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1. Introduction
1.1. The usual applications of the method of Lagrangian multipliers, used in locating

constrained extrema (say maxima), involve the setting up of the Lagrangian expression,
(1) +(x, y) = f(x)+y'g(x),
where f(x) is being (say) maximized with respect to the (vector) variable x = x,
XNJ, subject to the constraint g(x) = 0, where g(x) maps the points of the N-dimensional
x-space into an M-dimensional space, and y = Iyi,.-. , YM} is the Lagrange multiplier
(vector). Here, { I indicates a column vector; the prime indicates transposition, so
that y' is a row vector.

The essential step of the customary procedurehs the solution for x, as well as y, of the
pair of (vector) equations, r

(2) 6(x, y) = 0, g(x) = 0,

where 4h(x, y) = f O,(x, y)/Oxl, *, O+(x, y)/OxNl. Let (x, y) be the solutions of
equations (2), while 2 maximizes f(x) subject to g(x) = 0. Then, under suitable restric-
tions,

(3) x x.

1.2. In [1] Kuhn and Tucker treat the related problem of maximizing f(x) subject to
the constraints' g(x) 2 0, x > 0, where, for an arbitrary K-dimensional vector a =
{a,, * * X aiK), the relation a 2 0 is here defined to mean ak 2 0 for k = 1, *, K.
Another definition of vectorial inequalities, permitting greater generality of treatment,
will be used in later sections of this paper. There we shall treat directly the class of situa-
tions where f(x) is to be maximized subject to g(l)(x) 2 0, g(2)(x) = 0, x[l] 2 O, x[ ] not
restricted as to sign, x = {x'll, x[2]}.

Denote by CO the set of all x satisfying the constraints g(x) 2 0, x 2 0. The two re-
sults stated below are of fundamental importance for the problem considered.

(A) (See theorem 1 [1].) Let g satisfy the following condition (called Constraint
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1 In [11 ourf and g are respectively written as g and F. The symbol in [1] for the Lagrange multiplier
(our y) is u.



2 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

Qualification, here abbreviated as C.Q.).2 If x is a boundary point of C0 and x satisfies
the relations,

(4) ga(X-x) > O

(5) xb -b>O

where"-" over a symbol denotes its evaluation at x = x, g = fg,g% X, g = 0, g > 0,
x = {xG, xb}, x?> 0, and ? = 0, then there exists a differentiable vector-valued func-
tion # of the real variable 0 whose domain is the closed interval (0, 1) and the range is
in CO; that is, x = 4,6(0), such that 4,(0) = x and 4'(0) = X(x -x) for some positive
scalar X.

Under this condition, if all derivatives used below exist and if x maximizes f(x) for
x ECO, there exists y satisfying the conditions

(6) eTx _O, fz< O, x' O,

(7) Y o, fv2O, Y =°
where fz and fv are partial (vector) derivatives of the Lagrangian expression (1) evalu-
ated at (x, y).

(B). (See theorem 3 [1].) If the hypotheses specified in (A) hold and, in addition, the
functions f(x), gm(x), m = 1, * * *, M are concave,' there exists a pair (x, y), satisfying
conditions (6) and (7), such that (x, y) is a nonnegative saddle-point (NNSP) of O(x, y),
that is,

(8) +(x, y) <_ (x, ) +(x, y) for all x >_O, y _ O;

furthermore, any NNSP (x, ') of +(x, y) has the property that x maximizesf(x) in C,.
According to lemma 1 [1], conditions (6), (7) are implied by (8) regardless of the nature
of +(x, y), that is, even if +(x, y) is not given by (1).

2. A modified Lagrangian approach
2.1. Because of the interesting game theoretical and economic implications of the

theorem in (B), section 1.2 (which the authors will study elsewhere), the question arises
as to the possibility of similar results when some of the conditions of the theorem are
relaxed.

It turns out that results of such nature can be obtained, though not without some
sacrifices. The relaxation is primarily with regard to the convexity assumptions which
fail to hold in some important economic applications (the case of "increasing returns").
The main sacrifices are (1) the Lagrangian expression is modified, and (2) the results
are proved only locally.

The results are presented below in the form of three theorems. Theorem 1 is auxiliary
in nature; theorems 2 and 3 together imply the existence of a local nonnegative saddle-

2 This restriction "is designed to rule out singularities on the boundary of the constraint set, such as
an outward-pointing 'cusp"' (see p. 483 in [1]). It should be noted, however, that because of (4), C.Q. is
a property of g, not merely of C0. Thus g(x) -(x - 1) ', x one-dimensional, lacks C.Q., while g(x)
-(x-1), with the same C,, does have it.

3 A functionf(x) is said to be concave if
(1 - B)f(x) + 0f(x) S f[(1 -0)xO + ox]

for all 0 0 : 1 and all x° and x in the region wheref(x) is defined (see [1], pp. 10-11).
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point for the modified Lagrangian expression. Theorem 3 shows this saddle-point to be
of the type leading to convergence in gradient procedures described by the authors in [3].

The notation differs in some detail from that introduced in section 1. To facilitate
reading, some notational principles are stated in 2.2.1; the main symbols used are listed
in sections 2.2.2 and 2.3.4.

2.2.1. Some principles of notation. A K-dimensional column vector {a,, a2, , aK}
is denoted by a; dim a denotes the number of components in a. If A is a matrix, A' is its

K

transpose. Hence, in particular, a' is a row vector and a' b e akbk is the inner prod-
k=l

uct of the vectors a and b; a. b is an alternative, and sometimes more convenient, nota-
tion for a'b.

[a,, a2, - * * , aK] is the finite (unordered) set whose elements are a,, a2, , aK.
A B is the set of all elements in A but not in B (the set-theoretic difference).

{x 1pX} denotes the set of all x possessing the property p.
If

(9) c(a) = {cl(a), c2(a), * * * X cp(a)}

(10) a = {a,, a2, * a ,

then
(11) ca-ca(a) = OaH p= 1, 2, P k= 1, 2, K.

Further, c, Z. denote, respectively, c(a) and Ca(a) Ca evaluated at a = a.
If 4'(a, b) is a real-valued (scalar) function of the vectors a = {a,, a2, * aK},

b = {b1, b2, * * *, bRT4, then

(12) 4.b=| da'2' k= 1, 2, * ,K; r= 1, 2 * R,

where {ab denotes 4ab evaluated at (d, b).
Sp(x°) = {x ld(x, x°) _ p} where d(x', x") denotes the Euclidean distance between

x' and x".
2.2.2. Some symbols used.

(N. 1. 1) x = (xI, x2, * * N} -

X is the Euclidean N-space of the x's .

/t= [1, 2, , N] .

A" is a fixed (possibly empty, not necessarily proper) subset of ft. As will be seen in
(N.1.4), the elements of A#' are the indices of the components of xl'] as defined in the
first paragraph of section 1.2.

(N. 1.2) z = {Z1, Z2, , ZM} -

Z is the Euclidean M-space of the z's .

,V= [1, 2, * * *, M] .

M' is a fixed (possibly empty, not necessarily proper) subset ofM. As will be seen from
(N. 1.4), (N.2), (N.3), the elements of Af' are the indices of the components of g(l) as
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defined in the first paragraph of section 1.2; the elements of Al -A' are the indices
of g(2) (see same paragraph); g will be defined as (g(l), g(2) }.

(N 1.3) y = tyi, y2,.* , YMI .

Y is the Euclidean M-space of the y's. Here Y is the space of the real-valued linear
functions on Z. Even in the Euclidean case it is convenient to distinguish between the
two, since our definitions of nonnegativity in the two spaces differ.

( xf >O for ne/V' .
(N.1.4) xZOmeansX

I x, unrestricted as to sign for n E 4'.
X+ is the set of all x 2 0 .

f Zm-° for m EA'.
8 2 0 means

zm.O for mEI'.

fY^O ormEAl'.
y 2 0 means y form

Ym unrestricted as to sign for m E Al'.
For any vector a = {a,, a2, , ak}I

a =O means a, = O, a2 =O, aR = 0

a >0 means a, > 0Oa2 > 0 - aK >O;

a < 0 means -a > 0.

(N.2.1) 'g is a function on X+ to Z. Hence 'g(x) = 'gi(x), 'g2(x),.*, 'gM(x) where
the 'g., m E Al are real-valued functions.

(N.2.2) We shall find it convenient to work with some of the 'gi, m E A' replaced by
their negatives. More precisely, we write

'g. if mEAl-,'
g

-'gi if mEAl,

where Al- AA( AlV' will be defined in section 2.3.4.

g=f g1, g2, ,gM) -

Note. Since Al- C Al- Al', it is seen that the conditions

'g(x) 2 0, g(x) _: 0

are equivalent. For practical purposes, one could consider the problem as given directly
in terms of g, rather than 'g. We start with 'g, however, in order to avoid the impression
of a loss of generality in connection with the assumptions of section 2.3.4.

(N.3) C. = (x l'g(x) 2> O, x 2: O} (X lg(x) 2- O, x 2t O}

(the "constraint set").
(N.4) f is a real-valued function on X+ (the "maximand") .

(N.5) Of = tx'l x' E C, and f(x) . f(x') for all x E Co}

(the "optimal set").
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(N.6) x = {x(1), x(2)} where

Af") = the set of indices of the components of x(i), i = 1, 2

n E V(1) if n E A' or n E 4t' and i. > 0

n E N(2) if n E 4' and i. = 0

for a given x E Of, and either component may be empty.
Note 1. When a vector a is partitioned into two subvectors, say

a = {a*, a**}

and we say that a* (or a**) is empty, this means that a = a** (or a = a*).
Note 2. The above partitioning of the vector x obviously depends on the point x in

f, chosen. The same is true of the partitioning in (N.7) below and of various subsequent
partitionings of x and g. It is understood that all these partitionings refer to the same
choice of i, and that x, once chosen, remains fixed.
(N.7) g= {g[ll,g[2]}
where

g'll(i) = 0, g[2](j) > 0

and either component may be empty.
(N.8) h(x) = 1 - g(x)

where 1 denotes the M-dimensional vector with l's as components; h1il = 1 - gui],
i = 1, 2.

(N.9) Pmpm(x) = 1 - [h,(x)]'+v", m E Af.
(N.10) 7"= {1u1X 2, , 7?M.
(N.11) ,p(x) = {1P1i(x), 712p2(X), ,p.(x)I
(N. 12) ,O(x, y) = f(x) + y'[qp(x)] (the "modified Lagrangian expression").

2.3.1. A reformulation of Kuhn-Tucker theorem 1. This slight generalization of theo-
rem 1 (see [1], p. 484) is needed here because of the meaning of inequalities given in
(N.1.4). [The possibility of this type of generalization is indicated in [1] (see pp. 491-
492).]4
We shall say that g satisfies the Constraint Qualification (C.Q.) at x, if the require-

ments of the definition in (A) of section 1.2 are satisfied with the inequalities (4), (5) in
the same section interpreted in the sense of (N.1.4). +(x, y) is given by (1) in 1.1. (It is
immaterial whether g or 'g is used.)

THEoREm. Iff and g are differentiable, x E Of, and g satisfy C.Q. at x, then there exists
a y E Y such that

y 0_ ; 9y = 0; f,.y .0 for all y > 0;

x _0; f.-i = 0; f.-x 0O for all x _ O .

[Note that, by virtue of the definitions in 2.2.2, this means that 0Um_ 0 if m E M',
,Vm = 0 if m E M', <_ 0 if n E 4t', fzn = 0 if n E 4t'. The other inequalities of
the theorem are also to be interpreted in the sense of (N.1.4).]

I See also Hurwicz [91, pp. VIII - 2-6.
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2.3.2. Theorem 1.
DEFNTION.6 An M-dimensional vector iq = 171, i72 ...

I* mA is said to be acceptable
if, for each m E At', (1) 7,,, 0O, and (2) 71m is an even integer if h,,(x) < -1.

TIHEOREI 1. If, for some p > 0, x E Sp(x), E Of,g, f and g are differentiable, and g
satisfies C.Q. at x, then, for any acceptable 7, tkere exists a vectory = y(7) such that

(13) 2x< O for all x 2 0;
(14) = 0;

(15) x_O;

(16) y_Oforally.0;
(17) Xv =0
(18) y_0.
The bar over 0 denotes evaluation at x = x, y =

Note that the relations (13)-(18) are necessary conditions for a nonnegative, in the
sense of (N.1.4), saddle-point of ,O(x, y) at (x, y). In particular, the relations (13)-(18)
are satisfied if one selects y = y(71) such that'

(19) (1 + ll)ym(') = ym(O) for all m E .

If the selection is made in accordance with (19), the equality

(20) of = 4
will hold. Here oo(x, y) is ,,O(x, y) with i7 = 0; this is obviously the same as +(x, y) in (1)
of 1.1.

PROOF. For X7 = 0, the preceding theorem follows directly from the reformulated ver-
sion of the Kuhn-Tucker theorem 1 given in 2.3.1. Thus there exists a vector

(21) (°) = I (O),M(0), Y (0)I
with the required properties.

Consider now the case?) # 0. We shall show that 9(n) defined by (19), that is, explicit-
ly, by 1
(22) Ym(71)=+ m(O) X mEA

[where 9m(O) is that of (21)], satisfies the relations (13)-(20).
We first observe that (22) yields

(23) (1 + 7lm)ym(?7)[h(f)1"m = y9(O), m E A.
[When hm(x) = 1, (23) follows directly from (22). When hm(x) # 1, we have 0Mm =
g"(i) > 0, and hence, by (16)-(18), ym(O) = 0; (22) then yields y ..(-) = 0 and (23) fol-
lows.]

Since

(24) s7in z+ (1 + n.) Y. (71) [h. (x) ]m- dlX.( ) n E *
m-1n

6 In many applied problems, h,,(x) 2 0 for all m and all x : 0. It was pointed out by Dr. Masao Fu-
kuoka that, in the absence of such an assumption, the requirement of nonnegativity of the components of
v7 is insufficient for the proof of the theorem.

6 y,,(O) - g in Kuhn-Tucker theorem 1 (see 2.3.1).
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formula (23) implies

(25) 4nf2n+ Ym (0) an X n E ,.

Noting that the right member of (25) is identical with , we conclude that the re-
lations (13)-(15) hold for all I with nonnegative components, since they are known to
hold for X = 0.

Relation (16) is established by the fact that the right member of

(26) i4'tm = p9mG() = 1 - [hA6()I'+m , m C M,
is nonnegative for m E M', zero for m E M' when 1 is acceptable (see the definition
above) since, for any m E M, h,,,(x) < 1, and, furthermore, 70um= 0 if m { A', in
which case hm(i) = 1.
Now suppose that, for some mo E M, '1..o > 0, that is, hmo(x) < 1; then, by (16)-

(18) for 71 = 0, 9mo(0) = 0; hence 9mo(27) = 0, and, therefore,

(27) 60ro*Yro(7) = 0-
Since (27) clearly holds in the alternative case 0,. = 0, (17) follows.
Finally, (18) holds because yr(27) has the same sign as ym(O) and the latter, by (18)

for q = 0, is nonnegative if m e M'.
2.3.3. THEopm m 2. Let,for some p > 0, x E Sp(x), x C Of, such that (13)-(20) are satis-

fied. Then

(28) ( y) < , y) for all y >_ 0.

For we have

(29) (x, y)- (,y)= (y-y), = y ,, _O for y _0

where, since

(30) jv= J
the second equality follows from (17) and the inequality from (16).

2.3.4. Notation.
(N.13) x(2)= X(21),X(22)
where

O4z(1) = 0, O4X(22) < 0

and either component may be empty.

(N.14) x= {x',x"}

where
xi= tX(), x(21)}

(N.14.1)
XII = X(22).

(Either x' or x" may be empty.)
It should be noted that, by (13)-(15) and (N.13),

O''zI = 0 X
(N. 14.2)
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2.3.5. Definition of a regular constrained maximum. In theorem 3 below we use the con-
cept of a regular constrained maximum. The definition of such a maximum is given in
the last part of this section. To state it, we must first formulate three regularity condi-
tions denoted by R1, R2, R3.

Thefirst regularity condition RI. Let x be a value maximizing the function f(x) subject
to 'g(x) _ 0, x _ 0, and hence also subject to

g(x) _ 0
(31)

x>O

where the inequalities are to be interpreted in the sense of (N.1.4).
From (N.6) and (N.7) it is clear that, for sufficiently small variations of x, the con-

straints
g121 (x) 2 0

(3 2)
x(') > 0

which are a part of (31), can be disregarded. Hence, at x,f(x) possesses a local maximum
subject to

g'll(x) 2 0,
(33)

x(2) 2 0.

Let gt be a subvector of gtl1 such that C, = C(,t,9211) and write
(34) ggl] = {gt,gtt}.
The components of gtt can be disregarded in the'process of maximization, that is,

°J, = Of,(gt,g['] . If the Lagrangian multiplier vector y11) (corresponding to the con-
straints g[l] (x) 2 0) is partitioned according to
(35) -PI] Pt(35) y[ll= ~~~~~~{yt,yttj
it is always possible to put
(36) ytt = 0,

and this will be done in what follows.
Assuming that the constraints (33) are consistent, we may replace them by

gt(x) = 0
(37)

x(2) > 0.
The first regularity condition is

(R1) rank (Q(t)) = dim gt = Mt,

say.
Note 1. R1 corresponds to the requirement of nondegeneracy in linear programming

(see [4], p. 340).
Note 2. R1 implies C.Q. (see appendix I).
The second regularity condition R2. Since, by (N.7), (N.6), (N.14.1), and (34),

gt(i) 0
(38)

x.= 0,
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it follows that, as a function of xi, f(x', XVI) = f(x', 0) has at xi a local maximum subject
to the constraints

gt(xI, x")_ gt(xI, 0) =0
(39)

X(21) 0.

The corresponding Lagrangian expression becomes

(40) of'(xl, yt) = f(X', 0) + yt.gt(xl', 0).
Using the reformulation of Kuhn-Tucker theorem 1, given in 2.3.1, we may assert the
existence of a yt such that

(41) x'0; 0

(42) yt0; o44t= 0.

It might happen that some components of yt vanish. Write yt = {y*, y°} where
every component of y* is different from zero and

(43) yO = 0

Let gt be correspondingly partitioned as

(44) gt = {g*, go) .

Now suppose that oe'(x', yt) has a nonnegative saddle-point at (x', yt). By theorem 3 in
Kuhn-Tucker, a sufficient condition for this is thatf and g be both concave. One can then
easily verify that

(45) 0'k'(x', y*) f(x', 0) + y*.g*(xr, 0)
has a nonnegative saddle-point at (x', y*).

But then xr maximizes f(x', 0) subject to g*(xl, 0) > 0 and x(21) > 0. Hence in this
case the components of g° could have been disregarded in the original maximation prob-
lem (OIf, = O,f,g*,g[2])).

However, complications might arise if o4V(x', yt) did not have a nonnegative saddle-
point at (i', yt). To take care of this case, one might require that

(46) g° is empty unless ocl(x', yt) has a local nonnegative saddle-point at (i', yt).

However, to simplify matters we shall impose the seemingly7 stronger condition

(47) g° is empty.

It follows that

(48) M*-dim g* = dim gt--Mt.

Let Mt*[= Af by (47)] denote the set of indices of g*. Clearly, for m E M* n

(,- MA), we may have j. < 0.
Now suppose the preceding reasoning had been carried out in terms of 'g instead of g.

Nothing would be changed, except, possibly, the signs of some components of the La-
grangian multiplier, to be denoted by 'y.

That is, we would have '9m> 0 for m E A* n At and 'ym> 0 or 'yi < 0 for

7 See section 2.3.7.
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m E MI* n (M- /A/'). Let M- be defined by the relation m E A- if and only
if m Ef* n (M- Al') and 'yin < 0. Then, it is clear from (N.2.2) that we may put

(= 4Yi for m E MA M-
(49)

ym=-'Ymfor m E M-,
so thaty> Ofor all m E AM*

Hence, without loss of generality [as compared with (47)] condition (47) may be re-
stated as the second regularity condition,

g° is empty and
(R2)

y. > 0 for all ME AM*.
The first regularity condition then implies

(50) rank (ero)) = M*

where
(51) M* = dim g*.

The third regularity condition R3. When the first two regularity conditions are satis-
fied, second derivatives are continuous, and x' is nonempty, it is possible to show (see
appendix II) that a certain quadratic form is nonpositive when some of the variables
are restricted in sign. The third regularity condition is a strengthening of (71) requiring
that the quadratic form in question be negative under the same restrictions. This con-
dition, analogous to that used by Samuelson (see [5], p. 358) makes it possible to avoid
going beyond second order terms in the expansions used.
The third regularity condition is formulated in terms of a function q(t) of a new vari-

able vector

(5 2)t={t,*}
which is obtained by a transformation of coordinates from x' after the latter has been
partitioned so that
(53) x' = {x*, X**}

where x* is a subvector of x(l).
We shall (a) define x* and x**; (b) write down the transformation defining {t*, t**}

in terms of {x*, x **}; (c) define q(t); and (d) formulate the third regularity condition.
In the remainder of this section it is assumed that R1 holds; it is also assumed that x'

is not empty.
First case: M* = 0. Write

(54) t=t**=x** = xl,

so that, by (52) and (53), x* and t* are empty, and define

(55) q(t) = f(x', F") = f(t**, 0) .

The third regularity condition for this case is formulated in R3 below.
Second case: M* > 0. (a) The definition of x*. From R1 it follows that there exists a

(nonempty) M*-dimensional subvector x* of x(l) such that

(56) a is an M* by M* (M* _ 1) nonsingular matrix.
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We then define x** by (53) and x('2) by
(57) X(l) = {x*,x(l2)}

Clearly
(58) x = {x(12), x(21)}

(b) The transformation from x' to t. Let

(59) h*= 1-g

where 1 is the M*-dimensional vector with (scalar) l's as components. t = {t*, t**} is
then defined by the transformation

(60) t* = h*(x*, x**, xi)

(61) x** .

We also partition t** by
(62) t** = {t(I2), t(21)}

where

#1l2) =X(12),
(63)

t(n) =X(2).

This is obviously consistent with (57) and (61).
(c) The definition of q(t). By (59), the Jacobian H of the transformation (58)-(59) is

(64) H =(0 )

so that, by (56),
(65) HI=-I-g *|id,
that is,
(66) fH is nonsingular .

Hence, locally, (60)-(61) can be solved for x' in terms of t; we may write this solu-
tion as

(67) x'= r(t)

where
(68) r = {r*, r**1
and
(69) x* = r*(t), x** = r**(t) = t**.

The function q(t) is now defined as f(x) evaluated at x" = x" and with x' expressed
in terms of t, that is,
(70) q(t) = f[r(t), xii] _f[r*(t*, t**), t**, 0].

The statement of the third regularity condition. We have now defined q(t) for all M* pro-
vided the first regularity condition R1 is satisfied and x/ is nonempty. It is shown in ap-
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pendix II that, assuming RI, R2, and the continuity of the second derivatives, unless x**
is empty, there exists p > 0 such that, for all t** e Sp(i**),

(7 1) (t** -x**)' t**,** (t*-**) _ 0, if (21) > 0.

The third regularity condition is a strengthening of the preceding inequality. It states
that
(R3) (a) x** is empty or

(b) there exists p > 0 such that, for all t** E Sp(x**), (t** -x**)' it#**(t** -
x**) < 0 if t(21) _ 0 and t** FF x**.

Note. The situation covered by (a) of R3 is of importance since it permits the treat-
ment of a large class of cases where f and g are linear.

DEFINITION. f(x) is said to have a regular maximum at x subject to g(x) _ 0, x _ 0, if
the three regularity conditions RI, R2, R3 are satisfied at x and x E Ofp,.

2.3.6. THEoREm 3. If, for some p > 0, x E Sp(x), x a regular maximum8 of f(x) subject
to g(x) _ 0 and x _ 0, f and g are differentiable (with regard to x), and furthermore, when
x' is nonempty, have continuous second order derivatives with regard to x', then, for all
acceptable' n7 sufficiently large in each component,
(7 2) x' is empty,

or

(73) (xi- i')'y,J..(x'- i?) < 0 if X(21) > 0, xi $6 :V

and for some p' > 0, and all x E Sp'(x) such that x> 0, x #4 x ,

(74) 0[x, yX-0] < Ai[, y(17)]
where ,,t and y(,q) are defined as in theorem 1.

Note.'" Theorem 3 is valid forf, g linear if x** is empty (regardless of whether x* is
empty), provided the first two regularity conditions hold. However, if both x* and x**
are empty, x' is empty, and the theorem follows from the first case considered below. If
x** is empty while x* is nonempty, use the first two cases below together with (90)
(since g* is nonempty and t** is empty). Note that x** is empty at the basic solutions
of a linear programming problem.

2.3.7. Proof of theorem 3. First it is shown that (72) or (73) implies (74). Then it is
shown that (72) or (73) is true.

It can be seen that if theorem 3 is established for the case of {gtt, g°} empty, then
theorem 3 is also true if (i) gtt is not empty, and/or (ii) g° is not empty but O4'(x', yt)
has a nonnegative saddle-point at (x', yt), since in either case x remains unchanged and
the additional terms in the modified Lagrangian expression vanish at y [compare equa-
tions (36) and (43)].

Hence, with no loss of generality, we may henceforth assume {gtt, g°} to be empty,
that is,

(75) gEiJ = g*
We now show that (72) or (73) implies (74), that is, that in a sufficiently small neigh-

borhood, if (72) or (73) is assumed to be valid and the inequalities x _ 0, x $4 x, hold,
8 The term "regular maximum" is defined at the end of section 2.3.5.
9 The term "acceptable" is defined at the beginning of section 2.3.2.
10 The desirability of explicit treatment of the linear case was emphasized by Dr. Masao Fukuoka.
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the conclusion of (74) follows. We write qb instead of q6 throughout. Also (72) or (73),
x > 0, x 54 x, is assumed.

Let

(76) x= x

(77) t X= xi-i, i=I I

First case: " $d 0. By (20) and (N.14.2),

(78) , t = I.'t + fu*." < 0.

But then the conclusion of (74) follows from the well-known "Frechet" property of
differentials"1 which, as applied to the present case, states that, given any a > 0, there
exists an e> 0 such that,

(79) [t [q(XI y)-(X)-t.]]<
if jt| < e.

Choose
(80) 0=-

which is positive by (78). Then, for a sufficiently small 1 , we have by (79)

(81) | [ (x,Iy) (x y) +a]| <a
which implies
(82) 1[ -+(x, y)i <0

and hence the conclusion of (74).
If x' is empty, this completes the proof of the theorem 3, since x $ x then implies

MI $ 0. If xI is not empty, we must consider the
Second case: 0"= 0. Since it is assumed that x $ xc, {II = 0 implies

(83) $l0 0.

In virtue of the existence of the second derivatives of 4 with regard to x' (by definition
of X, and the assumptions concerning the second derivatives off and g with regard to xI)
we have, by Taylor's theorem,

(84) +(x, y)-qb(x, y) = f-Z'' + I(2Y)'+'='V,
where 0gz[ denotes p3lil evaluated at x = x, x = x + OQ, 0 < 0 < 1. It now suffices
to note that (Q)'0 zti' is negative at x [since (72) or (73) is assumed to hold and its hy-
potheses are satisfied] and continuous in the neighborhood of x (by the hypotheses of the
theorem concerning the second derivatives of f and g), so that, for a sufficiently small
e' l, ( < 0. Since fg-i = 0 by (N.14.2), (74) follows.
We now show that (72) holds if x' is nonempty.
First case: g* empty. By equation (75), g[l] is also empty. Hence, by (13)-(15) in theo-

rem 1,

(85) i(v) = yL2](0) = 0

11 See Hille [10], p. 72, definition 4.3.4, equation (iii).
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and, using (N.12),

(86) wt4x, y(n)] = f(x) -

Since g* is empty, we have M* = 0, and, therefore, the definition (55) of q applies,
so that (since x* is empty but x' is not) t** is not empty and

(87) it**t** = f**** = zz.

Equations (86) and (87), together with the third regularity condition R3, yield (73) for
a sufficiently small neighborhood of x.

Second case: g* nonempty. Write

(88) '(t, y) = V{r(t),x", y]
where r(t) is defined in (67). (Where it is desired to indicate the dependence of 4, on 1,
we may write 4, instead of J,.)

Then, by (66), that is, R1, we have

(89) tt = 'tt It--t (H1)'t'z,,H-, t = {h*(x) x**}
since ,q> = of,r = 0 by (20) and (N.14.2).
We shall now show that (73) is implied by

(90) T'/ttT < 0, if r(") > 0, and T $ 0

where the partitioning of T corresponds to that of t. We show later that (90) holds.
To see that (90) implies (73), let x' satisfy the inequalities x(21) > 0, xl 0 x'. Choose

(91) = T= H (x'- ) h*) (x*i
T** ~ ~~~~0I x** -xj**

Since, by (66), H is nonsingular, x' $ x' implies T $ 0. Also, (91) yields
(92) T = X *

hence, in particular,
(93) 7(21) = X(21) _ (21)

But
(94) t(21) = 0

since x(21) is a component of x(2) by (N.13), and x(2) = 0 by (N.6). Hence

(95) T(21) = X

and thus x(21) _ 0 implies T(21) > 0.
Having shown that the hypotheses of (73) imply those of (90), we see that the

hypotheses of (73), together with the validity of the assertion in (90), yield
(96) Tr'ttr < 0.

But, using in succession (91), (89), and simplifying, we have

(97) TPtgT = (xI' - XI)TH {tt(X' - X)
= (x - I)'fl(ft1)' zrzH'H(xI-
- (x' -X')',tri(X' -Xl)
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Formulas (96) and (97) yield the conclusion of (73). Thus it has been established
that (90) implies (73). It remains to be shown that (90) is valid. It is convenient to write
htt in the partitioned form

/;tt*{ t*t* /A B\
(98) it** {** 8B C

where t** may be empty; t* is assumed nonempty, since the case of t* empty was
treated earlier.

It will now be shown that A, that is, j;*,* [compare (98)], which depends on q, can
be made negative definite by a suitable choice of t.

Recalling that A(* denotes the set of indices of the components of g*, and using
(N.9) and (60), we see that, for m E M*,
(99) i.mPm(X) = 1 -tI m

where 4, is a component of 1*.
Since, by theorem 1 and equation (75),

(100) y.(,7) = O for m E

we have, from the definitions of i', q, and ,4 [equations (88), (70), and (N.12), respective-
ly], and the preceding relations (99) and (100), the equality

(101) ([,qy()] q (t) + )~ I Y. (X7)] (1(I m
mEM*

Writing
(102) F =

we have, from (101) and the definition of A that

(103) A = F-D,

where D = Idm,, |, m E M*, m' E M*, is a diagonal matrix [that is, dm,m = 0
for m # mi'] with

(104) dm,m = [YD(,i)](I + ?lm)flm = Em(0)?1i AP,
where the second equality follows from (19).

Let X denote the largest characteristic root of F. Since, by the second regularity con-
dition R2, y5(O) > 0 if m E Af, we may choose %0, for each m E A*, to be a positive
even integer satisfying
(105) 10V > X/Ym(°)
so that
(106) mindm,m >X

mE M*

for all acceptable urn _ 1m -
Then, for any t* $ 0, and each acceptable urn > %0, we have

(107) t*'Ft* _ Xt*'t* X- E t2m< Etm,md tm
mEM* mEM*

=I*Dtn*
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that is, t* $6 0 implies t*'(F - D)t* < 0 for all sufficiently large acceptable 77, or A is
negative definite for all sufficiently large acceptable j.

This suffices to establish (90) and, therefore, (73) if t** is empty.
Now assume t** not empty. Write

I -A-1B
(108) p ( B)

and

(109) 'Q = P'&ttp -

Then methods used to show that (90) implies (73) can be used to show that

(110) w',,w < 0 for w #6 0, w2l) _> 0

implies (90). This is because
I A-1B

(111) P- = (0 AI

and, like its analogue H, performs an identity transformation on t**, so that the condi-
tion t(21) > 0 is transformed into the condition w(21) > 0. It remains to establish (110).
Now from (109), (108), and (98), we have

A O(1 12) (A
=

BA1 )
O C-B' A-lB/

so that wf2w = w*'Aw* + w**' (C - B'A-lB)w**.
Now, we may take A as negative definite, and hence, to establish (110), it will suffice

to show that
(113) Q 8 w**'(C - B'A-lB)w** < 0, if w** w 0, w(21) _ 0.

Before doing so, we shall obtain an auxiliary result.
It will now be shown that the norm of A-' can be made arbitrarily small by choosing

,I sufficiently large. It does not matter which of the many norms is used (see Bowker [6]).
Note that, denoting by N(X) the norm of the matrix X, we have N(A + B) _ N(A) +
N(B), N(AB) < N(A)N(B); if all the elements of a matrix approach 0, so does its norm.
If I denotes the identity matrix, N(I) = 1.

TD1 is a diagonal matrix whose nonzero elements approach zero for iO large; hence, the
same is true of JY1F. Therefore, v can be chosen sufficiently large so that,
(114) I - JY1F is nonsingular,

and
(115) N(D1F)<1.

Following Waugh (see p. 148, [7]), we use the identity, valid because of (114),

(116) (I - DF)-l = I + (I -DF)-D-F,
and the properties of the norm to derive the relation,
(117) N[(I - D-1F)-1] . 1 + N[(I - D17F)-f]N(D-1F) .

From (117) and (115), it follows that,
(118) N [ (D-'F-IY']) 1

- N (D-IF)
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Since A = F - D = D(D-1F - I), it follows that A-1 = (D-1F - I)-1D-l, and hence

(119) N(A-') 5 N (D-1) N [(D-1F-I)-1I < N (D-1)-1-N(D-1F)
which can be made arbitrarily small for q large.

Consider now the quadratic form Q in (113). We have shown, using (101), that
(120) C = = 40**t#-
Hence the third regularity condition, R3, implies
(121) w**'Cw** < 0 if w** $ 0, w(21) _ 0.

As shown earlier N(B'A-1B) < N(B')N(A-1)N(B) = N(A-1)[N(B)]2 can be made
arbitrarily small by choosing a large enough i7. Now
(122) Iw**'B'A-lBw** < N(B'A-lB)w**Pw**,
since the characteristic roots of a matrix are bounded in absolute value by its norm.

Also, denoting by ,u the maximum of w**'Cw** subject to w**'w** = 1, w(21) > 0,
we have

(123) w**Cw** < ,w**'w**

and, by (121), , < 0. With the aid of (122),
(124) Q < [I + N(B'A-lB)]w**'w** ff W** $ 0, W(21) : 0.

By choosing i sufficiently large, so that

(125) A + N(B'A-IB) < 0,
we establish (113), which, in turn, yields (110), (90), (73), and hence theorem 3.

APPENDIX I12

Let the first regularity condition R1 hold. Consider i such that,

(126) gil](X) = 0, g[2](X) > 0, X_> 0,
and x such that,
(127) gC1J(x - i) _ 0, x(2)-x(2) >-0
where all inequalities are to be interpreted in the sense of (N.1.4). Define now the
function gf of x by

(128) g#(x) = {gt(x), x**, XI"}
where x** is defined by (58). Notice that assuming g° to be empty as in (47), g1, like x,
has N dimensions.

It follows that
gst* gt** gt,,\

(129) gg= 0 I

0 0
and hence
(130) IgI= lgt*0Io.

12 This appendix parallels lemma 76.1 in Bliss [11].
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Consider now the relation which associates with a real number a the values I of x for
which the equation

(131) gl(x) = gi(x) + ag(x -)
is satisfied. In virtue of the implicit function theorem, for sufficiently small values of
a(131) defines I as a (single-valued) differentiable function of a, say

(132) x= 1(a),
such that
(133) 41(0)
Differentiating (131) with respect to a and setting a = 0, we have

(134) g9,14(0) = gt(x-)
and hence, because of (130),
(135) 4#(0) =x-x.
We shall now show that

(136) #1(a) E C0 for a _ 0, a sufficiently small.

By (131), (126), and (127)
(137) gt(x) = ag(x-) >- 0 for a 0> .

It follows that

(138) g[l](x) _ 0 for a> 0,

which together with

(139) g[21 [41(a)] 2 0 for a sufficiently small,

yields
(140) g[461(a)] 2 0 for a > 0 sufficiently small.

Now, since x* is a subvector of x(l), x(2) is a subvector of {x**, x"1, hence (127) and
(131) imply
(141) x(2) = p (2)(a) = x(2) + a(x(2) -x(2)) > 0 for a > 0

which, together with
(142) x(1) = *() (a) > 0 for a sufficiently small, yields

(143) #1(a) > 0 for a > 0, a sufficiently small.

In turn, (140) and (143) yield (136).
Now let us interpret "a sufficiently small" as 0 _ a .< X where X > 0 and define

the function # by
(144) #(0) = #1(XO) for all 0 . <0 1 .

Then
A(0) = x

( 145) 41'(0) = )1411(0) = X(x -c) , X > 0,

#(0) EGC0. O 0a 1.

Since (145) are precisely the requirements of C.Q., it has been shown that RI implies C.Q.
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APPENDIX II

We shall now show that, if the first two regularity conditions hold and if in a neigh-
borhood of x,f and g are assumed to possess continuous derivatives of second order with
regard to xJ, then (71) is valid.

Let x** be nonempty. Then, writing

(146) *= h*(x) = 1 (a vector of I's),

(147) =

we have, using Taylor's theorem,

(148) q(t*, t**)-qQ*, **) = q**.(t**-**) + j(t**-**)'qt**t**(t**-

where "" over a symbol denotes the evaluation at t = I, while" - "over a symbol denotes
evaluation at t = t, where t = t + e (t** - g**), 0 < 0 < 1. Now suppose it has been
shown that (a) q(l*, t**) has, as a function of t**, subject to the constraint (21) > 0, a
local maximum at t** = j**, and (b) qt** = 0. From (a) it follows that, in a sufficiently
small neighborhood, the left member of (148) is nonpositive if tI2M) : 0. But then, using
(b), we see that the quadratic form in the right member of (148) is nonpositive. Since, by
hypothesis, qt**t** is a continuous function of t**, we have, for t(21) > 0, and in a suffi-
ciently small neighborhood of t,

(149) (t** - l**)#**t**(**- **) > 0

which is the desired result (71). Hence it remains to prove (a) and (b).
(a) q(l*, t**) has, as a function of t**, subject to t(21) 2 0, a local maximum at t** = 1**.
It follows from the remarks at the beginning of the discussion of the second regularity

condition that f(x', 0), as a function of x', has a local maximum at xl = V, subject to the
constraints

(150) gt(xI, 0) = 0, x(21) > 0.

Hence, subject to the same constraints, q(t) has a local maximum at . Now we must
distinguish the two ways in which the "milder" (46) second regularity condition R2 may
be satisfied.

First way: of1(x', yt) has a nonnegative saddle-point at (x', yt), that is, locally, since
y° = 0 by (43),

(151) f(xl, 0) + y*.g*(xI, 0) _ f(Xr, 0) + y*_g*(xV, 0)

for all x' such that x(21) _ 0.
But g*(VI, 0) = 0 because of (150), and g*(xI, 0) in the left member of (151) vanishes

for t* = t-. Hence (151) yields, locally and for 1(21) _ 0

( 1S 2) f[k*(I*, t**), t**, 0] < fkr*(I*, 1**), 1**, 01
which means precisely that q(t*, t**) has a local maximum at l** subject only to I(2") > 0.

Second way: g° is empty. In this case (150) is equivalent to

(153) g*(xI,o)=o,
(154)

But (153) is necessarily satisfied if t* = t* and hence can be disregarded. Since q(t)
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was seen to have a local maximum at I subject to (150), it follows that q(I*, t**) will have
a local maximum at W** subject only to P(2') 2 0.

(b) B .

We have
(155) q**=fz***+fz#.
We now evaluate the three expressions on the right-hand side of (155). We start with
e,**. Noting that

(156) f*{[r*(t*, t**), l**], 0} = 0 for all 1**,
we obtain by differentiation with respect to t**, using (60) and (69), and evaluating
at =I,

(157) e*er* + e** 0;
in virtue of R, this can be solved yielding

(158) e,-= - (ge*)-e..
To find fz*, fz* we write the condition that of'z/ = 0, using equation (41) in the form

f.* + o*,' ,
(159)

f,,, + oy*= 0.
The terms involving go vanish, of course.

Substituting (159) and (158) into (155), we have

(160) # = (-.y*.g**) + (* *[g * = (..y*g*-)+ (y*.g* ) o

This completes the proof of (71).
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