the only difference resulting from
the fact p* appears in the numerator of ps,. This is, of course, also true for any a or ¢2.
However, it is now possible to demonstrate that certainly pss increases with increasing
p while pg, will reach a maximum and then decrease except as is obvious for the special
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case K = 1 when pgy will also be an always increasing function. The point at which the
maximum validity will occur can be obtained by differentiating ps, with respect to p
or p* and setting the resulting equation equal to zero. This leads to

2(K—1)p*
That is, the maximum value of the validity occurs for that value of p* such that
*
(29) b= 2P L

x(l—p*) 12 K—1"

Thus as reliability and validity are defined we do specifically come to a paradox. In figures
2 and 3, the relationship between reliability and validity is portrayed for P, = .50 and
= .84, Similar graphs appear in Tucker’s article [19] since he apparently treats the
same probabilistic model but his presentation is rather tedious for the statistician to
follow.
In one attempt to explain the paradox Lord [10] essentially states that pg, is not a
good index of validity in the region of the paradox. Lord, however, only discusses the

K
curvilinear regression between S, and y. While E(S|y) = ZE (S, ]y), it is the re-
=1
gression of test score S on ability y which is important for this discussion.
Now consider the situation for equal item difficulties and equal item intercorrelatijons

K
and write the conditional distribution of test scores S = ES, for given ability y.
=1

This is

—an_(K py—a) (a*py K"
(30) P{S le}—(j)[(b (=915 (AI=p9 % .
Thus the regression of .S on ¥y is

*1/24) — a

(31) E(S|y) =K<I>[(—p1-—_%,—)7/5].

This is a curvilinear relationship between S and y whose curvature increases with increas-
ing p*. Thus in the region of the paradox, psy which stems from a linear regression model
and is our usual measure of validity seems to be most ill-fitted for its task and a new
measure of validity could be more meaningful and possibly eliminate the paradox. To
further explore this issue and possibly eliminate the paradox one could look for a rela-
tionship index between S and y which would satisfy the curvilinear regression. One
possibility which immediately suggests itself is 7% the correlation ratio, which is the
usually indicated measure of relationship for this type of regression situation.

6. Classification techniques

The problem of classification is an old one in scientific method. Especially in this
topic do we find procedures continually proposed with very little analytical evaluation.
This does not mean that entirely reasonable procedures cannot be derived on a purely
descriptive basis even though it may be mathematically impossible to perform analytical
evaluations of them. However, quite a few classification procedures have been proposed
and are used that are capable of analytical assessment. At this point, for the purpose of
this discussion, I should like to define two subareas which together probably comprise
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Relation between reliability and validity coefficients when all item difficulties are .50 and the interitem
correlations are equal. [Note: The reliabilityZcoefficient is a monotonically increasing function of the
interitem correlation. See equation (16).]
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Relation between reliability and validity coefficients when all item difficulties are .84 and the interitem
correlations are equal. [Note: The reliability coefficient is a monotonically increasing function of the
interitem correlation. See equation (16).]
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the whole area of classification research. One is the situation where an element is to be
assigned to one of £ groups where £ is known but information on the probability dis-
tribution of observables for the groups runs the gamut from complete ignorance of the
functional form of the distribution to the point where the functional form and all param-
eters are known. One part of this problem is the selection of observables which maxi-
mize appropriately defined distances among the % groups, a study which has received
emphasis in the writings of R. A. Fisher and C. R. Rao. The other situation can be char-
acterized in the same manner except that the value of % is unknown. For the purposes of
this exposition, we can refer to the first situation briefly as the ‘““assignment” problem,
and the latter situation as the “clustering” problem.

7. The assignment problem

The assignment problem has received the most sophisticated statistical treatment in
exactly those instances which are probably most unrealistic. For the situation where an
observation is to be classified as coming from one of two multivariate normal populations
with unequal means but equal, although unknown, convariance matrices, Wald [20],
Anderson [1], and Sitgreaves [14] have made significant contributions to the development
of the distribution theory of some classification statistics. This is important for the com-
putation of probabilities of misclassification. The case of two equal but unknown covari-
ance matrices is not too realistic in practice although it does simplify the mathematical
treatment.

We can describe the problem briefly as follows. Consider N1 + N + 1 independent
p-dimensional chance vectors. The first V; vectors are observations from a population
II;, the following N observations are from population II, and the (¥, 4+ N, + 1)st
observation is from a population IT where II is either IT,; or II.. The probability distribu-
tion in both II; and II; is multivariate normal with the same covariance matrix Z; the
vector of expected values is u in IT; and u® in II;. The values of u™, u®, and T are
not known. Let X denote the p-(N, + N2 + 1) matrix of observations. On the basis
of X we want to classify the last observation Xx,4~,+1 as coming from II; or II,. When
the parameter values are known, the class of Bayes solutions is easily found, resulting
in pairs of classification regions of the form

(32) T*<T, and T*>T,,
where

(33)  T* =Xl 127 (0O = p®) — § (p® 4 p®) 271 (uO — pO).

Both Wald and Anderson proposed the use of classification procedures derived from (33)
by substituting estimates for the unknown parameter values. Wald proposed principally
the statistic

(34) U= Xy +n+151 (X0 - X®),
where
1 N, 1 Ni1+Nq
35 Xo=—Sx,X0=— X.,
33 N1¢E-1 ¢ N t=;,+1 ‘
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and
1
(36) 5= N1+ N.—2
N, N;+Ny
APMCAS OIS OENDINC B OTeES O
t=1 t=N,+1

Anderson proposed the statistic
(37) W=XN w5 (RO = X®) — 3 (X0 4+ X) §1 (X0 — X).

Now it can be shown that U = &V, where V = ¥4V, the p components of the vectors
Y, and ¥, have multivariate normal distributions with different mean vectors but
identity covariance matrices, 4 is a p X p positive definite matrix with a Wishart dis-
tribution involving N; 4+ N, — 2 degrees of freedom, and ¥V, ¥z and 4 are independent-
ly distributed. We can also write W = a¥{ A~'Y; + bY, A~'¥; where a and b are known
scalars and V,, Y2 and A are defined as before. In this situation the mean vectors of
Y, and Y, are proportional. When Ny = N,, b = 0; and thus the Wald and Anderson
statistics are equivalent. In order to determine the risks, that is, the probability of mis-
classification, in using say the Anderson statistic W, we must determine the distribution
of W. Life will be a little more complicated because the distribution of W contains a
nuisance parameter 2\ which is the square of the distance between the centroids of the
two multivariate normal populations, that is,

P
(38) 23 = 3% 3 ot (u — ) (P — ).

=] =1

The exact distribution of W is a formidable exercise. When we know all the parameters,
it is normally distributed with mean 2A\? and variance 4N if the (Ny + Na+ 1)st
observation is from one population, or normally distributed with mean —2\? and vari-
ance 4\? if the (N, + N3 4 1)st observation is from the other population. Thus for large
samples we can say it is approximately normally distributed since the estimates used in
W are consistent estimates. However, the approach to normality in large samples de-
pendson p aswellasn = Ny + Ny — 2.

An attempt was made to obtain the distribution empirically by machine methods at the
Institute for Numerical Analysis, University of California, Los Angeles, for p = 1(1)15;
#n = 50, 100, 200; N = 0(.5)2. The first four moments were also obtained in this
manner. A better glimpse at the approach to normality can then be obtained especially
insofar as the value of p influences it. Moreover, approximations of the Cornish-Fisher
type can be employed for moderate size » and then compared with the exact results.

Since the distribution of W contains 2)?, values of this parameter must be generated
in some way so that in a practical situation the probabilities of misclassification can be
computed. Since 2\? will usually be unknown, information contained in the sample
observations should be used to generate confidence intervals for 2\%. If this were done,
then probabilities of misclassification could be computed twice, once for each end point of
the confidence interval, and if the larger of the two resulting probabilities is relatively
small, or if the two are not far apart, a meaningful result is obtained. Where they are too
far apart, one can either obtain more observations or decrease the confidence coefficient
or do both in order to yield a shorter confidence interval. However, the generation of
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confidence intervals is not an easy matter for this situation. When p = 1, tables of the
noncentral ¢ distribution are necessary, and when p > 1 tables of the noncentral F dis-
tribution must be available. For the former case, the now classical Johnson-Welch
tables [7] can be employed to produce an adequate graphical device for general use.
I also understand that rather comprehensive tables of the noncentral ¢ are being com-
puted at the Applied Mathematics and Statistics Laboratory, Stanford University. For
the latter situation some tables and graphs of the noncentral F exist [12], [15] but I
understand that the Statistical Engineering Laboratory of the National Bureau of
Standards is preparing more extensive tables which could aid in producing a graphical
device for obtaining confidence intervals when p > 1.

Once we leave the rather special case of two multivariate normal populations with
equal covariance matrices, sophisticated statistical treatments diminish. Fix and Hodges
[3], {4] discuss a rather interesting nonparametric approach to the assignment problem.
Their general idea is to assign the observation to I, if most of the nearby observations
are from II;; otherwise it is assigned to IT,. Let us simplify matters by supposing the
sample sizes are equal. Then if we choose an odd integer 7, a specific procedure of their
general class of procedures is obtained by assigning the observation to that distribution
from which the majority of the r nearest observations came. Their procedure depends
on a notion of “distance” in a p-dimensional space in terms of which the N; + N,
observations in the combined samples can be ranked according to their “nearness” to
Xn+np+1. Fix and Hodges [4] evaluate the operating characteristics (probabilities of
misclassification) of some special cases falling out of their general procedure but more
important, they have opened up some very interesting problems in both the mathe-
matical and quantitative aspects of classification theory.

Von Mises [11] in one of the earliest analytical attempts at classification considered the
assignment of an individual into one of £ completely specified univariate groups. He con-
sidered the risk of equal probabilities of misclassification and demonstrated how to
choose classification regions which minimized these equal risks; essentially he obtained
the minimax solution for the special case considered. Along the lines of classification into
one of 2 groups, Tiedemann [18] treats an interesting model. His model is as follows. In
a given population II;, p psychological measurements made on individuals in the popu-
lation have a joint multivariate normal distribution with means u{*, ui?, - - - | p{" and
covariance matrix [o{}]. Two individuals in the population with measurements (x1, %2,

-, xp) and (y1, y2, * * *, ¥p), Tespectively, are said to have similar profiles if

P
(39) 0= 33 3= 50 (5, = u{0) (5= ) = 3 3 00 (3,= uf9) (7, = uH).
i=1 =1 i=1 j=1
The distribution of these quadratic forms in II; is a chi-square distribution with p
degrees of freedom. For any specified value of Q, Tiedemann defines the corresponding
“centour” score as the probability in per cent of exceeding the specified value of Q. Thus
when Q = 0, the centour score is 100. Consider now % populations ITy, IT,, - - - , II; in
each of which the p measurements are jointly normally distributed but with different
means and different covariance matrices. The actual values of the means, variances,
and covariances are unknown but estimated from the samples drawn from the popula-
tions. It is desired to assign an observation vector to one of these populations. With the
use of the estimated parameters, the centour score for the observed individual is deter-
mined for each of the % populations and the individual is assigned to that population
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for which he has the highest centour score. This looks like a reasonable thing to do but
it would be interesting to assess the costs of misclassification through the use of this
classification procedure. Moreover, if one just considers the general % population assign-
ment problem in the simplest case, that is, Z completely known multivariate populations
(the generalization of the von Mises study), the choice of classification regions, let alone
assessment of probabilities of misclassification, is still unexplored.

8. The clustering problem

Especially in the psychological sciences has there been an emphasis on what may be
termed the clustering problem. This can be looked at geometrically in the following
sense. We are usually given N points in a multi-dimensional space and the problem is
to delineate either an optimal number of clusters or a specific number of clusters. This
also means identifying the foci and the boundaries of each cluster. The important prob-
lem in each situation where this is to be accomplished is the designation of the actual
procedure to be used to assign an element to a group. A somewhat well known situation
occurs in bi-factor analysis where tests are grouped before the analysis is started. Hol-
zinger [5] proposed in this case the use of a coefficient of belonging, B, which is the ratio
of the average correlation between all tests in one group to the average correlation be-
tween a test in the group and a test outside the group. Obviously the higher values of B
indicate “more” clustering. If the addition of a test to the group causes B to diminish,
then the test is not considered part of the group. A big question here is what constitutes
a significant drop in B. Obtaining the exact distribution of B is too formidable, yet there
is no reason why it should not be used with a decision as to what constitutes stability in
B based either on subjective feeling or previous experience. Other procedures have been
initiated in this context; for instance, Thomson [16] suggests that the five highest ele-
ments in each row of the correlation matrix resulting from the test battery be labeled
and then all those tests which have the same five columns labeled be put in one group.
This sounds reasonable, as did B, but assessing the risks of the procedure also provides
quite a problem.

A typical problem, simplified somewhat for exposition purposes, that may yield to
analytical evaluation is as follows. Suppose we consider a psychiatric institute in which
~ each of N patients is subjected to p tests. Assume the test score for the ith test is either
zero or one with probabilities Q; or P; ( = 1,2, - - - | p), respectively. Obviously, two
individuals having exact scores over all p tests can be considered to have the same test
score profile. However, all V individuals will not usually present appropriately delineated
profiles. It appears that in this special situation some index of the test scores could be
formulated whose risks could be assessed. What might operationally be hoped for in the
clustering index would be its selection of % clusters, where within each cluster, for in-
stance, the period of hospitalization required is roughly the same. This is also, of course,
the item analysis problem where the responses to the items are dichotomous but a total
test score obtained by algebraic summation is not meaningful. This occurs in personality
and biographical inventories. .

There is another interesting way of looking at this type of problem which has only
recently been subjected to analysis. Suppose that instead of the profiles of &V individuals
based on p tests and obtained at a specific time we consider the profiles of N individuals
based on one test (for simplicity) given over p time periods. Here each individual is
again represented by p coordinates but the assessment of profile similarity now depends
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on time series analysis, a methodology which has received great emphasis in the physical
sciences, engineering, and economics. While recent work in spectral analysis provides
some means for comparing two time series, a test for the homogeneity of N spectral
functions obtained from N time series has not been considered. Moreover, if we consider
more than one test for each individual over the p time periods, the problem becomes
even more difficult.

Cronbach and Gleser {2] discuss several approaches to assessing similarity between
profiles. One interesting phenomenon in their paper seems to be the preference for the
Cartesian form to measure the distance between two points in multi-dimensional space
rather than the Mahalanobis distance even though the coordinates are referred to a set
of oblique axes. In an interesting article, R. L. Thorndike [17] presents an index of cluster-
ing based on Cartesian distances. His procedure is as follows. Assume a specific number
of clusters 2, 3,4, - - - then compute the average within cluster distance where distance
between any two points 1 and 2, assuming a p-dimensional framework, is

D
(40) Dh= (Xjp—Xp»".
i=1

Then plot as abscissae the number of clusters and as ordinates the average within
cluster distance. When this curve sharply approaches a point whose tangent has a slope
equal to zero, the optimal number of clusters is reached. This is certainly a reasonable
intuitive method but after trying it on some artificially constructed clusters to determine
reproducibility of the artificial universe, Thorndike feels it is not too effective. It would
be interesting to assess analytically Thorndike’s procedure since it is an attempt which
minimizes the amount of labor through the use of D2 For instance, how much correlation
can exist between coordinates and still not affect the clustering principle when D? is
used as a measure of distance? Rao in his book [13] discusses the same procedure for
clustering except that distance is measured by

D P
(41) DR =>] Eﬂ‘i(Xel—Xiz) (Xj1— X))

i=1 j=1

It would also be interesting to assess analytically this procedure. In general, the stat-
istician might find the clustering problem a fertile area ready for successful exploitation
but probably only after much concerted effort.
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